数字化设计与仿真技术范例6篇

前言:中文期刊网精心挑选了数字化设计与仿真技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数字化设计与仿真技术

数字化设计与仿真技术范文1

关键词:液压 仿真技术 应用与发展

中图分类号:TP27 文献标识码:A 文章编号:1672-3791(2012)08(a)-0097-01

仿真技术是液压系统设计的必要手段,已经被业界广泛认可。液压仿真技术始于20世纪50年代,刚开始是运用传递函数法进行仿真,也只能分析系统的稳定性及频率响应特性,这是一种用于单输入单输出的系统的仿真技术。进入20世纪70年代后,随着液压流体力学、现代控制理论、故障诊断技术、信息化技术的发展,液压仿真技术也得到了一定发展,已经可以建立液压系统的分析数学模型。近年来,加快了复杂的液压系统的研究,这使得从以前对象单一的形式化模型及数字化信息空间的定量研究发展到对于对象建立起定性和定量相结合,将信息、智能集成在一个复杂的信息空间中的定性和定量的研究。液压仿真技术由三个部分组成:数据建模;模型解算;仿真结果分析。在我国,液压仿真技术起步比较晚,虽然取得了很大的进步,比如国内的液压软件仿真系统DLYSIM的研发成功,但是目前我国与国外的液压仿真技术还有很大的差距。

1 液压仿真技术存在的主要问题

目前液压仿真技术存在的主要问题有以下几类问题:结构要求更加复杂,系统建模不容易;技术要求更高,系统仿真的精度和可靠性不高达不到要求的水准;结构不断复杂化,仿真模型库不完善问题越来越突出;各类仿真软件不断被开发,但是仿真软件的通用性不好的问题大量存在;液压技术不断发展,客户对液压仿真技术要求越来越高等。而液压仿真技术目前主要有以下几个关键点:一是加强液压元件和系统建模理论的研究,深入探索液压系统的机理,为液压仿真技术的发展提供充分的理论基础;二是继续开展液压专用仿真软件的开发和研制,为行业提供更加方便快捷的仿真工具,提高整个行业的操作效率;三是提高仿真结果的精度,以满足越来越高的客户要求,使仿真软件更加专业化;四是提高行业设计人员的素质,提高创新发展的能力;五是优化输出结果的描述和分析的方法,让结果分析更加明确清晰,效率更高。

2 现代化仿真技术在液压系统中的应用

随着信息化技术的不断发展,仿真技术也越来越成熟,利用计算机和硬件编程作为工具来研究液压系统动态特性已经成为一种发展趋势。仿真技术是以计算机技术、信息化技术、系统编程技术及其应用有关的专业技术为基础,以各种相似原理和物理效应的设备为工具,利用一些假想的简化模型结构对实际情况进行模拟研究的一种技术。它综合了计算机、网络、故障诊断、液压驱动技术、软件工程、信息处理、自动控制等多个高新技术领域的最新成就,不仅可以用于产品或系统的性能测试,而且可以用于产品研制开发的整个过程及由多个系统综合构成的复杂系统。

随着仿真技术的发展,仿真类型也在不断丰富,根据计算机类型的不同,仿真可以分为模拟仿真、数字仿真、数字模拟混合仿真和全数字仿真。模拟仿真是传统的类型,它主要是以模拟计算机为主要工具,对液压系统的模拟进行运算和研究。而数字仿真是现代化的仿真手段,它是以数字化计算机为主要工具。

仿真技术在液压领域的应用主要包括以下几点。

(1)通过理论推导建立已有液压元件或系统的数学模型,用实验结果与仿真结果进行比较,验证数学模型的准确度,并把这个数学模型作为今后改进和设计类似元件或系统的仿真依据,深入探索液压系统的机理,为液压仿真技术的发展提供充分的理论基础,这也能很好的解决目前仿真模型库不完善的问题。

(2)通过建立数学模型和仿真实验来模拟现实问题,在建模时对于不同的情况我们要采用不同的方案,例如采用有限元分析,甚至有时候还要适当简化模型,这样来找到模拟计算难度和切合实际问题之间的平衡。然后设置相应的各种数据参数,在设置参数时,我们首先要进行理论上的选择,然后针对实际情况做出一些相应的修改。最后确定已有系统参数的调整范围,这样有利于掌握仿真的范围也可以缩短系统的调试时间,减少犯错的几率,也提高了效率。

(3)通过仿真实验研究测试新设计的元件各结构参数对系统动态特性的影响,要注重各个元件的配合和基本参数,如液压泵的压力、液压泵的排量和流量、液压泵的功率以及液压泵的效率等,确定参数的最佳匹配,提供实际设计所需的数据,并把数据整理入库,完善液压仿真技术的数据库。

(4)通过仿真实验验证新设计方案的可行性及结构参数对系统动态性能的影响,从而确定最佳控制方案和最佳结构。在这个过程中我们要综合所有应该考虑的因素,不仅仅是技术方面的,还有一些技术以外的重要因素,比如造价、环境状况和实现难易程度等。

3 液压仿真技术的发展趋势

3.1 创新建模方法

在整个液压仿真技术中,建模是一个重要的基础,一个正确的模型,可以很好的反应需要解决的问题和得到想要的数据。因此应大力发展系统自动建模技术、一体化开放性的图形建模技术、具有在线自动调试功能的建模技术和采用高精度自适应的模型,来提高模型的可操作性和准确度,为液压系统的分析提供技术支持。

3.2 开展人机交互的仿真研究

人机交互技术已经成为信息化技术追求的目标,不仅是仿真技术,其他计算机技术也在加大这方面的研究。人机交互旨在提供更好的操作技术,使操作更加方便,也更加智能化。

3.3 进行面向对象化的仿真技术研究

面向对象化的仿真技术是近几年发展起来的新型技术,它突破了传统的仿真方法的观念,它根据组成系统的对象及其相互作用关系来构造仿真模型。它分析、设计和实现系统的观点与人们认识客观世界的自然思维方式一致,因而增强了仿真研究的直观性和理解性。

4 结语

随着信息技术的发展,我国液压仿真技术也越来越成熟,但是还有很多关键问题还有待解决和提高,所以我们要不断创新液压仿真技术,加强对整个行业的重视和投入。液压仿真技术正在朝着智能化、数字化方向发展,相信不久的将来液压仿真技术会带给我们更多的惊喜。

参考文献

[1]王士刚.液压系统动态仿真模型可视化建模技术研究[J].大连理工大学学报,2004(2).

数字化设计与仿真技术范文2

关键词: 飞行器设计; 协同设计仿真管理平台; SIMULIA SLM; 二次开发

中图分类号: V414.41; TB115.1文献标志码: B

0引言

企业竞争力主要体现在创新设计能力方面,企业效益则直接受到产品的质量、周期和成本等要素的影响.设计是一项创造性的活动,主要是根据用户的需求对产品进行定义.总体设计承担整个设计过程的组织和协调任务,因此总体能力强弱直接影响产品开发的成败.飞行器总体设计就是对飞行器系统工程进行科学的技术管理,即创造产品概念、形成总体方案、实施技术协调;建模与仿真技术是保障系统方案的整体优化、协调系统功能设计和实现的关键手段.

当前阶段,数字化设计技术已在飞行器设计过程中得到众多应用,但在传统研发模式下,数字仿真技术还没有成为核心技术手段和研制流程的标准环节.数字化技术已经加快飞行器设计进程,但许多设计师个人积累的研制经验、模型和数据尚未得到有效管理,设计知识的传承还没有找到有效途径.数字仿真技术是一项复杂的技术活动,在仿真建模、仿真模型确认和仿真结果评估等环节需要进行严格的过程管理,才能得到高质量仿真结果,支持产品设计.飞行器总体设计能力提升、知识积累和复用需要数字仿真技术,实施数字仿真技术需要在技术和资源保障等方面突破具体困难.

数字化设计技术代表当前先进的设计理念,国外在数字化设计技术方面取得很大进展,主要应用领域涉及航天、航空和兵器等.相关研究工作如美国沃特公司建立导弹综合设计系统[1],美国军方建立IHAT系统,集成几何、气动、推进、弹道、热、结构、稳定性与控制和费用指标等 [2],美国NASA针对新一代运载技术建立AEE设计集成环境[3].

国内亦高度重视数字化设计技术发展,国内诸多企业和研究部门正着手建立一批有代表性的导弹集成设计平台,如国防科技大学航天与材料学院采用J2EE架构建立导弹系统集成设计通用平台[45],西北工业大学航天学院建立导弹总体方案设计系统[67]等.

本文针对复杂环境下高超声速飞行器总体设计集成度高、结构复杂、开发周期长和试验成本巨大等特点,通过二次开发,应用SIMULIA SLM系统构建飞行器协同设计仿真管理平台,基本实现飞行器总体方案数字化设计仿真、设计知识的积累和复用,为飞行器总体设计人员提供专业化设计、仿真分析和数据管理工具,研究成果对企业协同设计仿真管理平台的构建具有一定的参考价值.

1平台架构

高超声速飞行器协同设计仿真管理平台的架构见图1,分为基础资源层、平台服务层、仿真应用层、设计应用层和平台门户层等5层.

2平台实现

为实现平台框架中提到的各项功能,需要基于成熟的仿真数据管理平台框架软件进行二次开发,本文选择SIMULIA SLM系统作为基础框架软件进行二次开发.

图 1平台架构

2.1平台门户层

各专业设计师与仿真工程师可通过统一的门户界面登录,在统一平台网络环境中完成从预研论证、方案设计到工程设计等业务所需的飞行器全研制周期数字化设计仿真工作.系统客户端包括总体、制导控制系统、结构和气动等能力单元的人机交互操作界面.具体讲,根据型号研制现状,通过定制开发方式,平台门户层提供IE风格的、支持插件的满足不同设计阶段、不同设计人员的人机交互界面.

平台登录界面见图2.

图 2平台登录界面

2.2设计应用层

设计应用层主要由总体、制导控制系统、结构和气动等能力单元的专业快速设计系统组成.设计能力单元是按照飞行器研制流程工作需求组织的小规模多专业协同设计环境.专业快速设计系统是按照型号作业需求、利用作业流程组织的单专业数字化设计系统.专业的通用分析流程是专业设计经验积累、抽取、分解、标准化、组合配置串接出的复杂设计过程,数据、工具、过程与人员相互独立,通过接口定制形成设计数据流,用标准过程形式封装各类分析软件(商业软件和自编程序)形成技术支撑能力;通过计算过程自动化降低人员数量需求、人机交互补充系统智能处理水平,形成能力驱动型的研发模式.具体讲,根据型号研制现状,通过定制开发,设计师在人机交互界面上完成设计数据输入、查看设计结果输出、反馈设计决策和获得设计帮助支持等.

2.3仿真应用层

仿真应用层主要由总体、制导控制系统、结构和气动等能力单元的仿真系统组成,主要工作有:(1)将标准的自动化程度高的有精度保障的仿真流程添加界面,封装成设计流程,供型号设计师使用.(2)将标准的有一定技术成熟度的仿真流程作为分析模版,供专业仿真工程师使用.(3)将企业共享的仿真工具、经验参数、专业模型和分析模版作为技术资源,供平台上的专业研究师使用,创建作业分析流程.

仿真应用层作为能力培养单位,具有仿真项目管理、专业知识管理、IT技术支持、仿真业务审核和仿真共享空间等交互工作界面.具体讲,根据企业技术积累现状和专业发展能力水平,通过二次开发定制,仿真应用层能建立满足产品研发所需的数字化仿真环境.

2.4平台服务层

平台服务层将实现对企业现有的知识数据、专业模型、分析流程、专业工具和IT工具等进行有效的配置管理,通过IT技术能力有效实施系统工程思想的管理方法,在数据集成管理、工具集成及过程自动化、系统协同仿真和稳健性优化等信息处理能力方面通过大幅提高数据交互效率和质量、仿真计算效率和数据处理能力、丰富决策手段和其科学性,最终实现设计人员的工作效率提高、研发周期缩短、设计质量提升的目的.平台服务层是数字仿真管理平台建设的核心基础条件,需要专业仿真数据管理平台框架软件的支持.

2.5基础资源层

基础资源层将产品研发中积累、总结、归纳所形成的产品设计经验,软件分析工具,硬件计算设备等进行有效的共享管理;分类存储和积累产品设计数据有利于设计信息的汇总、设计知识的提炼和设计帮助的实时支持;共享软硬件技术资源并通过与资源管理和调度系统的集成,能为全体设计人员提供高性能计算资源,提高设计效率和可靠性,提高投资的效益.基础资源层中的技术元素需要专业数据库系统等资源支持,接受平台管理层的调度和管理.

3应用实例

以方案阶段导弹典型设计参数的优化和仿真验证为目标,将总体、弹道、气动和结构等专业的仿真过程集成于数字仿真管理平台,初步实现各专业的设计仿真工作的流程化.通过流程的运行考核数字仿真管理平台的数据管理、任务管理和流程管理功能.相关应用成果见图3~5.

图 3飞行器总体参数初步设计图 4气动设计仿真

图 5结构设计仿真

通过某型号方案设计仿真在平台中的应用,实现导弹方案阶段设计仿真工作的流程化,形成6大业务流程和21个仿真流程,实现设计方法的灵活调用、积累、复用和更新;通过平台化的数据流转和管理实现专业间数据流转、过程数据版本的规范化管理和数据引用的可追溯性;通过4个专业应用验证数字仿真管理平台的基本功能;验证知识积累和复用机制的可行性;验证业务流程模型的提炼和仿真过程的组织符合型号研制的工作实际.

4结束语

将SIMULIA SLM系统作为基础框架软件进行二次开发,构建飞行器总体协同设计仿真管理平台的雏形,并得到初步应用.研究成果对企业仿真数据管理平台的构建具有一定的参考价值.

虽然数字化仿真技术已经应用于产品全生命周期的各阶段,并取得显著效果,很多企业越来越认识到仿真数据管理的重要性和必要性,但是构建企业级的仿真数据管理平台仍面临着许多挑战.

(1)目前,市场上的商用仿真数据管理软件都还处于发展和完善阶段,并且仿真数据管理平台需要根据企业自身的需求进行大量的定制开发和实施工作;

(2)结合定制开发,企业自身业务流程、仿真流程的梳理是1个不断迭代的过程,需要专业级主任设计师长期不懈的努力;

(3)需要企业进行仿真数据、经验知识的积累,并使仿真应用规范化、标准化;

(4)仿真工具的开放性和易集成性对仿真数据管理平台的构建也有至关重要的影响.

因此,构建真正的能适应企业自身需求发展的数字仿真管理平台还需要整体规划、分布实施,本文所完成的工作只是万里迈出的第一步.参考文献:

[1]ROCH A J. Missile integrated design analysis systems (MIDAS)[C]//Proc AIAA 19th Aerospace Sci Meeting, AIAA19810285, St Louis, 1981.

[2]BAKER M L, MUNSON M J, HOPPUS G W, et al. The integrated hypersonic aeromechanics tool[C]//Proc 10th AIAA/ISSMO Multidisciplinary Anal and Optimization Conf, AIAA20044565, New York, 2004.

[3]MONELL D, VERHAGE M, KAM J V, et al. The advanced engineering environment project for NASA’s next generation launch technologies program[C]//Proc AIAA 42nd Aerospace Sciences Meeting, AIAA20040202, Reno, 2004.

[4]陈敏, 张为华, 戴金海. 导弹系统集成设计通用平台及关键技术[J]. 弹箭与制导学报, 2008, 28(2): 15.

[5]李国正, 陈敏, 张为华. 动态可扩充的导弹集成设计平台及其关键技术研究[J]. 弹箭与制导学报, 2008, 28(5): 1418.

数字化设计与仿真技术范文3

关键词: 建筑工程施工;数字化;管理手段

建筑工程施工管理是否科学关系到整个建筑工程能否高效完成,实现预期建设目标,能否完美展现建设蓝图。科学的施工管理离不开畅通的信息流动,即实现信息在建筑工程施工过程中的全方面流动,包括从上层到下层或从下层到上层的纵向流动,也包括层次间的横向流动,使管理者及时了解施工信息,有效管理和控制施工进程等。传统的建筑工程施工管理过程中,通常采用的是手工统计数据、编制报表的方式,这种方式工作量大,效率不高,也难以保证信息的及时性和精确性。随着数字化时代的到来,数字化管理被引入建筑工程施工管理中,实现了现代建筑工程施工管理手段的突破。

一、当前建筑工程施工中数字化管理的优势及现状

相对于传统建筑工程中的人工信息管理,“数字化”管理具有信息数字化、网络化、智能化和可视化等优势。它通过将施工过程的相关数据录入计算机资料库,运用智能化的整合分析方式,对整个建筑工程进行分析和掌控;还能运用现代电子器材,对施工过程进行随时随地的监控和管理。不仅使管理者能够全面、精确地了解整个建筑工程概况或局部详细信息,还能通过系统仿真计算、虚拟现实等等手段,实现对庞大建筑工程的历史分析和前景推测。

当前,随着电子计算机先后被引入建筑工程,除一些小型建筑施工依然采用传统的人工计算、人工管理的方式,大型建筑工程基本上都已经普遍运用数字化管理,从施工前的蓝图设计、到施工过程中的管理以及完工后的工程检验、完工后的实际应用等,都已经离不开数字化管理手段了。

二,建筑工程施工中数字化管理手段的应用

在建筑工程施工中,数字化管理主要体现在空间信息技术、系统仿真技术、可视化与虚拟现实以及多智能体施工等方面。这些数字化管理新技术的运用,使传统建筑工程施工管理有了质的飞跃。

(1)空间信息技术,即运用遥感技术RS,地理信息系统GIS,全球定位系统GPS等新型空间信息技术,搜集和处理包括施工场地的地形、地貌、地质状况、地面建筑物以及施工项目等一切空间信息,通过科学管理和综合分析这些数据,为科学规划和决策提供依据。如利用地理信息系统GIS,可以动态反应路基、建筑物的施工进展详细情况;此外随着三维、四维数据模型的日趋成熟,将GIS技术与系统仿真技术和结合,以三维或四维可视化方式逼真显现整个建筑施工概貌和流程,对于熟练掌握建筑施工情况,及时改进工程施工计划和方式,加强施工各方面的协调程度具有重要意义。

(2)系统仿真技术是以计算机等设备为工具,运用相似性原理、系统工程方法以及信息技术等专业技术,用系统模型对真实的或正在设想中的系统进行动态研究的一门多种学科交叉的综合技术。主要有分布式仿真、智能仿真、多媒体仿真以及可视化仿真等,被广泛运用于隧洞施工、桥梁施工、管道施工等领域。运用现代仿真技术,对实际系统和设计蓝图进行试验研究,是当前建筑设计中必不可少的一项先进的数字化技术,是对庞大复杂的建筑工程的分析、研究、设计、评价等的重要手段。

(3)可视化与虚拟现实的应用。可视化即指运用图像处理技术等,将相关数据和文字信息转换成图像、图形,在屏幕上显示出来,使之更为直观和形象。虚拟现实即运用计算机相关技术生成逼真的集视觉、触觉、听觉等为一体的模拟环境,运用传感设备,如立体眼镜、头盔显示器等,使用户产生身临其境的感受或体验。这种技术的运用能够提高学生或被培训人员的极度逼真的“实践”经验,可应用于一些由高难度、高危险度的操作,通过这种逼真的“实践”,提高在实际操作中的应对能力,减少不必要的损失或伤亡。

(四)多智能体,即能够为实现目标或任务独立运行,能适应所处环境,并能从环境中获取知识,提高自身能力,且具有学习能力和推理能力的智能实体。在复杂的多智能体系中,每个智能实体都能作用于自身和环境,是解决复杂大系统问题的新型智能技术。当前,建筑工程项目规模不断扩大,形式愈加复杂的趋势下,工程建设过程中涉及的问题、涉及的单位和个人都迅速猛增,以传统人工管理模式已经很难驾驭,而采用多部门计划协调支持系统的智能体协同工作组织结构,则化解了这一难题,计算机智能技术就能够巧妙解决这一复杂系统中千头万绪的关系和问题。

三、当前建筑工程施工中数字化管理存在的问题

当然,数字化管理手段的应用,大大提高了建筑工程施工的工作效率、技术水平,更极大地提高了工程质量,降低了生产成本。但作为由于建筑工程地面作业强的施工特点,数字化管理在建筑工程施工管理中运用还是属于新兴事物,多智能技术、可视化与虚拟现实的运用只存在于少数极端复杂的庞大工程中,而大多数建筑工程施工对数字化的管理运用还处于初步阶段,也存在着许多亟待改进的地方。

首先,由于建筑工程施工数字化管理应用的广泛性、普遍性还不够,还缺乏工程数字化管理的系统性的科学方法,大多都还处于摸索阶段。单纯的、教条式的模仿较多,缺乏创新意识,个性化、符合建筑施工特色的系统性数字化管理方式还亟待完善。

其二,由于建筑工程施工中数字化管理模式还不成熟,数字化数字化构架不够完善,各个建筑施工系统的相互协调性、综合运用性不强,缺乏统一有效的管理和指挥,还不能从整体上充分发挥数字化管理的高效性能。

其三,相关法律法规不够完善,对建筑施工相关管理数据和信息的保护乏力,也缺乏足够的保护意识和法律法规意识。由于疏忽导致的数据流失或被利用,给工程的建设以及相关方面的权益带来损害。

四、建筑工程施工中数字化管理的改进

(一)培养新型建筑工程数字化管理人才,加强建筑工程施工过程中数字化管理的系统化和专业化。当前,对建筑工程施工中,数字化管理手段主要应用于基础管理阶段,而一些专业技术性的应用还较少。而当代土木工程大学生的大量出现,计算机技术的发展,必将推动数字化管理走向系统化和专业化。如运用数字化管理,提升对大型构件安装的精确度控制、高层建筑中垂直度的控制、对建筑工程施工材料性能的检测以及高空操作中混凝土自动化上料、建筑材料沉降检验等。及时改进更新建筑工程施工的设备,完善相关配套设施,建立起一套与数字化管理相配套的现代化施工设备,为建筑工程施工的数字化管理提供充分的硬件设备。

(二)搭建和完善基于网络的建筑工程施工中的数字化管理平台。随着大型建筑工程的兴起,建筑工程施工管理变得极为庞杂。从以前单纯的进度管理和材料管理等基础性粗略性的建筑管理,成为如今涉及进度、审核、图纸、设计等各个方面,外向联系的对象也涉及颇广。因此,构建共享平台和网上办公系统,简化各个数字、数据传递的复杂环节,成对提高建筑工程施工效率的有效途径。

(三)加强建筑工程管理者的数字化管理意识,积极采用先进的管理方法和技术,推动数字化管理更快更广泛地被应用到实际中来。同时,加快建立和完善相关法律法规规章制度,使数字化管理有章可循。并加强对建筑工程施工数字化管理的科学技术研究,建立先进的综合性强的数字化管理体系。

参考文献:

[1]胡鹏、黄杏元、华一新.地理信息系统教程[M].武昌:武汉大学出版社.2002

数字化设计与仿真技术范文4

关键词:三维建模;三维动画;仿真技术

中图分类号:J218.7 文献标识码:A

文章编号:1005-5312(2012)17-0043-01

一、关于三维建模

(一)三维模型

所谓的三维模型就是一个物体用三维的多边形表示出来,然后用计算机或者其他的设备用视频的形式进行显示。现实的物体可以使在现实世界里存在的实际物体,也可以是设计者虚构出的,总之就是不管是有的没得,只要是能想出来的都能用三维模型表示出来。

(二)三维建模的应用范围

三维建模在现在这个科技发展迅猛的时代已经被运用在各个领域,其中在视频游戏中,三维建模是作为计算机和视频游戏中的资源被运用,而在医疗行业中,三维建模被使用于器官的制作模型等,在电影电视行业中,他们被用于特技手段和活动的人物制作,在建筑业中,三维建模用来展示所要表达的建筑物和地貌风景等。

(三)三维建模的方法

1、软件建模

现在市场上有很多比较先进的建模软件,比如3DMAX、Maya、AutoCAD等等,这些软件的共性是用一些较基本的几何体,如长方体、正方体、立方体和球体等,构建一系列的平移、旋转、拉伸和一些较复杂的几何场景来实现的。能够用团建来进行三维建模的主要是屋里建模、几何建模和行为建模等等,而其中尤几何建模的创建和描述是三维建模之间的重点。

2、仪器设备测量建模

三维建模中重要的工具就是三维扫描仪,又被叫做三维数字化仪。这种仪器能够将现实世界中的彩色努力提的信息快速的转换成计算机能够识别和处理的数字信号,并且能够为三维建模实现数字化提供了有效的方法。

3、图像或者视频建模

在现在的计算机图形学的研究领域,用图像或者是视频来进行三维建模是很多学者比较感兴趣的,这种方法同那些比较传统的建模方法相比,具有很多特别的优势,比如,用图像或者视频创建的模型会比别的方法更加真实和自然,并且,运用这种方法创建模型会变得更方便,速度也会大大提升。质量和速度的提高,是图像或视频建模最大的特色。

二、关于三维动画的仿真技术

(一)动画

借用人的视觉暂留原理,一系列的静态图像播出之后,会在人的视网膜上留下动态的效果,而利用计算机设计的动画效果,就是用计算机中比较高效的图像处理的功能,用一连串的关键帧来对物体的关键时刻进行描述,准确的几率物体关键时刻的位置结构和其他的参数,并且自动的形成中间的图像,然后创建出一幅流畅的画面。

(二)三维动画的的仿真应用

三维动画的仿真技术能够将真实的物体模拟成一个虚拟的动画,但是这个动画会产生一定的价值。三维动画的真实和精确,可操作性,三维动画在教育、军事、建筑和医学、娱乐等领域都有很大的发展性。

在影视制作方面,三维动画能够制作出比较有创意的特效和3D动画,还能够制作出精良的后期效果和特效动画,应用这项技术,吸引了越来越多人的眼球,得到很多客户的青睐,剧中的爆炸,烟雾,下雨和光效还有撞车,变形和很绚丽的片头片尾等等的出现,都得益于三维动画的仿真效果,其真实性让人们极大的体验到了科技社会所带给人们的视觉盛宴。

在工程建筑中,桥建设时,预先设计场景;建造跨江大桥,要考虑到桥附近的山水;建造立交桥,要考虑到城中居民区。这些效果都可用三维动画的仿真技术制成。

三、总结

随着科学技术的进步和人们工作的电脑化,三维建模和三维动画设计会随着动画技术的进步有着飞一般的技术提高,而且在我国的科技领域,三维建模和三维动画的仿真设计会有这广阔的发展前景。现在社会中计算机技术发展迅猛,多媒体技术的出现使各行各业有的新的生机,在这个信息技术称霸的时代,电脑的技术运用对于我们生活和工作的影响是很大的,这也促使着我们在工作的过程中要尝试着新的思路和方法,保证在工作中用最快最好的方法,最短的时间内高效率的完成工作内容,降低成本。不管是三维建模还是三维动画的仿真技术,都用比较准确和真实的效果来表达设计者的思想,会对工程的施工方案的选择还有施工方案的优化设计有很大的帮助,保证施工能够达到最优。

参考文献:

数字化设计与仿真技术范文5

关键词:计算机技术;数字化设计;CAD;设计;应用

Abstract: design technology is a variety of ways and means that we in the design process to solve the specific design issues. Traditional design using the static, experience, passive, manual methods, the design efficiency and accuracy has been unable to meet the higher requirements of social development. Computer technology in the design of large-scale application is the integrated technology on the based of the traditional design technique interdisciplinary and multiple disciplines development. Along with the computer technology development, scientific, dynamic, active, modern design technology development and application, the design efficiency and accuracy are greatly improved.

Key words: computer technology; digital design; CAD; design; application

一、设计技术概述

设计技术是我们在设计过程中解决具体设计问题的各种方法和手段。传统设计我们采用的是静态、经验、被动、手工式的方法,其设计的效率和准确性已无法满足社会发展的更高要求。随着计算机技术的大发展,动态、科学、主动、现代化的设计技术不断发展和应用,使得设计的效率和精确性得到了最大程度的提高。计算机技术在设计中的大规模应用是在传统设计技术的基础上多专业和多学科交叉发展的综合性技术。现代设计技术由基础技术、主体技术、支撑技术和应用技术4个不同层次的技术所组成。基础技术主要指传统设计理论与方法。计算机辅助设计技术CAD是现代设计技术的主体技术。支撑技术则主要是可信式设计技术、试验设计技术和现代设计方法学。应用技术则是各产品领域的知识和技术。

二、数字化设计与数字化产品开发

数字化设计是指将计算机技术应用于产品设计领域。数字化设计是基于产品描述的数字化平台,建立基于计算机的数字化产品模型,并在产品开发全程采用,达到减少或避免使用实物模型的一种产品开发技术。 产品设计过程本质上是一个对信息进行采集、传递、加工处理的过程,其中包含了两种重要的活动:设计活动和仿真活动。因此产品设计也可以看作是一个设计活动和仿真活动彼此交织相互作用的过程。设计活动推动信息流程向前演进,而仿真则是验证设计结果的重要手段。2.1数字化设计的特点

1)实现并行设计一项设计工作可由多个设计队伍在不同的地域分头并行设计、共同装配,形成一个可完成强度、可制造性、成本和功能测试的完整的数字化模型。

2)设计过程中减少或避免实物模型的制造传统设计在产品定型生产前需经过“样机生产―样机测试―修改设计”的过程,且需反复多次,这不仅耗费物力、财力,还使得产品上市周期延长。数字化设计则在制造实物模型之前,先进行计算机仿真分析与测试,排除[1]某些设计不合理性。2.2数字化设计技术及应用

(1)参数化、变量化、模块化设计

参数化、变量化技术也是配置设计和按定单设计的基础。产品设计大多数是从已有产品进化而来的,据统计,典型定单产品中的标准件、外购件或变型件占90%,全新零件只占10%左右 利用参数化、变量化、模块化建模技术,可方便地修改设计,提高设计的效率,保证设计的质量和可靠性。CAD中的尺寸驱动法是利用参数化、变量化技术修改设计的有力工具利用广义相似理论,通过对功能单元、结构单元的重组可以获得不同结构形式的系列化产品(2)反求工程和快速原型技术复杂产品的模仿创新是一条减少风险投入,加快产品创新的有效途径。反求工程是利用某些测量方法(如三坐标测量、CT、核磁共振、自动断层扫描法等),在实测数据的基础上,重构产品三维数据模型的方法。快速原型技术是20世纪末期制造领域的重大突破,它直接利用CAD的离散数据,简单、快速、准确地将人的思想转化成功能原型或零件,淡化了设计与制造的界线。数字化的核心是离散化,快速原型技术通过产品数据的分层和离散,将材料按需要添加到零件上,通过对材料配比的变化及烧结路径的变化,可有效地控制零件的性能和变形。反求工程和快速原型技术的巧妙结合为加快产品开发过程和在实物原型的基础上,深入探讨和选择设计方案奠定了基础。

(3)虚拟产品开发方法

虚拟产品即存储在计算机内部的产品数据模型,亦称数字化原型或数字化样机(Digital Mock-up)。虚拟产品开发不是简单的数字化建模和仿真,它更强调虚拟技术的应用,通过虚拟现实的交互性,沉浸性和想象性达到虚拟产品开发环境的高速逼真化,并可对虚拟原型直接进行操作,产生身临其境的感觉。数字化样机是描述产品功能和行为特性的产品数字化模型,它支持产品的多学科优化设计及产品运动学、动力学和使用性能仿真,通过对模型的评估、测试和优化,可以预先了解相应物理样机的特性。随着虚拟现实技术的发展,在数字化样机的基础上提出了虚拟样机的概念,它更强调仿真技术和VR技术的应用,通过VR环境中人对虚拟原型的操作,可有效地发挥人的创造性,提高了概念设计和总体设计中的分析、决策能力。虚拟产品开发技术(Virtual Product Development)是在信息技术、网络技术、仿真技术和虚拟现实技术基础上出现的最新数字化产品开发技术。虚拟产品开发是实际产品开发、制造、使用、维护在计算机上的本质表现,虚拟产品开发要求全面的产品数据描述和各种可视化的仿真工具及人机交互操作工具。数字化样机和虚拟样机技术不仅可以减少和替代部分实物实验,降低产品开发费用和缩短产品的研制周期,而且也是提高产品创新能力的有利工具。虚拟产品演示可以在一般计算机环境下进行,也可以在虚拟实境环境下进行,它不仅可显示产品的外观、内部结构以及工作原理,还可改变金属表面涂装的颜色和光泽,以及皮革的纹理等。虚拟产品既可用于设计交流,还可作为设计者与销售人员、销售人员与客户之间的交流。

三、CAD技术及应用

CAD技术的主要功能:零件造型、产品装配、产品渲染、动态显示、运动仿真;工程分析如有限元分析、优化设计、可靠性设计;绘制工程图样、编制物料清单等。

任何设计都表现为一种过程,每个过程都由一系列设计活动组成。这些活动既有串行的设计活动,也有并行的设计活动。目前,设计中的大多数活动都可以用CAD技术来实现,但也有一些活动尚难用CAD技术来实现,如设计的需求分析、设计的可行性研究等。将设计过程中能用CAD技术实现的活动集合在一起就构成了CAD过程。CAD的真髓不是绘图,而是建模和仿真[2]。数字原型(DMU)就是在三维实体模型的基础上,将零件组装成数字化的虚拟产品。数字原型可用于检验零部件之间的装配关系[3],以防止相互干涉,从而可进行运动仿真。数字原型可用于透视复杂产品的内部结构,从而可进行装配、维修等人机工程的研究。它还可用于产品的外观艺术渲染,制作广告。在三维实体模型的基础上,将零件组装成数字化的虚拟产品。

计算机辅助工程是借助计算机强大的计算和图像处理能力解决工程技术中的各种问题,包括有限元分析、优化技术等。有限元分析FEA(Finite Element Analysis)是采用有限元法来近似求解数学物理问题的过程[4]。有限元法的基本思想是将问题的求解区域划分离散为一组有限个单元,单元之间按一定方式仅靠节点相互连接在一起的组合体。单元内部点的待求物理量可由单元节点物理量通过选定的函数关系插值求得。将各个单元方程“装配”在一起而形成总体代数方程组,加入边界条件后即可对方程组求解。节点是空间中的坐标位置,具有一定自由度和存在相互物理作用。单元则是一组节点自由度间相互作用的数值、矩阵描述(称为刚度或系数矩阵)。单元有线、面或实体以及二维或三维的单元等种类。信息通过单元之间的公共节点传递的。有限元模型是真实系统理想化的数学抽象。

集成化、网络化和智能化是现代CAD技术所追求的功能目标。集成化要能支持信息集成、过程集成与企业集成,它涉及的技术如:数字化建模、产品数据管理、过程协调与管理、产品数据交换、CAX工具、DFX工具等[5];网络化要能支持动态联盟中协同设计所需的环境与设计技术;智能化是指在实现集成化与网络化时所采用的智能技术,如人工智能、专家系统技术等。现代CAD技术的最终目的是要尽可能采用自动化设计技术使所设计的产品达到质量高、成本低、周期短,以便在先进制造模式下赢得市场竞争。随着现代CAD技术的发展,设计过程中越来越多的活动都能用CAD工具加以实现,因此 CAD技术的覆盖面将越来越宽,以至整个设计过程就是 CAD过程。

参考文献

[1]阎楚良,杨方飞.农业机械数字化设计技术研究与展望[C].//中国农业机械学会2006年学术年会论文集.2006:797-801.

[2]倪桂功.CAD/CAM技术在球头立铣刀设计制造中的应用[D].天津理工大学,2006.

[3]张春森,波.基于CAD技术实现工业零部件图像直线特征提取[J].光学精密工程,2011,19(9):2214-2221.DOI:10.3788/OPE.20111909.2214.

数字化设计与仿真技术范文6

关键词:车辆工程专业;应用型;实践创新能力;教学体系

Research on practical innovation ability cultivation for application-oriented undergraduates of vehicle engineering

Yang Bin, Wan Maosong, Wang Jiankang

Nanjing forestry university, Nanjing, 210037, China

Abstract: According to market demand for automobile professionals and vehicle engineering orientation. Cultivation system of practical innovation ability for application-oriented undergraduates of vehicle engineering is established. Theory course teaching system, teaching content, teaching methods, the experiment practice course system and students'' comprehensive quality training system are also innovated and practiced.

Key words: vehicle engineering; application-oriented; practical innovation ability; teaching sysem

汽车产业是国民经济支柱产业之一,近十年来,随着我国汽车行业的飞速发展,用人单位对汽车类人才的需求十分旺盛。同时,对车辆工程专业人才培养的质量和类型提出了新要求,迫切要求改革和创新车辆工程人才培养模式,着重加强学生的工程素质和实践创新能力的培养。

1 车辆工程专业定位

车辆工程专业培养学生具备扎实的基础理论知识和汽车设计、制造、试验方面的专业知识,能够在汽车设计研究院、汽车制造企业、汽车行业管理部门(维修行业协会、保监会)、保险公司、交通管理部门和高等院校等从事汽车产品开发、技术研究、交通安全、教学和管理工作。本专业主要要求学生系统地学习和掌握机械设计与制造基础理论、计算机应用技术等基础知识。

近年来,我校车辆工程专业根据我国汽车工业未来发展趋势和新的人才培养需求,对如何培养符合社会需求的实践创新能力的人才进行了深入研究和探索。围绕学校的“十二五”发展规划,重新确立了车辆工程专业建设指导思想,明确了办学指导思想和定位,着重培养学生在汽车产品的数字化设计和汽车测试等方面有较强的研究和应用能力,并对理论课程教学体系、教学内容、教学方法及实验实践课程体系、学生综合素质培养体系等多方面进行了创新与实践。

2 车辆工程专业应用型人才培养体系

2.1 理论课程教学体系的建设

2.1.1 “三模块”理论课程教学体系

根据车辆工程应用型本科人才的能力结构和要求,首先确定车辆工程应用型人才培养的课程体系和教学内容,构建了“三模块”理论课程教学体系,即与车辆工程专业相关模块,包括通识教育模块、汽车专业基础课教学模块和专业课教学模块,确立了各模块课程的知识要求和教学内容。具体做法是将本专业划分为汽车产品的数字化设计和汽车测试方向,依据不同方向开设了不同的主干课程,制订了新的课程教学大纲,组建了模块化教学团队,进一步优化了课程结构和不同课程之间的纵深关系,确立了各课程的教学目标和要求,修订了新的教学计划和教学大纲。

2.1.2 建设汽车数字化课程群

数字化设计与制造是现代汽车工业的发展趋势。为了满足现代汽车工业对既懂汽车结构又懂三维数字化设计技术复合型人才的需求,我校自2009年始开展了车辆工程本科专业数字化课群的建设,将数字化技术的应用能力培养作为专业人才培养主要目标之一。

通过对专业需求企业和相关院校广泛调研与论证,提出符合自身特点的课程建设方案,修订了各门课程的教学大纲,着手选择或编写教材,大胆尝试与改革数字化课程的教学方法与手段,陆续开设CAD,CAE以及汽车仿真和汽车电子类课程,如汽车CAD/CAE技术、汽车结构有限元分析、Matlab及其应用、汽车车身设计基础、汽车测试技术及设备、汽车电子控制技术等。同时,在教学内容和方法上也在不断改革和尝试,使学生不只局限于工具的使用,强调授课过程中训练学生思维的启发式教学方法,尽可能结合汽车零部件产品设计的案例式教学方法。

2.1.3 搭建汽车数字化应用平台

围绕着汽车数字化设计和汽车测试两个专业发展方向,以培养工程应用型人才为目标,开展实验仪器、设备和软件建设,在原有实验条件的基础上成立了汽车数字化设计与应用中心。已建成拥有DELL和HP高性能工作站、40台高性能计算机,80套汽车电子多功能实验系统,汽车制造业普遍使用的汽车CAD(辅助设计类)软件—CATIA v5r20,UG NX 6.0和PTC Cero 1.0,汽车CAE(结构性能分析类)软件—ANSYS10.0,汽车动力学与性能仿真软件—ADAMS,RECURDYN,虚拟仪器和检测开发软件—NI测控系统,LabView,Matlab等各种先进、正版软件的汽车数字应用实验室。

2.2 多途径提高大学生数字化应用能力

依托汽车数字化设计建设平台,将提高大学生的数字化技术实践创新能力培养贯穿于整个大学阶段课程学习、专业课课程设计、毕业设计、课外创新实践训练计划中。

(1)推行“以学生为主体、以教师为主导”的教学思想,坚持理论教学与实践教学并重,注重汽车新技术、新结构和新材料的介绍,正确处理各课程内容的纵深关系,周期性开展教学研讨,总结课程教学经验、不断改进教学方法。

(2)推行“优秀本科生导师制”,聘请学术造诣深、责任心强、治学严谨的教师担任优秀本科生导师,导师应在充分了解优秀本科生的学习基础、特长、志趣等因素的基础上,制订出切合实际的培养方案和较强针对性的培养计划及具体安排。安排优秀本科生参加科研工作和各类学科竞赛。优秀本科生在培养期间应积极参与指导教师安排的科研课题或项目,在指导教师的指点下积极申报校级以上创业计划、创新项目,并撰写科研论文或申报成果奖,使学生数字化技术综合应用能力得到提高。

(3)建立课外实践创新汽车数字化应用平台,鼓励车辆工程专业大学生参与机械创新设计等各种大赛,在全国三维数字化创新设计大赛、机械创新等竞赛中取得了较好成绩,以赛促教、以赛促训、以赛促用、以赛促新,培养了学生自我学习、自我开发的能力以及创新意识,同时也提升了专业能力和技术水平,促进了就业。

2.3 实验实践课程体系的建设

2.3.1 打破课程壁垒,实现实验内容模块化

从车辆工程专业人才培养需求的实际出发,实验教学体系首先应打破课程的界限,以强化学生的创新能力和实验技能培养为主线,对专业课实验教学体系进行总体设计,统筹规划所有专业课程实验教学,构建与理论课教学既有机结合又相对独立的技能培养实验教学体系,形成了“专业教师指导实验、实验教师参与课程教学”的教学模式。由专业课教师参与指导汽车发动机和底盘构造、汽车拆装与驾驶实习、汽车CAD/CAE技术等实验课程,将理论与实验教学课程紧密联系,使学生对所学内容有更深层次的理解。

2.3.2 开放实验室,充分利用教学资源

充分利用实验室现有资源,完善实验教学条件,积极开展实验室开放工作,为学生学习服务,培养和巩固学生的专业兴趣,激发学生的学习兴趣,培养学生的实践能力和创新精神。实验室开放包括认知实验开放、实验项目开放、计算机应用开放、科技活动开放等。同时,积极支持和组织大量的学生课外实践活动,极大提高了学生专业学习积极性。

2.3.3 引入虚拟仿真技术,降低设备运行使用费用

虚拟仿真技术已在车辆工程学生的课程设计和毕业论文综合设计环节开始广泛使用,利用计算机多媒体技术和仿真技术进行实验仪器设备操作与控制模拟,使学生全面了解和熟悉实验仪器设备的使用原理,操作过程和维护保养。学生参与实验教学仪器设备的自主开发及应用,要求学生利用3D(如UG,CATIA等)工程软件,建立对象的三维数字化模型,然后利用相关虚拟仿真软件制作成面向对象的交互系统。开发和利用虚拟仿真实验系统是改革实验教学的一个新的发展力向,可缩短熟悉仪器设备的时间,规范学生的实验操作,提高仪器设备的使用完好率,降低实验损耗和实验成本。

3 学生综合素质培养体系

(1)分析调查学生综合素质培养要求,将学生表达能力、团队合作能力和交流能力等素质培养要求落实到模块化和实践教学体系的环节中。在课程的教学方式方法、实验、课程设计、毕业综合设计等实践教学过程中,强化学生的团队合作意识,培养综合素质。

(2)强化学生科技竞赛、课外科技活动,提高学生的创业创新能力。在每年的机械设计竞赛、数学建模大赛、三维数字化建模竞赛等各类竞赛和科技活动中,组织专业学生积极参与,由专业教师进行指导。几年来,本校大学生广泛地参与科技创新活动,已有多名学生获得省级或国家级奖项,极大地锻炼了学生的动手能力,提高了学习兴趣,创造了良好的科技创新氛围,提高了科技创新意识。

(3)通过汽车维修等级工(国家劳动和社会保障部职业技能鉴定中心授权)和三维CAD应用工程师(国家制造业信息化培训中心授权)专业技能的认证,给本校学生提供了参加各项应用技能认证培训的机会,大大提高了学生的就业技能。

4 专业课教学模式和方法的改革

车辆技术发展日新月异,各种新理论、新技术、新方法不断涌现,教学内容和教学学时之间的矛盾日益突出。因此,改革教学模式和方法势在必行。

4.1 制定合理的教学计划

通过多年的教学实践经验和广泛调研,制定了合理的课程教学计划,将专业基础课教学计划提前,保证每个学期都有1~2门专业相关课程,使各门课程有一定的传承性和互补性。汽车的各门专业课之间有着密切的联系,特别是汽车构造、汽车理论、汽车设计这3门专业核心课程联系更紧密。多门课程各有特点,串联讲解的授课模式使学生将知识融会贯通,更深入理解汽车的结构、原理和设计。

构建了理论与实践一体化的教学模式。为保证理论和实践的紧密结合,主干课程的实验和课程安排在同一学期进行,或将实践内容和理论教学放在同一课程内,有助于加深学生对课程的理解,也有利于提高学生的动手能力和工程素养。

4.2 数字化设计方法和理论与实践教学相结合的模式

汽车产品的整个生命周期(PLM)都离不开各种数字化设计工具和软件的引入。具体表现为:在产品设计开发阶段,采用CATIA,UG NX等三维数字化造型设计软件;在产品性能测试分析阶段,采用ADAMS,ANSYS等工程软件;在实际产品的检测阶段,引入NI测控系统等。在理论和实践授课中引入这些工具,有利于促进学生对先进设计方法的学习,如在汽车构造授课中展示CATIA,UG NX等工具建立的三维汽车零部件构造模型;在汽车理论关于操纵稳定性、平顺性的分析研究中引入ADAMS动力学对比分析;在汽车设计课程设计和毕业设计中要求使用CATIA,ADAMS,ANSYS等实现汽车产品的CAD/CAE设计要求,使学生快速掌握这些先进数字化设计方法,提高实践创新能力。

5 结束语

汽车工业的快速发展既给车辆工程专业建设和人才培养带来了机遇,也带来了挑战。结合本校情况,对车辆工程应用型本科专业建设和专业课授课模式进行了改革,以国家汽车产业对高级工程技术人才需求和学生就业为导向,在车辆专业的人才培养模式、课程体系、理论与实践教学、学生综合素质培养体系等方面进一步探索与实践,大力加强专业学生的实践创新能力的培养。结合本专业实际情况,发挥优势和特色,培养出适应市场需求,具有实践创新能力的高素质车辆工程高级应用型人才。

参考文献

[1] 时培成,陈玉,肖平.虚拟仿真技术在车辆工程实验教学中的应用[J].科技信息,2009,13:419-420.

[2] 王准林,慕义,贺敬良.构建车辆工程专业实验教学新体系[J].中国科技信息,2009,2:293-295.

[3] 龙志军.应用型车辆工程专业人才培养方案的研究[J].中国现代教育装备,2010,11:134-136.

[4] 程峰,梁晓娟,李强.车辆工程专业应用型人才培养体系的研究[J].浙江科技学院学报,2010.22(5):418-422.

[5] 徐立友,周志立,曹青梅,王军.车辆工程专业实践性教学体系研究与实践[J].中国电力教育,2011,26:145-146.