化学工程与工艺导论范例6篇

前言:中文期刊网精心挑选了化学工程与工艺导论范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

化学工程与工艺导论

化学工程与工艺导论范文1

化学工程工艺。化学工程与工艺专业为广东省名牌专业,培养从事化工生产、科学研究、产品开发、管理、营销等工作的高级工程技术人员。本专业要求学生掌握化工生产过程的基本原理、方法、工艺和设备的特点和规律,既可在化学反应工程、传质与分离工程等传统化工领域从事科研和设计,又可在生物化工、环境化工、精细化工、能源化工、高分子化工等相关领域从事新工艺、新产品、新技术的研究与开发。主要课程:物理化学、流体力学与传热、传质与分离工程、化工热力学、化学反应工程、化工系统工程、精细化工、化学工艺学、生物化学工程、现代分离技术、环境工程、能源工程、新材料导论、化工商务、现代化工物流技术、化工自动控制、计算机应用等专业基础课程和专业课程。毕业生可在基础化工、石油化工、生物化工、轻工、冶金、能源、环境、化工物流、化工贸易等部门从事生产、设计、科研和产品开发、管理、教学、营销等工作,也可到金融、商检、外贸、海关、公安、政府部门等从事相关工作,或攻读更高的学位。毕业生适应面广,能力强,深受用人单位的欢迎,近年来一次就业率多次达到100%。

应用化学。创办于上世纪80年代初,为国内最早创办的应用化学专业之一,2005年被评为广东省名牌专业。目标是培养具有较系统的化学理论基础和实验技能以及良好的综合素质和创新精神,能够进行应用化学领域的研究、开发、生产、管理的高级科技人才。要求学生在较扎实地掌握工科公共基础、外语、计算机技能的基础上,系统地学习化学方面的基础知识、基本理论、基本技能以及相关的工程技术知识,受到应用基础研究方面的科学思维和科学实验训练,能从事应用化学专业,尤其是精细化学品化学、工业分析,应用电化学和现代测试技术等专业方向的实际工作和研究工作。主要课程:无机化学、有机化学、分析化学、物理化学、仪器分析、流体力学与传热、传质与分离工程、化工原理实验、结构化学、分离化学、无机功能材料、无机合成、精细化学品概论、有机合成、有机分析、环境化学、工业分析、商品理化检验、胶体与界面化学、催化及能源化学等专业基础课程和专业课程。毕业生可在商品检验、食品检验、环境保护、环境监测、化工安全评估、涂料、医药、洗涤用品、化妆品等相当广阔的领域就业,近年来一次就业率近100%。也可以攻读更高学位。

能源工程及自动化。本专业培养具备能源基础理论和工程知识,能从事在石油化工、天然气输送及利用、电力生产及自动化、制冷与空调等传统能源领域及太阳能、生物质能、风能等可再生及新能源领域进行研发、工程建设及运行管理工作的跨学科复合型高级人才。能源工业是国民经济的支柱产业,广东省是能源消耗大省,且一次能源匮乏,电力产业发展迅速,夏季时间长,空调和食品冷藏需求旺盛,液化天然气(LNG)的引入及惠州、湛江等几个石油化工基地的建设将使广东能源结构发生很大的变化。本专业将为能源工程领域培养急需的高级专门人才。本专业主要学习:化工原理、工程热力学,流体力学,传热学,换热器原理与设计,制冷技术、工业催化、天然气开采与利用、燃气输配、燃气燃烧与应用、石油炼制等基础及专 24业课程。学生将在专业学习阶段分为石油化工及天然气利用两个模块。毕业生可在石油炼制、天然气输配、电力生产、制冷空调、能源化工、可再生能源开发、高等院校等从事生产、管理、设计、营销、教学、科研工作,也可攻读更高学位。自2004年创办以来,本专业毕业生供不应求,一次就业率均为100%。

制药工程。本专业培养德、智、体全面发展,适应21世纪制药工程发展需要,具有制药工程专业知识,能在医药、农药、生物化工、精细化工、轻工和环境保护等部门从事医药产品生产工艺、新药研究与开发、医药企业管理、医药产品营销等方面工作的高级工程技术人才和管理人才。学生主要学习有机化学、物理化学、药物化学、药理学、制剂学、生物化学、化工原理、制药工艺学、制药工程学、制药分离技术、制药过程控制原理与仪表、计算机应用、药品营销、药事管理与法规等。毕业生可在制药企业、医药公司、医疗卫生、高等院校从事生产、管理、设计、营销、教学、科研和药品开发工作,也可到金融、商检、外贸、海关、公安、政府部门等从事相关工作,或攻读更高学位。制药工程专业涉及化学制药、生物制药和天然产物(包括中药)制药三大方向。本专业将在专业知识,创新能力和业务素质三方面对学生进行综合素质的培养和训练。毕业生知识面宽、适应能力强,就业前景广阔,近年来一次就业率均为98%。

(来源:文章屋网 )

化学工程与工艺导论范文2

2015年7月4日(星期六)

2015年7月5日(星期日)

 

上午(09:00--11:30)

下午(14:30--17:00)

上午(09:00--11:30)

下午(14:30--17:00)

公共课     日语(二)(00016)

俄语(二)(00017)   财税(独立本科段)(020104) 外国财政(00068) 社会保障概论(00071) 国际税收(00069) 政府预算管理(00999) 公司管理(独立本科段)(020143) 国际贸易与国际金融(03448)

金融保险实务(07521) 中国历史文选(00765)

财政与税收(06734)

经济学导论(07520) 公司管理学(07519)

运营管理(07522)

公司人力资源管理与开发(07523) 企业应用文写作(01457)

公司理财(07524)

ERP(企业信息系统)(09100) 人力资源管理(专科)(020205) 现代人员测评(00463) 工作分析(06092)

绩效考评技术(11756) 人力资源开发与管理(06093) 劳动关系与争议处理(10096) 公共事业管理(独立本科段)(020230) 公共事业管理(03331) 社会保障概论(00071)

政府经济学(03338) 公共部门人力资源管理(03450) 涉外事务管理概论(04718) 投资管理(独立本科段)(020251) 证券投资学(00103)

投资学原理(07250) 投资项目管理(07249)

经济数学(07747) 国际投资学(07750)

资本预算管理(07751) 金融衍生工具(07748)

基金管理学(07749) 医药商务(独立本科段)(020254) 中药学(一)(02974)

药事管理学(一)(07781)

医药商品贮藏与养护(07794) 药剂学(03029)

中药商品学(07791) 中药炮制学(03042)

医药商品学(07792) 药理学(四)(06831)

医药市场营销学(07793)

药学概论(07795) 现代企业管理(独立本科段)(020309) 现代企业管理(一)(02625)

现代物流学(07114)

现代企业管理理论(08815) 市场营销策划(一)(04097)

经济学导论(07520)

企业管理咨询与诊断(08819) 公司人力资源管理与开发(07523)

电子商务运营管理(10422) 中小企业战略管理(05171) 教育管理(独立本科段)(040107) 高等教育管理(00459) 学校心理健康教育(05010)

素质教育概论(06763) 课堂教学与管理(05011) 教学论(05012) 对外汉语(独立本科段)(050140) 日本国概况(00608)

韩国概况(01110)

英美概况(01212)

俄罗斯国情(05015) 中国古代文学作品选(三)(00585)

中国现当代文学(01207)

汉英语对比(01213) 教育心理学(02111)

韩国语(二)(09241)

对外汉语教学语法(09242) 对外汉语教学法(01210)

对外汉语教学发展概论(01211)

跨文化交际(03690) 旅游英语(专科)(050219) 国际旅行社管理(03528)

BEC商务英语(二)(08959) 旅游服务礼仪(03885)

旅游英语函电写作(08961) 导游英语(05329) BEC商务英语(一)(08958) 实用日本语(独立本科段)(050221) 日语精读(03413)

最新日文资料选读(03415) 旅游日语(03417)

商务日语函电(03418) 第二外语(俄语)(00839)

第二外语(法语)(00841)

第二外语(德语)(00842)

第二外语(英语)(00845)

第二外语(韩语)(03412) 科技日语(03420)

日汉实用翻译(03422) 旅游英语(独立本科段)(050222) 高级英语精读(一)(01257)

高级英语精读(二)(01258)

旅游英语应用文写作(08964) 国际旅游市场营销(03531)

旅游客源国(地区)概况(04940)

跨文化商业交际(10648) 第二外语(俄语)(00839)

第二外语(日语)(00840)

第二外语(法语)(00841)

第二外语(德语)(00842)

第二外语(韩语)(03412) 酒店管理(08424)

旅游业概论(08963)

出境旅游英语领队实务(08965) 韩国语(基础科段)(专科)(050224) 初级韩国语(01104)

韩国概况(01110) 中级韩国语(一)(01105) 翻译(汉韩互译)(一)(01108)

中级韩国语(二)(01143) 韩国语语法(01109) 商务俄语(基础科段)(专科)(050231) 基础俄语(一)(00613)

商务俄语翻译(08971) 基础俄语(二)(00614)

商务俄语国际贸易基础(08973) 俄语基础写作(08968)

俄罗斯社会与文化(08975) 商务俄语阅读(一)(08969) 商务日语(本科段)(050236) 高级日语(一)(00609)

商务日语阅读(09252)

商务写作(09254) 高级日语(二)(00610)

市场营销(四)(04096)

商务日语翻译(09251) 第二外语(俄语)(00839)

第二外语(法语)(00841)

第二外语(德语)(00842)

第二外语(英语)(00845)

第二外语(韩语)(03412) 国际贸易实务(日语)(09255)

国际商务谈判(日语)(09256)

国际商务合同实务(日语)(09257) 新闻学(本科)(050305) 中外名记者研究(01829) 成语概论(05008) 新闻道德与新闻法规(06390) 网络传播概论(06381) 广播电视编导(独立本科段)(050311) 广播电视概论(06391)

摄影与灯光技术(07879) 艺术专业英语(05332)

影视剪辑(07927) 电影艺术概论(07881) 传播学(07775) 美术教育(独立本科段)(050410) 艺术概论(00504)

美术鉴赏(00744) 美术技法理论(00742)

美术教育学(00747) 第二外语(俄语)(00839)

第二外语(日语)(00840)

第二外语(法语)(00841)

第二外语(德语)(00842)

第二外语(英语)(00845)

第二外语(韩语)(03412) 中国画论(00745)

美育概论(00746) 环境艺术设计(专科)(050444) 设计概论(00688) 画法几何及工程制图(00706) 建筑设计基础(00707) 装饰材料与构造(00708) 应用心理学(独立本科段)(071502) 认知心理(00471)

犯罪心理学(01426) 人格与社会心理学(01424) 生理卫生(01427) 心理学史(06056) 采矿工程(专科)(080108) 测量学(00113)

工程制图(02151)

企业管理基础(10816) 矿山电工(02016)

井巷工程(02172) 地质学(02145)

开采方法(08134)

矿山机械设备(11885) 采矿概论(02149)

矿井通风与安全(一)(08136) 机械加工(专科)(080314) 工程材料与热加工(05791) 机械加工CAD(05793) 机械制造工艺(05795) 金属切削机床概论(05797) 焊接(专科)(080315) 工程化学(02491)

焊接检验(05808) 金属学与热处理(05802) 金属熔焊原理(05804) 焊接工艺与结构(05806)

特殊焊接与设备(05810) 机械电子工程(独立本科段)(080339) 矿山机械(02170)

机电控制及自动化(08321) 矿山电工(02016)

人机工程学(06217) 多媒体技术(07311) 机械制造工程学(08301)

现代设计理论(08324) 电子信息技术(独立本科段)(080738) C语言程序设计(02600)

信息资源管理(07867)

计算机网络管理(一)(07872) JAVA语言程序设计(07129)

计算机信息处理技术(07868)

信息技术导论(07874) 计算机专业英语(一)(07832)

Windows2000 Server(07869)

信息安全工程(07875) 数据库及其应用(07865)

多媒体应用技术(07871)

逻辑电路(07917) 数控技术(独立本科段)(080741) 机床数控原理(05661) CAM/CAD软件应用(05663) 模具与现代加工技术概论(05665) 数控系统维护及调试(05667) 数控技术应用(专科)(080744) 机械工程材料(02561) 液压与气动(05782) 数控原理与数控技术运用(05785) 数控编程(05787) 动画(独立本科段)(080746) 视听语言(07189)

摄影与灯光技术(07879) 艺术专业英语(05332)

影视剪辑(07927)   动画史(03424) 动画(本科)(080754) 现代漫画概论(03423)

视听语言(07189)

摄影与灯光技术(07879) 艺术专业英语(05332)

影视剪辑(07927) 游戏概论(03435)

动画概论(04503) 动画史(03424) 化学工程与工艺(独立本科段)(081205) 煤化学(02152)

化工设计概论(02489)

工程数学(一)(07961) 中国历史文选(00765) 化工原理(二)(03146)

绿色化学概论(08840)

精细化学品合成原理(09118) 企业应用文写作(01457)

化工安全生产与管理(04882)

化工工艺学(06041) 食品安全与品控(独立本科段)(081314) 食品微生物学(02517)

食品研究与数据分析(04185)

食品质量安全技术标准法规(04190) 食品工艺学(02520)

计算机在食品工程中的应用(04186)

果菜贮运学(04192) 食品实用英语(03793)

食品环境学(04187) 食品安全与质量控制(03283)

食品质量与安全实验技术(04188) 汽车维修与检测(专科)(081725) 发动机原理(02577)

汽车车身电控技术(06903) 汽车构造(06893)

汽车保险与理赔(06904) 汽车常见故障诊断分析(06896)

汽车运行材料(06906) 汽车运用工程(06898)

工程图学基础(06918) 电子政务(独立本科段)(082218) 公文写作(07813)

信息咨询与决策(07818) 办公自动化原理及应用(00346)

信息组织与网络检索(07814)

信息采集分析与预测(07819) 行政法与行政诉讼法(00220)

化学工程与工艺导论范文3

学校地址:福建省三明市荆东路25号

办学层次:全日制本科

办学类型:公办省属普通高等学校

一、学校概况

三明学院是2004年5月经教育部批准成立的福建省属公办本科高校,2012年6月通过教育部本科教学工作合格评估。现有42个本科专业(可授予学士学位),全日制在校生15000人。教育部“卓越工程师教育培养计划”项目和中外合作办学项目学校,福建省教育厅闽台合作项目和接收外国留学生学校。2016年面向全国28个省份招生。

学校位于海峡西岸福建省新兴工业城市、全国文明城市、中国优秀旅游城市——三明市。三明地处闽江之源,宋朝大理学家朱熹故里。三明学院办学历史可以追溯到1903年陈宝琛创办的全闽师范学堂,被誉为“闽师之源”。三明是革命老区,辖区内的宁化、清流、归化(今明溪县)等全境12个县(市、区)均属中央苏区;改革开放后,三明还是全国精神文明建设的发祥地。“沙县小吃”闻明海内外。

学校占地面积1312亩,各类建筑面积约33.56万平方米,其中教学行政用房面积16.65万平方米,学生公寓面积13.11万平方米。藏书220.39万册(含电子图书99.76万册)。教学仪器设备总值9838.45万元。信息化系统和网络应用基本满足办学需要。

学校现设有管理学院、艺术设计学院(鞋服学院)、信息工程学院、机电工程学院、资源与化工学院、建筑工程学院、海峡理工学院、海峡动漫学院、文化传播学院、外国语学院、体育学院、教育与音乐学院、旅游学院(经济学院)、国际学院、思想政治理论课教研部等15个教学机构,以及继续教育学院。已建成校级研究所12个。共有教职工931人,其中正高职称70人,副高职称202人,中级职称370人。专任教师693人,专任教师中具有研究生学位的教师占72%;高级职称占39%。省级教学名师2人,省级高层次人才12人。

院系名称

专业名称

艺术设计学院

美术学(师范类)、环境设计、视觉传达设计、服装与服饰设计(鞋类方向)、服装与服饰设计

海峡动漫学院

动画、产品设计、动画(媒体创意方向)

教育与音乐

学院

音乐学(师范类)、音乐学(非师范类)、小学教育(师范类)、学前教育(师范类)

国际学院(中外合作项目)

财务管理(国际会计方向)、土木工程、体育教育(体育管理方向)

海峡理工学院(闽台合作项目)

财务管理、市场营销、土木工程、机械设计制造及其自动化、视觉传达设计、环境设计、动画

管理学院

财务管理、市场营销、物流管理

信息工程学院

数学与应用数学(金融与统计方向)、计算机科学与技术、网络工程、物联网工程

建筑工程学院

土木工程、风景园林(景观建筑设计方向)、工程造价

机电工程学院

物理学(光电子技术与应用方向)、电子信息工程、电子科学与技术、机械设计制造及其自动化、车辆工程

资源与化工学院

化学(材料化学方向)、化学工程与工艺、生物技术、环境工程、资源环境科学

文化传播学院

汉语言文学(师范类)、汉语言文学(非师范类)、传播学、播音与主持艺术

外国语学院

英语(师范类)、商务英语

体育学院

体育教育(师范类)、社会体育指导与管理

旅游学院

旅游管理与服务教育、贸易经济

二、专业简介

(一)美术类专业

1. 美术学(师范类)

主要课程:美术概论、美术教育理论 与方法、中国美术史、外国美术史、素描 色彩透视学、解剖学、美术教育实践(见习、实习)装饰设计、书法篆刻、电脑辅助设计(绘画、设计)等。

中国画模块:工笔花鸟、写意花鸟、山水,花鸟画创作与研究、山水画创作与研究、人物画创作与研究。

油画模块:油画材料与技法、油画风景、油画肖像、油画人体、油画创作。

2. 环境设计主要课程:透视、室内设计基础、装饰工程制图、装饰设计、环境陶艺、展示空间设计、家具设计、建筑壁饰设计、建筑与环境表现技法、商业空间设计、景观设计等。

3. 视觉传达设计主要课程:设计学概论、标志设计、版式设计、装饰设计、图形创意、包装设计、插画设计、识别系统设计、书籍装帧、展示设计、网页设计等。

4. 服装与服饰设计主要课程:服装画技法、服装色彩学、服饰图案、平面构成、服装设计学、服饰配件设计、服装结构与工艺、立体裁剪、服装工业制版与推版、服装材料及面料设计、形象设计、服装展示设计、服装品牌运作、服装市场营销、服装CAD、服装生产管理等。

5. 动画主要课程:动画概论、设计基础、动画造型、原画设计、插画设计、动画运动规律、动画设计、动画剧本创作、动画场景设计、二维动画制作、三维动画制作、影视后期编辑等。

6. 产品设计主要课程:艺术设计概论、结构素描、设计色彩、设计构成、产品设计程序与方法、人机工程学、设计心理学、产品开发与设计、产品模型制作、产品包装设计、文教用品设计、家居产品设计、文创衍生品设计、旅游工艺品设计等。

7. 动画(媒体创意方向)主要课程:媒体创意导论、新媒体艺术、传播学概论、创新思维原理与应用、创意剧本写作、文化产业学、视听语言、摄影、摄像、非线性编辑、计算机辅助设计、动画基础、电脑图文创意与设计等。

(二)音乐类专业

1. 音乐学(师范类)

主要课程:基础乐理、视唱练耳、钢琴基础、声乐基础、和声学、合唱与指挥、钢琴即兴伴奏、形体与舞蹈、民族音乐概论、中国音乐史及欣赏、外国音乐史及欣赏、学校音乐教育导论与教材教法等。 2. 音乐学(非师范类)(包括声乐、器乐、舞蹈等方向)

主要课程:钢琴演奏、声乐演唱、器乐演奏、舞蹈、钢琴艺术史、基本乐理、视唱练耳、和声学、复调音乐、艺术概论、民族民间音乐、中国音乐史、外国音乐史、民族器乐概论、意大利语音、声乐艺术史、钢琴调律与维修、演出策划与营销等。

三、招生计划

序号

专业类别

培养层次

学制

学费标准

(元/学年)

招生计划

广西

江苏

山西

陕西

1

美术类

本科

四年

8400

20

/

30

15

2

音乐类

本科

四年

8400

/

15

/

/

注:福建、江西、湖南、安徽、山东、河南、甘肃、贵州、黑龙江等省份的美术类、音乐类专业均使用省统考成绩,实际招生专业及招生计划以相关省(市、区)招生主管部门公布的计划为准。

四、报考条件及办法

1. 凡符合国家高考报名有关规定的考生,须按户口所在省级招生主管部门的规定,办理艺术类专业报名手续,领取准予参加艺术专业考试的相关证明材料。我校招生科类为艺术文、理不限,外语语种不限。

2. 考生须持省级招生主管部门颁发的准予考试的相关证明(省统考专业成绩合格)及本人身份证明,本人近期一寸正面免冠同底证件照2张,按指定时间和地点办理专业考试报名手续,考生须如实填写报考信息,领取准考证。

五、专业考试

(一)考点及报名、考试时间安排

省 份

考  点

考试类别

报名时间

考试时间

广西

广西师范大学(育才校区)广西桂林

美术类

2月17-18日

2月20日

陕西

西安美术学院

美术类

2月17-18日

2月19 日

山西

太原师范学院

美术类

1月27-28日

1月30日

江苏

南京师范大学

音乐类

1月15-20日

1月23日

注:广西、山西考点为现场报名;陕西、江苏为网上报名,请关注两省考试院官网通知。

(二)考试内容:

1. 美术类

专业考试不分初、复试,一次进行。画具由考生自备。

专业考试科目:(总分300分)

(1)素描,时间180分钟,满分为150分。

(2)色彩,时间180分钟,满分为150分。

2. 音乐类

专业考试不分初、复试,一次进行。除钢琴外,其它乐器由考生自备。

专业考试科目:(总分300分)

(1)视唱、模唱:视唱满分为60分,模唱满分为40分,共100分;

(2)声乐:清唱歌曲一首,满分为100分;

(3)器乐演奏:演奏乐曲一首(自选,需背谱),满分为100分;

(三)成绩通知

考生专业考试成绩及名次通过我校招生信息网和考生所在省考试院网站公布,考生可凭考生号等信息查询,不再寄发纸质成绩单。

六、文化考试

考生必须按所在省级招生主管部门的规定,报名参加2016年全国普通高校招生文化统一考试(高考)。文化科目考试方案及计分办法均按省级招生主管部门文件规定执行。我校无单科成绩限制。

七、录取办法

1. 我校设校考的广西、山西、陕西、江苏等省份,按校考专业成绩和专业志愿顺序录取。

2. 我校未设校考的江西、山东、河南、湖南、贵州、甘肃等实行梯度志愿投档的省份,按省统考专业成绩和专业志愿顺序录取。

3. 其他实行平行志愿投档的省份,按投档成绩(综合分)和专业志愿顺序录取。

八、招生监察:

为了接受广大考生和社会各界对我校招生工作的监督,我校在监察审计处设立了招生监察组,监督电话:0598-8399682,8397066。

九、联系部门:招生与就业处

三明学院招生网址:218.5.241.22:8036/zsw/ 学校网址:fjsmu.cn

化学工程与工艺导论范文4

关键词:梯度功能材料,复合材料,研究进展

Abstract :This paper introduces the concept ,types,capability,preparation methods of functionally graded materials. Based upon analysis of the present application situations and prospect of this kind of materials some problems existed are presented. The current status of the research of FGM are discussed and an anticipation of its future development is also present.

Key words :FGM;composite;the Advance

0 引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1 FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2, 其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2 FGM的特性和分类

2.1 FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2 FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3 FGM的应用

FGM最初是从航天领域发展起来的。随着FGM 研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功 能

应 用 领 域 材 料 组 合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材 陶瓷 金属

陶瓷 金属

塑料 金属

异种金属

异种陶瓷

金刚石 金属

碳纤维 金属 塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料 轻元素 高强度材料

耐热材料 遮避材料

耐热材料 遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学 磷灰石 氧化铝

磷灰石 金属

磷灰石 塑料

异种塑料

硅芯片 塑料

电磁功能

电磁功能 陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板 压电陶瓷 塑料

压电陶瓷 塑料

硅 化合物半导体

多层磁性薄膜

金属 铁磁体

金属 铁磁体

金属 陶瓷

金属 超导陶瓷

塑料 导电性材料

陶瓷 陶瓷

光学功能 防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光 透明材料 玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素 玻璃

能源转化功能

MHD 发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池 陶瓷 高熔点金属

金属 陶瓷

金属 硅化物

陶瓷 固体电解质

金属 陶瓷

电池硅、锗及其化合物

4 FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4. 1  FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4. 2 FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM) ,自蔓延高温合成法(SHS) ;涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD) 和化学相沉积(CVD) ;形变与马氏体相变[10、14]。

4. 2. 1  粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/ Ni 、ZrO2/ W、Al2O3/ ZrO2 [8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7] 。

4. 2. 2 自蔓延燃烧高温合成法(Self-propagating High-temperature Synthesis 简称SHS或Combustion Synthesis)

SHS 法是前苏联科学家Merzhanov 等在1967 年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去, 利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS 法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS 法己制备出Al/ TiB2 , Cu/ TiB2 、Ni/ TiC[8] 、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4. 2. 3 喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4. 2. 3. 1 等离子喷涂法(PS)

PS 法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1 500 K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1. 5 km/ s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7] 、NiCrAl/MgO -ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2 激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti - Al 、WC -Ni 、Al - SiC 系梯度功能材料[7 ] 。

4.2.3.3 热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4 电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni, Cu-Ni ,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5 气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD) 和化学气相沉积(CVD) 两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm 厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD 法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/ TiN、Ti/ TiC、Cr/ CrN 系的FGM [7~8、10~11]

4. 2. 4 形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力) 梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18 -8 不锈钢(Fe -18% ,Cr -8 %Ni) 试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4. 3 FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5 FGM的研究发展方向

5.1 存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2 FGM制备技术总的研究趋势[13、15、19-20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3 对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随 时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6 结束语

FGM 的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献

[1] 杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.

[2] 李永,宋健,张志民等.梯度功能力学[ M].北京:清华大学出版社.2003.

[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.

[4] 曾黎明.功能复合材料及其应用[M]. 北京:化学工业出版社,2007.

[5] 高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J]. 山西建筑,2006, 32(5):143-144.

[6] Erdogan, F.Fracture mechanics of functionally graded materials[J].Compos. Engng,1995(5):753-770.

[7] 李智慧,何小凤,李运刚等. 功能梯度材料的研究现状[J]. 河北理工学院学报,2007, 29(1):45-50.

[8] 李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J]. 菏泽学院学报,2007, 29(5):51-55.

[9] 林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.

[10] 庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J]. 金属制品,2005,31(4):4-9.

[11] 戈晓岚,赵茂程.工程材料[ M].南京:东南大学出版社,2004.

[12] 唐小真.材料化学导论[M].北京:高等教育出版社,2007.

[13] 李进,田兴华.功能梯度材料的研究现状及应用[J]. 宁夏工程技术,2007, 6(1):80-83.

[14] 戴起勋,赵玉涛.材料科学研究方法[M] .北京:国防工业出版社,2005.

[15] 邵立勤.新材料领域未来发展方向 [J]. 新材料产业, 2004,1:25-30.

[16] 自蔓延高温合成法.材料工艺及应用etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17] 远立贤.金属/陶瓷功能梯度涂层工艺的应用现状.91th.com/articleview/2006-6-6/article_view_405.htm.

[18] 工程材料. col.njtu.edu.cn/zskj/3021/gccl/CH2/2.6.4.htm.

化学工程与工艺导论范文5

关键词先进陶瓷,结构陶瓷,研究进展

1前言

20世纪60年代以来,新技术革命的浪潮席卷全球,计算机、微电子、通信、激光、新能源、航天、海洋和生物工程等新兴技术的出现和发展,对材料提出了很高的要求,能够满足这些要求的先进陶瓷材料应运而生,并在这些技术革命中发挥着重要的作用[1~4],同时也极大地促进了陶瓷科学的发展和应用,使陶瓷材料又一次焕发出了青春, 在尖端科学领域得到广泛的应用, 如航天、航空、汽车、体育、建筑、医疗等领域[4,5]。

先进陶瓷是有别于传统陶瓷而言的,不同国家和不同专业领域对先进陶瓷有不同叫法。先进陶瓷也称高技术陶瓷、精细陶瓷、新型陶瓷、近代陶瓷、高性能陶瓷、特种陶瓷、工程陶瓷等[1]。先进陶瓷是在传统陶瓷的基础上发展起来的,但远远超出了传统陶瓷的范畴,是陶瓷发展史上一次革命性的变化。通常认为,先进陶瓷是指采用高度精选的原料,具有能精确控制的化学组成,按照便于进行的结构设计及便于控制的制备方法进行制造、加工的,具有优异特性的陶瓷。

先进陶瓷按用途可分为结构陶瓷和功能陶瓷两大类。结构陶瓷是指用于各种结构部件,以发挥其机械、热、化学相生物等功能的高性能陶瓷。功能陶瓷是指那些可利用电、磁、声、光、热、弹等性质或其耦合效应以实现某种使用功能的先进陶瓷。先进结构陶瓷材料由于具有一系列优异的性能,在节约能源、节约贵重金属资源、促进环保、提高生产效率、延长机器设备寿命、保证高新技术和尖端技术的实现方面都发挥了积极的作用。本文着重介绍近年来结构陶瓷的研究进展及发展趋势。

2先进结构陶瓷及其应用

先进结构陶瓷若按使用领域进行分类可分为:(1)机械陶瓷;(2)热机陶瓷;(3)生物陶瓷;(4)核陶瓷及其它。若按化学成分分类可分为:(1)氧化物陶瓷(Al2O3、ZrO2、MgO、CaO、BeO、TiO2、ThO2、UO2);(2)氮化物陶瓷(Si3N4、赛龙陶瓷、AlN、BN、TiN);(3)碳化物陶瓷(SiC、B4C、ZrC、TiC、WC、TaC、NbC、Cr3C2);(4)硼化物陶瓷(ZrB、TiB2、HfB2、LaB2等);(5)其它结构陶瓷(莫来石陶瓷、MoSi陶瓷、硫化物陶瓷以及复合陶瓷等)[1]。

由于先进结构陶瓷具有耐高温、高强度、高硬度、高耐磨、耐腐蚀和抗氧化等一系列优异性能[4],可以承受金属材料和高分子材料难以胜任的严酷工作环境,已成为许多新兴科学技术得以实现的关键,在能源、航空航天、机械、交通、冶金、化工、电子和生物医学等方面有着广泛的应用前景。

2.1 耐高温、高强度、耐磨损陶瓷

2.1.1 氮化物陶瓷[6~8]

氮化物陶瓷是近20多年来迅速发展起来的新型工程结构陶瓷。氮化硅陶瓷和一般硅酸盐陶瓷不同之处在于其中氮和硅的结合属于共价键性质的键合,因而有结合力强、绝缘性好的特点。

氮化硅的烧结与一般陶瓷的烧结工艺不同,采用的是反应烧结法,此法制造的氮化硅陶瓷,不能达到很高的致密度,一般只能达到理论密度的79%左右,不能制造厚壁部件。提高氮化硅陶瓷致密度的有效方法之一就是在高温下进行加压烧结,由此可得到热压氮化硅陶瓷,其室温抗弯强度一般都在800~1000MPa。如果在其中添加少量氧化钇和氧化铝的热压氮化硅,室温抗弯强度可达到1500MPa,在陶瓷材料中名列前茅,硬度很高,是世界上最坚硬的物质之一;极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解;有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸(氢氟酸除外)和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀,同时又是一种高性能电绝缘材料。由于其热膨胀系数小,抗温度急变能力很强,因此氮化硅陶瓷具有优良的力学性能,在工程技术的应用上已占有重要地位。

氮化硅陶瓷制品的种类很多,应用也日益广泛,例如可做燃气轮机的燃烧室、晶体管的模具、液体或气体输送泵中的机械密封环、输送铝液的电磁泵的管道和阀门、铸铝用永久性模具、钢水分离环等。利用氮化硅摩擦系数小的特点用作轴承材料,特别适合作为高温轴承使用,其工作温度可达1200℃,比普通合金轴承的工作温度提高2.5倍,而工作速度是普通轴承的10倍;使用陶瓷轴承还可以免除系统,大大减少对铬、镍、锰等原料的依赖。氮化硅作为高温结构陶瓷最引人注目的就是在发动机制造上获得了突破性进展。美国用热压氮化硅制成的发动机转子成功地在5000转/min的转速下运转很长时间。

2.1.2 碳化硅陶瓷[9,10]

工业化生产碳化硅的方法是将石英、碳素(煤焦)、木屑和食盐混合,在电炉中加热到2200~2500℃下制成。碳化硅陶瓷和许多陶瓷的不同之处,在于它在室温下既能导电,又耐高温,是一种很好的发热元件。用碳化硅制成的电热棒叫硅碳棒,在空气中能经受1450℃的高温;质量好的重结晶法制成的硅碳棒甚至可耐1600℃的高温,远高于金属电热元件(除了铂、铑等贵金属外),这是因为它在高温空气中会氧化生成一层致密的氧化硅薄膜,起到隔离空气的作用,大大减慢了内层碳化硅的进一步氧化,从而使它能在高温下工作。用热压工艺可以制得接近理论密度值的高致密碳化硅陶瓷,它的抗弯强度即使在1400℃左右的高温下仍可达到500~600MPa,而其它陶瓷材料在1200℃以后,强度都会急剧下降。因此,碳化硅是在高温空气中强度最高的材料。

高温燃气涡轮发动机要提高效率,就必须提高工作温度,而解决问题的关键是找到能承受高温的结构材料,特别是发动机内部的叶片材料。碳化硅陶瓷在高温下有足够的强度,且有良好的抗氧化能力和抗热震性,这些优良品质都使它极其适合作为高温结构材料使用。用于在1200~1400℃下工作的高温燃气涡轮发动机叶片的材料,许多科学家认为它和氮化硅陶瓷是最有希望的候选材料。

碳化硅陶瓷的热传导能力仅次于氧化铍陶瓷。利用这一特性,可作为优良的热交换器材料。太阳能发电设备中被阳光聚焦加热的热交换器,其工作温度高达1000~1100℃,具有高热传导性的碳化硅陶瓷很适合做这种热交换器的材料,从试验情况来看,碳化硅陶瓷热交换器的工作状态良好。此外,在原子能反应堆中碳化硅陶瓷可用作核燃料的包封材料,还可作为火箭尾喷管的喷嘴及飞机驾驶员的防弹用品。

此外,为了提高切削刀具的切削性能,20世纪以来,刀具材料经过了高速钢和硬质合金两次发展过程,目前正在进入陶瓷刀具大发展的阶段。新型陶瓷以其耐高温、耐磨削的特点,已在20世纪初引起了高速切削工具行业的注意。陶瓷刀具不仅红硬性高,而且具有高硬度、高耐磨性,因此便成为制造切削刀具的理想材料。目前,制造陶瓷切削刀具的材料主要有氧化铝、氧化铝-碳化钛、氧化铝-氮化钛-碳化钛-碳化钨、氧化铝-碳化钨-铬、氮化硼和氮化硅等[11]。以这类材料制作的刀具没有冷却液也可以工作,比起硬质合金来具有切削速度高、寿命长等优点。目前,欧美各国都已广泛使用陶瓷材料做钻头、丝锥和滚刀;原苏联确定了7000多个品种的合金刀具,用喷涂表面陶瓷涂层的办法来提高车刀的工作速度和使用寿命。

陶瓷除作切削刀具外,利用其耐磨、耐腐蚀的特性还可用作各种机械上的耐磨部件。如用特种陶瓷制作农用水泵、砂浆泵、带腐蚀性液体的化工泵及有粉尘的风机中的耐磨、耐腐蚀件或密封圈等都已取得良好的实用效果。此外,高纯氧化铝(刚玉)可制作金属拉丝模,尤其在高温下的热拉丝更显示出陶瓷的优越性;工业陶瓷中纳球磨筒和磨球,金属表面除锈用的喷砂嘴,喷洒农药用的喷头等。总之,凡是需要耐磨、耐腐蚀的场合,几乎都会看到特种陶瓷的存在。

2.2 耐高温、高强度、高韧性陶瓷

新型陶瓷具有高强度、高硬度、耐高温、耐磨损、抗腐蚀等性能,因此在冶金、宇航、能源、机械等领域有重要的应用。由于陶瓷的韧性差,因此也限制了它的使用范围。1975年澳大利亚的伽里耶(Garie)首次成功地利用添加氧化锆来大大提高陶瓷材料的强度和韧性,自那时起世界各国利用氧化锆增韧这一办法,开发出多种具有高强度和高韧性的陶瓷材料,掀起了寻求打不碎陶瓷的热潮。

氧化锆能够增加陶瓷材料韧性和提高强度的原因,至今虽没有完全搞清楚,但研究结果已经表明,它和均匀弥散在陶瓷基体中的氧化锆晶粒的相变有关。一种增韧理论认为相变膨胀导致的微裂纹可以阻止造成脆断的裂纹扩展;另一种理论认为应力诱导相变,而相变可吸收应力的能量,从而起到增韧的作用[12~14]。总之,在某些陶瓷材料中引入一定量亚稳氧化锆微粒,并使其均匀分布都可大大提高陶瓷材料的强度和韧性。

氧化锆增韧陶瓷已在工程结构陶瓷研究中取得重大进展,经过增韧的陶瓷品种日益增多。现在已经发现可稳定氧化锆的添加物有氧化镁、氧化钙、氧化镧、氧化铈、氧化钇等单一氧化物或它的复合氧化物。被增韧的基质材料,除了稳定的氧化锆外,常见的有氧化铝、氧化钍、尖晶石、莫来石等氧化物陶瓷,还有氮化硅和碳化硅等非氧化物陶瓷。日本在氧化铝基质(强度为400MPa、断裂韧性为5.2 J/m2)材料中,添加16%体积百分数的氧化锆进行增韧处理,制得材料的强度高达1200MPa,提高了3倍,断裂韧性达到15.0J/m2,几乎也提高了3倍,基本达到了低韧性金属材料的程度[12]。最近的研究表明,强度和韧性是相互制约的。尽管如此,许多陶瓷材料通过氧化锆增韧,大大拓宽了应用领域,增强了取代某些金属材料的能力,出现了喜人的应用前景。利用氧化锆增韧陶瓷可替代金属制造模具、拉丝模、泵机的叶轮、特种陶瓷工业用的磨球、轴承,替代手表中的单晶红宝石。日本用增韧氧化锆做成剪刀,既不会生锈,又不导电,可以放心地剪断带电的电线。氧化锆增韧陶瓷还可用于制造汽车零件,如凸轮、推杆、连动杆、销子等。

2.3 耐高温、耐腐蚀的透明陶瓷[4,15]

现代电光源对构成材料的耐高温、耐腐蚀性及透光性有很高的要求,而同时满足这些性能的材料直到20世纪50年代后期才开始得到发展。1957年,美国通用电器公司的科布尔等人在平均尺寸只有0.3μm的高纯超细氧化铝原料中,添加氧化镁,混匀后压成小圆片,放在通氢气的高温电炉中烧制,意外地发现它像玻璃一样透明。科布尔还发现,把透明的陶瓷片放在显微镜下观察,几乎看不到微气孔。经过多次实验观察和研究分析发现,陶瓷的透光能力和内部气孔大小有很大关系,当微气孔的大小在1μm左右时,厚度为0.5mm的陶瓷试样只要含有千分之三的气孔就能使光线的透过率减少90%。一般氧化铝陶瓷中所含的气孔都超过这个数字。因此,构成氧化铝陶瓷的刚玉小晶体本身能够透过光线,而陶瓷还是不透明。使陶瓷透明的关键,是坯体中只能有一种晶型的晶体,而且对称性愈高愈好,否则会发生双折射,此外气孔要愈少愈好,有人做过试验,当气孔小到埃的数量级时,光会沿着微气孔发生绕射现象,这有助于透明度的提高。

氧化铝陶瓷是高压钠灯极为理想的灯管材料,它在高温下与钠蒸气不发生作用,又能把95 %以上的可见光传送出来。这种灯是目前世界上发光效率最高的灯。在相同功率下,一只高压钠灯要比2只水银灯或10只普通白炽灯发出的光还要亮,寿命比普通白炽灯高20倍,可使用2万小时以上,是目前寿命最长的灯。人眼对高压钠灯的黄色谱线十分敏感,而且黄光能穿过浓雾,特别适合街道、广场、港口、机场、车站等大面积的照明,效果极好。目前,许多国家正在推广使用,其发展速度之快,超过了以往任何一种电光源。由此不难看出,新型透明氧化铝陶瓷的出现,引起了电光源发展过程中的一次重大飞跃,带来了巨大的社会经济效益。

除半透明氧化铝陶瓷外,研究得较多的还有氧化镁、氧化钙、氧化铍、氧化锆、氧化钇、氧化钍、氧化镧等。透明氟化镁、氰化钙、硫化锌、硒化锌、硒化镉等也有报道。用氧化铝和氧化镁混合在1800℃高温下制成的全透明镁铝尖晶石陶瓷,外观极似玻璃,但其硬度、强度和化学稳定性都大大超过玻璃,可以用它作为飞机挡风材料,也可作为高级轿车的防弹窗、坦克的观察窗、炸弹瞄准具,以及飞机、导弹的雷达天线罩等。

2.4 纤维、晶须补强陶瓷复合材料[12,16~18]

近年来,以陶瓷为基体、纤维或晶须补强的复合材料由于其韧性得到提高而受到重视。碳化硅晶须增韧的氧化铝陶瓷刀具在20世纪80年代初开始研究,1986年已作为商品推向市场。碳化硅晶须的加入大大提高了氧化铝陶瓷的断裂韧性,改善了切削性能。用碳纤维和锂铝硅酸盐陶瓷复合,材料的强度已接近或超过1000MPa,其断裂功高达3000J/m2,即达到了铸铁的水平。用钽丝补强氮化硅的室温抗机械冲击强度增加到30倍;用直径为25μm的钨丝沉积碳化硅补强氮化硅,这种纤维补强陶瓷的断裂功比氮化硅提高了几百倍,强度增加60%;用莫来石晶须来补强氮化硼,其抗机械冲击强度提高10倍以上。可以认为,继20世纪70年代出现的相变增韧热后,晶须、纤维增强、均韧复合陶瓷已成为结构陶瓷发展的主流。高性能(强度、韧性)、高稳定性、高重复性的晶须、纤维复合陶瓷材料的获得,除要求晶须、纤维与基体间化学、物理相容性较好以外,从复合工艺上,还必须保证晶须纤维在基体中能均匀地分散,才能获得预期的效果。最近,利用“织构技术”,在某些陶瓷坯体中生长出纤维状态针状第二相物质如莫来石晶体进行“自身内部”复合,这种复合增韧是一项简便易行的陶瓷补强新技术。目前高性能陶瓷复合材料,还处在深化研究阶段,关键在于改进工艺和降低成本,提高其实际应用的竞争力。

2.5 生物陶瓷[4,5,19]

生物陶瓷材料是先进陶瓷的一个重要分支,它是指用于生物医学及生物化学工程的各种陶瓷材料。它的总产值约占整个特种陶瓷产值的5%。生物陶瓷目前主要用于人体硬组织的修复,使其功能得以恢复。全世界1975年才开始生物陶瓷的临床应用研究。但是,最近10多年间,各国在这方面的基础应用研究很活跃。

目前生物植入材料在人体硬组织修复中应用的有:金属及合金、有机高分子材料、无机非金属材料和复合材料。材料被埋在体内,在体内的严酷条件下,由于氧化、水解会造成材料变质;长期持续应力作用会造成疲劳或者破裂、表面磨损、腐蚀、溶解等,这些都可引起组织反应,腐蚀产物不仅在种植体附近聚集,还会溶入血液和尿中,引起全身反应。因此,对生物植入材料的要求是严格的、慎重的。陶瓷材料作为生物植入材料和其他材料相比,它和骨组织的化学组成比较接近,生物相容性好,在体内的化学稳定性、生物力学相容性和组织亲和性等也较好,因此,生物陶瓷越来越受到重视。目前国内一些高等院校已对羟基磷灰石及氧化铝陶瓷等进行了研究,并已开始临床应用。

随着人类社会物质文明的发展,人们对提高医疗保健水平和健康长寿的要求必然成为广泛的社会需要。可以相信,生物陶瓷材料今后必将会有重大发展。

3结构陶瓷的发展趋势

当今世界,材料,特别是高性能新材料由于以下原因而得到迅速发展:(1)国际军事工业激烈竞争,航空航天技术的发展需要;(2)新技术的需要促进了新材料的发展;(3)地球上金属资源与化石能源越用越少,石油、天燃气等在本世纪末将用尽,开发与节约能源成为当务之急;(4)科学技术的进步为新材料的发展提供了条件[14]。目前使用的金属合金,在无冷却条件下,最高工作温度不超过1050℃,而高温结构陶瓷,如Si3N4和SiC则分别在1400℃和1600℃以上仍保持着较高的强度和刚性[16]。先进结构陶瓷所表现出的优异性能,是现代高新技术、新兴产业和传统工业改造的物质基础,具有广阔的应用前景和巨大的潜在社会经济效益,受到各发达国家的高度重视,对其进行广泛的研究和开发,并已取得了一系列成果。但结构陶瓷的致命弱点是脆性、低可靠性和重复性。近20年来,围绕这些关键问题已开展了深入的基础研究,并取得了突破性的进展。例如,发展和创新出许多制备陶瓷粉末、成形和烧结的新工艺、新技术;建立了相变增韧、弥散强化、纤维增韧、复相增韧、表面强化、原位生长强化增韧等多种有效的强化、增韧方法和技术;取得了陶瓷相图、烧结机理等基础研究的新成就,使结构陶瓷及复合陶瓷的合成与制备摆脱了落后的传统工艺而实现了根本性的改革,强度和韧性有了大幅度的提高,脆性得到改善,某些结构陶瓷的韧性已接近铸铁的水平。

先进结构陶瓷今后的重点发展方向是加强工艺-结构-性能的设计与研究,有效地控制工艺过程,使其达到预定的结构(包括薄膜化、纤维化、气孔的含量、非晶态化、晶粒的微细化等),重视粉体标准化、系列化的研究与开发及精密加工技术,降低制造成本,提高制品的重复性、可靠性及使用寿命。目前,高性能结构陶瓷的发展趋势主要有如下三个方面:

3.1 单相陶瓷向多相复合陶瓷发展

当前结构陶瓷的研究与开发已从原先倾向于单相和高纯的特点向多相复合的方向发展[20]。复合的主要目的是充分发挥陶瓷的高硬度、耐高温、耐腐蚀性并改善其脆性,其中包括纤维(或晶须)补强的陶瓷基复合材料;异相颗粒弥散强化的复相陶瓷;自补强复相陶瓷(也称为原位生长复相陶瓷);梯度功能复合陶瓷[21]。以往研究的微米-微米复合材料中,微米尺度的第二相颗粒(或晶须、纤维)全部分布在基体晶界处,增韧效果有限,要设计和制备兼具高强度、高韧性且能经受恶劣环境考验的材料十分困难,纳米技术和纳米材料的发展为之提供了新的思路。

20世纪90年代末,Niihara教授领导的研究小组报道了一些有关纳米复相陶瓷的令人振奋的试验结果,如Al2O3-SiC(体积分数为5%)晶内型纳米复合陶瓷的室温强度达到了单组分Al2O3陶瓷的3~4倍,在1100℃下强度达1500MPa[8~12,22~26],这些都引起了材料研究者的极大兴趣。从那时直到现在,纳米复相陶瓷的研究不断深入[13~17,27~31],我国也相继开展了一系列的工作,目前对纳米复相陶瓷的研究已处于国际一流水平[18~22,32~36]。

3.2 微米陶瓷向纳米陶瓷发展

1987年,德国Karch等[37]首次报道了纳米陶瓷的高韧性、低温超塑。此后,世界各国对发展纳米陶瓷以解决陶瓷材料脆性和难加工性寄予了厚望。从20世纪90年代开始,结构陶瓷的研究和开发已开始步入陶瓷发展的第三个阶段,即纳米陶瓷阶段。结构陶瓷正在从目前微米级尺度(从粉体到显微结构)向纳米级尺度发展。其晶粒尺寸、晶界宽度、第二相分布、气孔尺寸以及缺陷尺寸都属于纳米量级,为了得到纳米陶瓷,一般的制粉、成形和烧结工艺已不适应,这必将引起陶瓷工艺的发展与变革,也将引起陶瓷学理论的发展乃至建立新的理论体系,以适应纳米尺度的需求。由于晶粒细化有助于晶粒间的滑移,使陶瓷具有超塑性,因此晶粒细化可使陶瓷的原有性能得到很大的改善,以至在性能上发生突变甚至出现新的性能或功能。纳米陶瓷的发展是当前陶瓷研究和开发的一个重要趋势,它将促使陶瓷材料的研究从工艺到理论、从性能到应用都提升到一个崭新的阶段。

纳米陶瓷的关键技术在于烧结过程中晶粒尺寸的控制。为解决这一问题,目前主要采用热压烧结、快速烧结、热锻式烧结、脉冲电流烧结、预热粉体爆炸式烧结等致密化手段[39~43],但总的来说,以上各种手段,虽对降低烧结温度、提高致密度有一定作用,但对烧结过程中晶粒长大的抑制效果并不理想,大块纳米陶瓷的制备一直是目前国际上纳米陶瓷材料研究的前沿和难点。目前纳米陶瓷在商业应用方面尚未取得突破性进展,若能制备出真正意义上的纳米陶瓷,则将开创陶瓷发展史上的新纪元,陶瓷的脆性问题也将迎刃而解[44]。大量的研究结果表明[45~49],将等离子喷涂技术与纳米技术相结合,以纳米陶瓷粉末为原料经等离子喷涂技术制备的纳米陶瓷结构涂层表现出极其优异的性能,已经使纳米材料的应用逐步进入大规模实用化的阶段。

3.3 由经验式研究向材料设计方向发展

由于现代陶瓷学理论的发展,高性能结构陶瓷的研究已摆脱以经验式研究为主导的方式,陶瓷制备科学的日趋完善以及相应学科与技术的进步,使陶瓷材料研究工作者们有能力根据使用上提出的要求来判断陶瓷材料的适应可能性,从而对陶瓷材料进行剪裁与设计,并最终制备出符合使用要求的适宜材料。

陶瓷材料常常是多组分、多相结构,既有各类结晶相,又有非晶态相,既有主晶相,又有晶界相。先进结构陶瓷材料的组织结构或显微结构日益向微米、亚微米,甚至纳米级方向发展。主晶相固然是控制材料性能的基本要素,但晶界相常常产生着关键影响。因此,材料设计需考虑这两方面的因素。另外,缺陷的存在、产生与变化、氧化、气氛与环境的影响,对结构材料的性能及在使用中的行为将产生至关重要的作用。所以这也是材料设计中要考虑的重要问题,材料的制备对结构与缺陷有着直接影响,因此人们力求使先进陶瓷材料的性能具有更好的可靠性和重复性,制备科学与工程学将在这方面发挥重要作用。

陶瓷相图的研究为材料的组成与显微结构的设计提供了具有指导性意义的科学信息。最近提出的陶瓷晶界应力设计,企图利用两相或晶界相在物理性质(热膨胀系数或弹性模量)上的差异,在晶界区域及其周围造成适当的应力状态,从而对外加能量起到吸收、消耗或转移的作用,以达到对陶瓷材料强化和增韧的目的[1]。为克服陶瓷材料的脆性而提出的仿生结构设计,通过模仿天然生物材料的结构,设计并制备出高韧性陶瓷材料的新方法也成为研究热点[12,50]。

4结语

先进结构陶瓷材料在粉体制备、成形、烧结、新材料应用以及探索性研究方面取得了丰硕的成果,这些新材料、新工艺、新技术,在节约能源、节约贵重金属资源、促进环境保护、提高生产效率,延长机器设备寿命以及实现尖端技术等方面,已经并继续发挥着积极的作用,促进了国民经济可持续发展、传统产业的升级改造和国防现代化建设。

先进结构陶瓷材料的研究,需要跟踪国际科技前沿,对新设想、新技术进行广泛探索。自蔓延高温燃烧合成技术(SHS)、凝胶注模成形技术、微观结构设计已成为研究热点。

陶瓷材料的许多独特性能有待我们去开发,所以先进陶瓷的发展潜力很大。随着科技的发展和人们对陶瓷研究的深入,先进陶瓷将在新材料领域占有重要的地位。

参考文献

1 郑昌琼主编.新型无机材料[M]. 北京:科学出版社,2003

2 朱晓辉,夏君旨. 从材料科学的发展谈陶瓷的发展前景[J].中国陶瓷,2006,42(5):7~9

3 韩以政. 高技术陶瓷发展简论[J].陶瓷研究与职业教育,2007,2:45~48

4 耿保友. 新材料科技导论[M]. 杭州:浙江大学出版社,2007

5 尧世文,王华,王胜林.特种陶瓷材料的研究与应用[J].云南冶金, 2007,36(8):53~57

6 代建清,马天,张立明. 粉料表面氧含量对GPS烧结氮化硅陶瓷显微结构的影响[J].稀有金属材料与工程,2005,34,2:8~11

7 祝昌军,蒋俊,高玲. 氮化硅陶瓷的制备及进展[J].江苏陶瓷,2001,34 (3):10~13

8 吴明明,肖俊建. 氮化硅陶瓷在现代制造业中的应用[J].机电产品开发与创新, 2004,17(2):1~4

9 李 缨,黄凤萍,梁振海.碳化硅陶瓷的性能与应用[J].陶瓷,2007,5:36~41

10 黄凤萍,李贺军等.反应烧结碳化硅材料研究进展[J].硅酸盐学报,2007,5:49~53

11 仟萍萍. 氧化铝基复合陶瓷的制备和性能测试:硕士学位论文[D]. 合肥:合肥工业大学,2004

12 穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002

13 王柏昆. 结构陶瓷韧化机理的研究进展[J].中国科技信息,2007,19:264~273

14 王正矩,余炳锋. 陶瓷基复合材料增韧机理与CVI 工艺[J].中国陶瓷,2007,43(6):11~14

15 李双春. 激光陶瓷的粉体制备研究:硕士学位论文[D]. 西安:西安电子科杖大学,2006

16 周玉编著. 陶瓷材料学(第二版)[M].北京:科学出版社,2004

17 李 缨. 碳化硅晶须及其陶瓷基复合材料[J].陶瓷,2007,8:39~42

18 王双喜,雷廷权. 碳化硅晶须增强氧化锆复相陶瓷材料的组织观察[J]. 中国陶瓷,1998,34(2):9~11

19 孙玉绣. 羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究:博士学位论文[D]. 北京化工大学,2007

20GUO J K.The Frontiers of Research on Ceramic Science[J]. J Solid State Chem,1992,69(1):108~110

21 郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7~12

22 NIIHARA K. New Design Concept of Structural Ceramics-ceramic Nanocomposites[J].J Ceram Soc Japan,1991,99(10):974~982

23 NIIHARA K, NAKAHIRA A. Strengthening and Toughening Mechanisms in Nanocomposite Ceramics[J].Ann Chim Fr,1991,16:479~486

24 HIRANO T,NIIHARA K.Microstructure and Mechanical Properties of Si3N4/SiC Composites[J].Mater Lett,1995,22:249~254

25 HIRANO T,NIIHARA K.Thermal Shock Resistance of Si3N4/SiC Nanocomposites Fabricated from Amorphous Si-C-N Precursor Powders[J].Mater Lett,1996,26(6):285~289

26 SAWAGUCHI A,TODA K,NIIHARA K. Mechanical and Electrical Properties of Alumina/Silicon Carbide Nano-composites[J].J Ceram Soc Japan (Japanese), 1991,99(6): 523~526

27 EBVANSA G. High Toughness Ceramics[J].Mater SciEng,1988,A105/106(11-12):65~75

28 ZHAO J,STEARS L C, HARMER M P, et al. Mechanical Behavior of Alumina-silicon Carbide Nanocomposites. [J].J.Am CeramSoc,1993,76(2):503~510

29 KENNEDY T,BROWN J, DOYLE J,et al.Oxidation Behaviour and High Temperature Strength of Alumina-silicon Carbide Nanocomposites[J].Key EngMats,1996,113:65~70

30 PEZZOTTI G, AKAI M.Effect of A Silicon Carbide Nano-dispersion on the Mechanical Properties of Silicon Nitride[J].J.Am CeramSoc,1994,77:3039~3041

31 NAWA M. Microstructure and Mechanical Behaviour of 3Y-TZP/Mo Nanocomposites Possessing A Novel Interpenetrated Intragranular Microstructure[J].J.Mater Sci,1996,31:2849~2858

32 王 昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析[J].陶瓷学报,2000,21(2):107~111

33 焦绥隆,BORSACE.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增刊):89~93

34 郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):194~202

35 SHAO G Q,WU B L,DUAN X L, et al. Low Temperature Carbonization of W-Co Salts Powder[A].Ceramic Engineering & Science Proceedings-23rd Annual Conference on Composites, Advanced Ceramics,Materials, and Structures:A[C]. Ohio: The American Ceramic Society,1999.45~50

36 张志昆,崔作林. 纳米技术与纳米材料[M].北京:国防工业出版社,2000

37 KARCH J, BIRRINGER R, GLEITER H. Ceramics Ductile at Low Temperature[J].Nature,1987,330(10):556~558

38 Liao S C,Mayo W E,Pae K D.Theory of High Pressure/Low Temperature Sintering of Bulk Nanocrystalline TiO2[J]. Acta Mater,1997,45(10):4027~4040

39 Yoshimura M,Ohji T,Sando M,et al. Rapid Rate Sintering of Nano-grained ZrO2-based Composites Using Pulse Electric Current Sintering Method[J]. Mater Let, 1998, 17(16): 1389~1391

40 Kim H G, Kim K T.Densification Behavior of Nanocrystalline Titania Powder Compact under High Temperature[J]. Acta Mater,1999,47(13):3561~3570

41 Li Ji guang,Sun Xudong. Synthesis and Sintering Behavior of A Nanocrystalline Al2O3 Powder[J].J Acta Mater,2000,48:3103~3112

42 李晓贺. 纳米复相陶瓷材料的烧结技术[J].中国陶瓷,2007,43(7):43~46

43 傅正义. 陶瓷材料的SHS 超快速致密化技术[J].硅酸盐学报,2007,35(8):949~956

44 高 濂,李蔚著. 纳米陶瓷[M]. 北京:化学工业出版社,2001

45 B H Kear. Plasma Sprayed Nanostructured Powders and Coatings[J].Thermal Spray Technology,2000,9(4):483~487

46 H Chen, S W Lee,H Du,et al.Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings[J]. Materials Letters,2004,58:1241~1245

47 E P Song,J Ahn,S Lee.Microstructure and Wear Resistance of Nanostructured Al2O3-8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders[J].Surface & Coatings Technology,2006,201 (3~4):1309~1315

48 J X Zhang. Microstructure characteristics of Al2O3-13 wt.%TiO2 Coating Plasma Spray Deposited with Nanocrystalline Powders[J]. J. of Materials Processing Technology,2008,197:31~35

49 徐滨士.纳米表面工程[M]. 北京化学工业出版社,2003

50 黄勇等.陶瓷强韧化新纪元――仿生结构设计[J].材料导报,2000,14(8):8~10

Research Progress on Advanced Structural Ceramic Materials

Lu XuechengRen Ying

(Handling Equipment Mechanical Department, Academy of Military TransportationTianjin300161)