前言:中文期刊网精心挑选了化学机械抛光技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
化学机械抛光技术范文1
关键词:表面抛光;化学机械抛光;电子材料
中图分类号:TG662 文献标识码:A 文章编号:1009-2374(2012)07-0056-03
一、简介
半导体行业需要不停地发展新的和先进的加工技术来应付新兴材料用于各种设备。因为与时俱进快速变化的半导体器件市场,当前挑战并创造新电子材料变得不可缺少。快速增长的半导体处理技术增加其应用的极限。
抛光技术已成为半导体制造的一项关键技术因为电子材料需要抛光以去除表面的污渍、实现的单晶后的基片表面沉积过程。对于表面缺陷的电子材料,常规机械抛光技术已经进化成一个使用化学反应的混合抛光技术。随着互连尺寸比例缩减,一种由IBM公司引进的化学机械抛光(CMP)技术快速增长,因其拥有在单晶深亚微米集成电路制造、超细加工电子材料的最强大的技术。CMP技术分别使用磨具和化学泥浆进行机械和化学移除。即使这些CMP技术被应用于半导体制造,一些去除机制仍然是模糊的,因为它是几乎不可能观察到晶圆片之间的接口,在抛光护垫过程。不幸的是,因为这个原因在很大程度上取决于CMP制程工程师的实验敏捷。此外,机械化学抛光技术面临着加工新的电子材料的挑战。
在CMP,磨料的选择和化学试剂决定了去质能力和表面靶材质量。因此,很重要的一点就是要了解目标材料的材料性能和选择适合自己的磨料磨具和化学工艺。本文我们主要讨论CMP反应中化学和机械之间平衡及其应付各种电子产品材料的能力。
二、电子材料
图1显示了电子材料的分类。对这些材料的材料性能进行了分类:容易研磨的组合(ETA),很难研磨(DTA),易反应(ETR)和难以反应(DTR)。本文这些电子材料分类如下:
1.ETA-ETR材料:导体材料,如铜、铝、W等易被硅溶胶模壳工艺和浆解散化学品粘附,分为ETA-ETR材料。
2.DTA-ETR材料:绝缘氧化物分为DTA -ETR材料。它不容易通过硅溶胶与二氧化硅表面产生研磨,然而,它们很容易地被碱性药物水合或氧化。
3.ETA-DTR材料:用于集成电路和微机电系统(MEMS)的绝缘聚合体是ETA-DTR材料。SU-8是一种厚的兼有化学稳定和热稳定性的基于环氧的光刻胶(PR),它主用于微细加工。
4.DTA-DTR材料:宽带隙的化合物,如SiC和GaN都属于DTA-DTR材料,具有硬度高和化学惰性特点。
三、电子材料的抛光
(一)ETA-ETR材料
铝和铜作为互连线材料,一般都比在CMP泥浆中作为磨料的硅胶更柔和,而且硅胶会在这些金属表面留下划痕。因此,在金属CMP,消除目标材料是成膜、膜磨和再钝化的重复过程的结果。
在铜CMP。使用氧化铝磨料或硅。最近,硅溶胶研磨已经被广泛用于创建一个无缺损的表层,由于氧化铝磨料太难了,在铜表面产生深划痕。铜被化学药品和浆轻微蚀刻和表面的粗糙度如何恶化。铜的粗糙表面)与硅胶轻机械磨损得到改善。图2所示的研磨的作用浓度的铜CMP对材料去除率浆(MRR)。压力、旋转速度、浆流量分别为20.7kPa,80rmp,150ml/min。无损浆低相对于一般类型含有磨料磨料的浆显示了更少的MRR。增加硅溶胶增加MRR,通过抚平化学反应的铜表面降低表面粗糙度。
ETA-ETR材料的CMP在很大程度上取决于化工反应泥浆和目标之间的材料。然而,高化学移除和生成一个钝化层导致目标材料表面粗糙。因此,在CMP浆中使用软磨料轻微研磨与化学试剂的正确选择是制备ETA-ETR材料无缺陷表面中不可缺少的。
(二)DTA-ETR材料
二氧化硅CMP的主要机制是氧化膜在CMP中产生的摩擦力造成的升温而形成的破裂或软化,同时还伴随着二氧化硅的塑性变形。软化了的氧化膜,被碱性溶液水合,随后被磨料耕作。在二氧化硅CMP中用的最广泛的磨料是二氧化硅和CeO2。二氧化硅去除氧化面的水合层通过缩合和耕作二氧化硅膜。库克提出了一种“化学牙”二氧化硅表面和CeO2颗粒将做一个CeOSi连接,CeOSi(OH)除去表面,然后也将进行Si(OH)解散。因此,ceria浆比硅浆的MRR高。DTA-ETR材料,如二氧化硅,应由一种化学反应表面通过软磨料进行机械抛光,以便得到无缺陷表面。
(三)DTA-DTR材料
6H-SiC是一个具有代表性的为高性能电子设备的基体材料,是一个典型的DTA-DTR材料。很难用硅胶对碳化硅表面抛光因为单晶SiC的Mohs硬度是9~9.5,而且比硅溶胶更硬(Mohs6.5~7),另外,高inter-atomic连接的能量使SiC稳定高温和化学性活跃。熔岩KOH(T>450暖)最常应用于SiC为了实现优先蚀刻。
应用压力、旋转速度、浆流量分别为120kPa、100rpm和150mL/min。一个硅溶胶浆和混合磨料浆(MAS),混合了硅溶胶(平均直径:120nm)和钻石(平均直径:30nm)用于6H-SiC的CMP。硅溶胶浆相对于MAS显示出更低的MRR。这结果来源于higher MRR and CMP withMASshowa上级的表面质量。
为了验证了碳化硅去除的机理、高度降低凹nano-indentation测量后留下了原子力显微镜(AFM)。这些散布的胶体硅浆的高度降低缩进,然而它加宽了缩进宽度通过切除了应力诱发缩进的边缘区域。MAS的高度的降低在不增加缩进它的宽度。很可能钻石(金刚石)产品的表面刮伤或解除SiC机械和应力诱发表面的反应起来相当容易用化学物质。在多的硅溶胶模壳扮演这样的角色6H-SiC光滑的表面。因此,机械应力发现在硬磨料磨具和表面平滑化学污染用软产品表面反应需要的CMP DTA -DTR材料。也就是说,增强应力的CMP正是DTA-DTR CMP的材料所需的。
(四)ETA-DTR材料
目前,微机电系统(MEMS)的CMP使用正在增加是为了减小尺寸,实现设备的高度集成结构。在湿法腐蚀的过程,SU-8过氧化氢作为一种在100~130分解有机杂质氧化剂的暖。然而,CMP制程在室温下进行,就这样那化学反应是约束与非常慢在CMP。
因此,需要机械磨损表面去除SU-8。资料显示了抛光处理硅溶胶浆的MRRs样本SU-8,过氧化氢和过氧化氢溶液,基础硅溶胶模壳基础氧化铝浆泥浆和过氧化氢。抛光压力,旋转速度、浆流量分别为30kPa、80rpm和150mL/min。CMP中苯甲醇泥浆比常规硅溶胶泥浆显示了更高的MRR。这SU-8抛光和的MRR基础氧化铝浆过氧化氢更高比抛光和硅溶胶浆过氧化氢为基础。然而,氧化铝浆留下了太多的划痕在表面上SU-8的。因此优良的产品适合CMP以减少SU-8划痕。
ETA-DTR材料的材料去除很大程度上取决于ETA-DTR材料机械磨损用作增强化学反应在DTA-DTR材料。 然而,机械研磨与优良的硬磨料是制备无缺陷表面和ETA-DTR材料高MRR所必不可少的,以克服化学惰性特征的物质。
四、电子材料抛光中化学和机械的平衡
在抛光技术中,制备电子材料无缺陷表面时应考虑化学和机械的平衡。图3表现出种种抛光方法和适当的化学和机械电子平衡的条件材料。电子材料很大程度上被分为两种组:ETR组和DTR组。ETA-ETR材料,容易与化学物质反应,要求有很高的化学反应和轻微机械磨损以产生良好的表面。DTA-ETR材料,如二氧化硅,应磨光机械磨损,一种化学反应层用软磨料。DTR组由于CMP技术其化学惰性的特点是一个具有挑战性的地区。因此, DTR的CMP主要依靠机械磨损。机械磨损和化学硬磨料对于制备ETA-DTR材料无缺陷表面是必需的。DTA-DTR材料通过一般CMP过程很难去除表面由于其化学和机械稳定性。强机械应力应采用表面研磨好DTA-DTR材料以营造一种良好的化学反应。因此,增强应力的CMP适用于表面缺陷DTA-DTR材料。
化学机械抛光技术范文2
1无掩膜电化学微/纳米加工技术无掩膜电化学微/纳米加工技术是基于微/纳米电极针尖或针尖阵列的扫描探针显微镜(SPM)技术,包括电化学扫描隧道显微镜(EC-STM)和电化学原子力显微镜(EC-AFM)、超短电压脉冲技术(US-VP)、扫描电化学显微镜(SECM)、扫描微电解池(SMEC)等,加工的精度由针尖电极的尺寸决定。无掩膜技术的优点在于所加工的三维结构的尺度和精度可以达到微/纳米级别,缺点是材料去除率低以及加工效率低。
1.1电化学扫描探针显微镜(EC-SPM)电化学扫描隧道显微镜由Kolb课题组于1997年提出。与“蘸水笔”技术很类似,首先在STM探针上沾上带有Cu2+的溶液,再移到金基片上通过电沉积形成铜纳米团簇。此方法的加工精度非常高,团簇的直径一般在亚纳米级别,高度可以控制在几个纳米[7]。然而,由于很多金属的还原电位低于氢析出电位,很难在水溶液中通过电沉积的方法得到纳米团簇或微/纳米结构。最近,厦门大学毛秉伟教授课题组在室温离子液体环境中电沉积得到了活泼金属锌和铁的纳米团簇图案[8-10]。原子力显微镜与电化学联用可以达到类似的结果。虽然单点加工作业效率低,但是由于金属的电沉积速度很快,如果采用阵列SPM探针,可以大幅度提高加工效率。EC-SPM最大的不足在于SPM的扫描行程非常有限,因此加工的尺度范围很小。目前本课题组正在研发大行程(100mm×100mm)的EC-SPM技术。
1.2超短电压脉冲技术Schuster发展了超短电压脉冲技术(USVP),将微/纳米电极、电极阵列或者带有三维微结构的模板(工具)逼近待加工的导电基底(工件),然后在针尖与基底之间施以纳秒级电压脉冲。由于电极/溶液界面的时间常数为双电层电容和工具与工件之间溶液的电阻的乘积(τ=RCd),而后两者与工具和工件之间的距离有关,所以在工件与工具之间施加纳秒级的电势脉冲时,只有距离工具最近的工件部位发生阳极溶解,从而得到尺度可控的微型结构[11]。本质上讲,这种技术具有距离敏感性,加工的精度较高。我国已有研究人员正在开展这种技术的研究[12]。
1.3扫描电化学显微镜扫描电化学显微镜(SECM)是一种以超微电极或纳米电极为探针的扫描探针技术,由一个三维精密定位系统来控制探针电极与被加工基底之间的距离,通过在针尖与基底之间局部区域激发电化学反应,可以获得各种微结构图案。该技术通过电流反馈原理定位微/纳米电极针尖,与STM和AFM相比,虽然空间分辨率有所降低,但是化学反应性能得到增强,大大拓展了微/纳米加工的对象,成为一种重要的微/纳米加工技术。SECM在微/纳米加工中的应用详见文献[13]。
1.4扫描微电解池扫描微电解池(SMEC)是利用毛细管尖端的微液滴与导电工件形成接触,对电极插入到毛细管中与导电的加工基底构成微电解池,并以该微电解池作为扫描探针。由于电化学反应被限制在微液滴中,因此微液滴的尺寸决定了加工的精度[14]。近期的研究结果表明,通过该方法可以制作形状可控的铜纳米线,在微电子元器件的焊接技术中表现出显著的优势[15]。我们课题组采用该方法合成了各种微/纳米晶体或聚合物功能材料,用于构筑电化学功能微器件[16-17]。
2掩膜电化学微/纳米加工技术掩膜微/纳米加工技术包括LIGA技术、EFAB技术、电化学湿印章技术(EC-WETS)和电化学纳米印刷技术。这些加工技术的主要原理都是将电化学反应控制在具有预设微/纳米结构的掩模内。工件通常是导电的,同时也作为电极。LIGA和EFAB技术需要通过光刻在工件上形成微结构,然后通过电沉积方法在其间得到金属微/纳米结构。电化学湿印章技术和电化学纳米压印技术使用的是凝胶或固体电解质模板,模板与工件接触,利用电沉积或刻蚀形的方法形成所需的微/纳米结构。
2.1LIGA技术LIGA(德语Lithographie,Galvanoformung,Abformung的缩写)是一种加工高深宽比微/纳米结构的方法[18-20]。先在导电基底上涂覆一层光刻胶,通过光刻曝光后形成高深宽比的微/纳米结构;然后在含有微/纳米结构的光刻胶模板上电沉积金属,去除光刻胶后得到金属微/纳米结构。获得的金属微/纳米结构还可以进一步作为加工塑料和陶瓷材料工件的模板。LIGA加工的深宽比可以达到10~50,粗糙度小于50nm。该技术使用的X射线曝光光源价格昂贵,而紫外曝光工艺又受相对较低的加工深宽比的制约。另外,如何在有较高深宽比的光刻胶微/纳米结构中实现高质量的电铸也是需要解决的问题。
2.2EFAB技术EFAB(ElectrochemicalFabrication)是由美国南加州大学AdamCohan教授提出的一种微/纳米加工方法[21-23]。EFAB技术首先利用CAD将目标三维微/纳米结构分解成容易通过光刻加工的多层二维微/纳米结构;然后将设计好的微/纳米结构层和牺牲层一层一层地沉积于二维光刻胶模板中;去掉光刻胶模板和牺牲层金属就可以得到所需的微/纳米结构。每一个电铸层都要求高度的平坦化,以确保下一步工艺的质量。化学抛光(CMP)是常用的抛光方法,但是其价格昂贵,大大增加了工艺成本。另外,逐层加工对多层结构之间的精确对准有着很高的要求,任何两层之间的对准错误都将会导致整个微/纳米加工流程失败。2.3电化学湿印章技术Grzybowski提出了一种利用含有刻蚀剂和微结构的凝胶模板来实现导体或半导体材料的化学刻蚀技术[24]。我们课题组采用琼脂糖凝胶模板作为电解质体系,提出了EC-WETS技术,通过电沉积、阳极溶解或化学刻蚀等途径实现微/纳米结构的加工[25]。目前的主要问题是如何控制反应物的侧向扩散,提高反应物在胶体中的扩散速率以及加工的精度。
2.4固体电解质电化学纳米印刷技术AgS2是一种具有银离子传输能力的固态超离子导体电解质,Hsu等制备了AgS2微/纳米结构模板。当银工件表面接触到超离子导体模板时,在工件上施加一定的电压,银工件表面与模板的连接处将会发生银的阳极溶解,银离子在AgS2电解质中迁移,沉积到AgS2模板另一侧的对电极上[26-27]。这种方法的主要缺陷是可以用作模板的固体电解质有限,机械强度差,而且,工件表面溶出的阳离子在固体电解质中的扩散速度慢,加工效率低。
3约束刻蚀剂层技术微/纳米加工技术必须满足以下3点要求:微/纳米级加工尺寸,能加工复杂的三维结构以及实现批量化生产。然而非掩膜技术不适合批量生产,掩模技术又难以生产连续曲面等复杂的三维微结构。我们课题组致力于电化学微/纳米加工领域已有20多年,由田昭武院士提出的具有自主知识产权的约束刻蚀剂层技术(CELT)可以满足对微/纳米加工技术的上述3个基本要求,本节将予以详细介绍。
3.1基本原理约束刻蚀剂层技术是通过一个随后的均相化学反应将电化学、光化学或光电化学产生的刻蚀剂约束至微/纳米级的厚度,从而实现微/纳米精度的加工。约束刻蚀剂层技术主要分为以下3个步骤:①刻蚀剂的生成反应为:RO+neorR+hvO(+ne)(1)其中R为刻蚀剂前驱体,O为刻蚀剂。CELT使用的工具既是光/电化学体系的工作电极又是微/纳米加工的模板,即刻蚀剂通过电化学、光化学、光电化学的方法在模板表面产生。由于刻蚀剂在溶液中的扩散,刻蚀剂的形状和厚度很难控制,这取决于刻蚀剂的扩散性质、模板电极的大小和形状。为了确保加工精度,就必须控制刻蚀剂的扩散仅仅发生在模板电极表面微/纳米级的尺度范围以内。②约束反应为:O+SR+YorOY(2)其中S为工作溶液中的约束剂,Y是约束剂S与刻蚀剂O反应的产物或者光/电化学反应生成的自由基衰变产物。由于约束反应的发生,使刻蚀剂的扩散被限制在模板电极表面微/纳米级的尺度范围以内,约束刻蚀剂层的厚度取决于约束反应的速率或自由基O的寿命。约束刻蚀剂层的理论厚度为[28]:μ=(D/Ks)1/2(3)其中μ为约束刻蚀剂层的厚度,D为刻蚀剂在工作溶液中的扩散系数,Ks为约束反应(式(2))的准一级反应速率常数。当Ks为109s-1时,约束刻蚀剂层的厚度将达到1nm。由于刻蚀剂层被约束在微/纳米尺度范围内,刻蚀剂层保持与加工模板一致的形状。因此,约束刻蚀剂层技术的加工精度取决于约束刻蚀剂层的厚度。③刻蚀反应为:O+MR+P(4)式中M为被加工材料,P为刻蚀产物。当模板电极逐渐逼近工件使约束刻蚀剂层与工件表面接触时,工件表面将与刻蚀剂发生化学刻蚀反应,直到在工件表面生成与模板电极三维微/纳米结构互补的微/纳米结构。
3.2微/纳米加工仪器用于微/纳米加工的CELT仪器主要由电化学工作站、三维微位移控制器、计算机反馈系统三部分构成[29-33](图1)。电化学工作站用于调控CELT化学反应体系;三维微位移控制器用于模板工具的定位和进给。控温系统和工作液循环系统等附属系统在这里不做展示。计算机用于CELT整体系统的信息发送和反馈,以确保整个微/纳米加工过程协同完成。
3.3化学反应体系的筛选对于CELT而言,首先是要选择合适的化学反应体系。在实验中,我们使用一个柱状微电极作为工具电极来产生针对特定加工材料的刻蚀剂。比如在加工半导体砷化镓时,溴是常用的刻蚀剂,而胱氨酸作为约束剂用以调控刻蚀剂层的厚度[34-39]。整个刻蚀体系的化学反应表示如下:16Br-8Br2+16e(5)5Br2+RSSR+6H2O2RSO3H+10Br-+10H+(6)3Br2+GaAs+3H2O6Br-+AsO3-3+Ga3++6H+(7)用于加工砷化镓的CELT化学体系的循环伏安图见图2(a)[34]。刻蚀剂的生成反应(式(5))是一个可逆的氧化还原反应。由于工作液中胱氨酸(RSSR)与溴的约束反应(式(6)),胱氨酸被氧化为磺酸(RSO3H),体系的法拉第电流显著增加,这表明约束刻蚀剂层的厚度减小。如图2(c)所示,纳米加工的精度得到良好改善[38]。值得注意的是,约束刻蚀剂层的厚度可以通过改变约束剂的浓度来调节。这对于超光滑表面的加工十分重要,可以根据实际技术要求调整工艺。SECM可以用来探测工具表面刻蚀剂的浓度分布,并且可以用来获取CELT化学反应体系的动力学参数,这对于优化CELT微/纳米加工的技术参数十分重要[40-41]。
3.4复杂三维微结构的CELT加工CELT已被证明可以成功地用于金属、合金、半导体、绝缘体表面复杂三维微结构的加工[42-49]。在三维微结构的加工实验中,使用的是具有互补结构的模板电极。模板材料可以是铂铱合金、硅、聚甲基丙烯酸甲酯(PMMA)等。在具有三维微结构的硅或PMMA模板上首先沉积一层钛,然后再溅射一层铂,以确保模板在加工过程中的导电性和稳定性。在金属或合金基底上加工三维微结构的关键是在工具电极表面产生氢离子作为刻蚀剂,以氢氧化钠作为约束剂。目前,各种三维微结构已经被成功复制在铜[50-51]、镍[51-52]、铝[53]、钛[54]、镍钛合金[55]、Ti6Al4V[56]、镁合金[57]基底上。对于半导体硅[32,58-62]或砷化镓[34-39],一般以溴作为刻蚀剂,以胱氨酸为约束剂。图3所示的是采用CELT在n型砷化镓基底上加工出的三维衍射微透镜阵列,这是CELT加工出的首例光学微器件[39]。整个微透镜阵列是一个八相位衍射光学器件,每个小微透镜由8个同心圆以及7个台阶位构成。7个台阶位的总高度是1.3μm,每个台阶的平均高度为187nm。添加剂对提高刻蚀产物的溶解性至关重要,在硅微加工中,通常加入氟化钠以避免硅沉淀。最近,由光电化学或光化学生成自由基刻蚀剂也取得了初步进展,例如二乙胺自由基刻蚀铜[63]。
3.5超光滑表面的CELT加工如果工具模板不是复杂三维结构,而是一个超光滑平面,CELT能否发展成为一种整平技术呢?由于集成电路和超精密光学器件等领域的巨大市场需求,将CELT发展成为一种超光滑表面加工技术具有十分重要的意义。最近,我们采用CELT的基本原理开展了超光滑表面加工的研究工作,该方法有可能代替现有的化学机械抛光技术(CMP),用于超大规模集成电路中铜互连结构的整平。初步的研究结果表明CELT对铜的整平有着良好的效果(图4)。CELT抛光的关键在于确保约束刻蚀剂层在大面积范围内保持均一的浓度分布。尽管大面积超光滑工具电极的流体力学设计非常必要,但是最简单的方法是使用一个线型工具电极对在加工平台上做旋转运动的工件进行作业。本课题组正在将传统的机械加工作业方式与CELT进行对接,这无疑将在超光滑表面及其微/纳米二级结构的加工领域发挥更加重要的作用[33]。
化学机械抛光技术范文3
陈小龙研究员出生于1964年,1984年在山东工业大学获工学学士,1988年在哈尔滨工业大学获工学硕士,1991年获得中国科学院物理研究所的理学博士学位,曾在德国海德堡大学和拜罗伊特大学做洪堡学者。系统的专业基础知识和良好的学术素养训练为他日后的科研道路夯实了基础。陈小龙老师从1993年担任中科院物理研究所副研究员、1997年担任研究员以来,主要开展了宽禁带半导体晶体、新功能晶体探索和物性方面的研究工作,取得了丰硕的科研成果并实现了多项技术突破。1999年,他获得国家杰出青年科学基金、2003年入选中国科学院“百人计划”、2004年起至今兼任中国晶体学会副理事长和国际衍射数据中心(1CDD)中国区主席。于2007年获得“ICDD Fellow”称号,2009年成为“新世纪百千万人才工程”的国家级人选,获得国务院政府特殊津贴,并且在同年获第五届“发明创业奖”特等奖,由他带领的宽禁带半导体材料研究与应用团队还获得了2010年度“中国科学院先进集体”荣誉称号。
陈小龙研究员先后主持了国家“863”、“973”和国家科技支撑计划等23个重大科研项目。他主导并系统开展的碳化硅晶体生长的基础和应用研究工作,解决了多项关键性的科学问题及系列关键技术,成功生长出2N4英寸的高质量晶体,由他带领团队攻克了晶体制备重复性和稳定性等关键的工程化问题,在国内率先实现了碳化硅晶体的产业化;发现非磁性元素铝掺杂在碳化硅晶体中诱导出磁性,通过中子辐照在碳化硅晶体中引入双空位,并从实验和理论上证明了双空位导致磁性,首次在实验上给出直接证据;他还研究发现了一系列新的功能晶体材料,包括新超导体K0.8Fe2Se2和具有潜在应用价值的闪烁晶体YBa3B9O18等,精确测定了大量新化合物的晶体结构,其中120个化合物的衍射数据被ICDD收录为标准衍射数据。新超导体Kn0.8Fe2Se28超导转变机制不同于其它铁基超导体,具有丰富的物理内涵,在引领国际上铁基超导新的研究方向上发挥了作用。
多年来,陈小龙研究员研发并申请的国家发明专利共计45项,其中已经授权的有16项,在国际学术刊物上300余篇,被引用3200多次。
引领创新之路
陈小龙研究员目前主要的研究方向包括:宽禁带半导体碳化硅、氮化铝等晶体生长、物性及应用研究;大尺寸、高质量石墨烯制备和应用研究;多晶×射线衍射结构分析和应用等多个方面。坚持自主创新、引导技术产业化是他一直以来的心愿和努力的方向。
在当今时代,碳化硅作为重要的宽禁带半导体材料,是制作高温、高频、大功率、抗辐射电子和光电器件的理想材料,在军工、航天、固态照明和电力电子等领域具有非常重要的应用价值,对于军事科技、民用工业的发展至关重要。国际权威市场调查报告显示,2009年全球对碳化硅晶片的消耗量为43.5万片,至2015年这一数字将增加到至少200万片,其蓬勃发展将在世界范围内产生极为深远的影响。
但是,碳化硅晶体生长和加工技术被一些发达国家垄断,对我国实行技术封锁,甚至产品禁运。基于我国对碳化硅晶片的迫切需求以及碳化硅基半导体产业的巨大市场、应用前景,陈小龙研究员于1999年带领团队开始开展碳化硅晶体生长的研究工作。十余年间,在国家自然科学基金委、科技部、中国科学院等国家部委和各级地方政府的大力支持和亲切关怀下,陈小龙研究员带领团队坚持自主创新、刻苦钻研,不断进行技术攻关,终于取得了重大突破。
国外销售的碳化硅晶体生长设备价格极其昂贵,而且难以调整所生长晶体的尺寸,难以满足国内大规模产业化的需求。陈小龙研究员带领研究人员自主研发碳化硅晶体生长设备,通过创新性的设计和持续的结构优化,研制出了具有自主知识产权的感应线圈内置式碳化硅晶体生长炉;可以兼容生长2~4英寸的碳化硅晶体;实现了坩埚的轴向运动和自传,可以保持温场的均匀性;采用了流动气氛,能够在10-10000Pa实现动态压力的精确自动控制,线性度高。而具备了这些优势的晶体生长设备制造成本大大低于国外同类设备。
陈小龙研究员带领团队充分利用自主研发的碳化硅晶体生长平台,经过无数次的实验、模拟和总结,终于在碳化硅晶体生长和加工技术上取得了一系列的突破,包括:重点攻克了碳化硅晶体缺陷控制、电阻率调控和化学机械抛光等关键技术,掌握了晶体生长和加工的核心技术,形成了一整套从原料合成、晶体生长、加工、检测到清洗封装的技术路线;成功研制出高质量2-4英寸6H碳化硅和4H碳化硅晶片:微管密度最低可小于1个/c、X-射线摇摆曲线半高宽小于30弧秒、位错密度小于104/c、半绝缘晶片的电阻率大于106Q・cm、导电4H碳化硅晶片的电阻率控制在0.02 Q・cm以下,产品技术指标达到国际同类产品先进水平。在科研攻关的同时,陈小龙研究员高度重视知识产权保护,已经先后申请相关的国家发明专利24项,其中已授权6项,并且提交行业标准草案2项,同时正在申请美国和日本专利。
实现成果产业化
在中国科学院和新疆生产建设兵团的大力支持下,2006年9月,陈小龙研究员团队开发的碳化硅晶体生长相关技术成功进行了产业化,成立了北京天科合达蓝光半导体有限公司,这标志着我国在该领域实现了零的突破。在产业化的过程中,陈小龙研究员的团队实现了产研结合,建立了拥有48台晶体生长炉的碳化硅晶体生长和加工线,形成了年产3万片的能力,成功地将实验室晶体生长和加工的研究成果推广到大规模的工业化生产,并保证了生产的稳定性和重复性。陈小龙研究员主导的研发中心在大尺寸(4英寸)碳化硅晶体生长和提高晶体质量方面取得了快速进展。目前天科合达公司生产的2-4英寸导电碳化硅晶片、半绝缘碳化硅晶片成功销往20多个国家和地区,广受好评。自2009年以来,公司连续被国际著名半导体咨询机构YOLE公司列为全球碳化硅晶片主要制造商之一。
化学机械抛光技术范文4
1CDIO工程教育理念
CDIO工程教育模式,是由美国麻省理工学院、瑞典皇家工学院等四所大学共同创立的工程教育改革模式。是近年来国际工程教育改革的最新成果,CDIO是构思(Conceive)、设计(Design)、实施(Implement)、运作(Operate)4个英文单词的缩写,以产品从研发到运行的生命周期为载体让学生以主动的、实践的、与课程之间有机联系的方式学习掌握知识&-4。迄今已有几十所世界著名大学加入了CDIO国际组织,这些学校采用CDIO工程教育理念和教学大纲开展教学实践,取得了良好的效果。
2存在的问题与课程建设思想
微电子技术研究的中心问题是集成电路的设计与制造,将数以亿计的晶体管集成在一个芯片上。微电子技术是信息技术的基础和支柱,是21世纪发展最活跃和技术增长最快的高新科技,其产业已超过汽车工业,成为全球第一大产业。微电子工艺课程主要介绍微电子器件和集成电路制造的工艺流程,平面工艺中各种工艺技术的基本原理、方法和主要特点。其课程建设思想是使学生对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,掌握当前微电子芯片制作的工艺流程、主要设备、检测方法及其发展趋势^7]。
但目前该课程教学中存在较多问题,教学效果不佳,主要有如下几点:(1)教材陈旧,没有较适合的双语教材,难以适应跨国际的微电子制造工艺新技术的快速发展;(2)教学内容信息量大,在教学时间短、内容多的情况下,教师难以合理安排教学进度;(3)在课程设置上重理论轻实践,技术性和实践性的内容较少,与迅速发展的工业实际脱节;(4)教学方法单一,理论联系实际不紧密,不利于学生课堂积极性的提高与创造性的发挥“5)实践教学环境较差,由于微电子工艺设备十分昂贵,有待加强高校精密贵重仪器设备和优质实验教学资源共享平台和运行机制的建设;(6)教评形式单一,忽略了实践教学与考核,致使大多数学生只是死记硬背书本知识的学习方式来应付考试。
3微电子工艺的课程建设
3.1教材选取及教学内容改革
本课程教材选用经历了《芯片制造一半导体工艺制程实用教程》、《现代集成电路制造工艺原理》到目前的首选教材:国外电子与通信教材系列中,美国MichaelQiurk和JulianSerda著《半导体制造技术》韩郑生的中文翻译本。该书不仅详细介绍芯片制造中的每一关键工艺,而且介绍了支持这些工艺的设备以及每一道工艺的质量检测和故障排除;并吸收了当今最新技术资料,如用于亚0.25pm工艺的最新技术:化学机械抛光、浅槽隔离以及双大马士革等工艺;内容丰富、全面、深入浅出、直观形象、思考习题量大,并附有大量的结构示意图、设备图和SEM图片,学生很容易理解,最主要的相对前两本教材,它更加突出实际工艺,弱化了较抽象的原理。
教学内容上采取调整部分章节,突出教学重点,并适当增减部分教学内容。本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力,课程仅32学时,而教材分20章,600页,所以教师需要精选课堂授课内容。从衬底制备、薄膜淀积、掺杂技术到图形加工光刻技术以及布线与组装,所涉及的概念比较多,要突出重点:薄膜淀积(氧化、蒸发、溅射、MOCVD和外延等),光刻与刻蚀技术、掺杂技术,需章节调整系统整合;对非关键工艺的5~8章(介绍半导体制造中的化学药品、污染及缺陷等内容)只作为学生课后自学阅读。第2章的半导体材料特性已在“固体物理”课程中详细介绍,第3章的器件技术已在‘‘半导体物理“晶体管原理”课程中介绍,第20章装配与封装会在“集成电路封装与测试”课程中介绍,故无需重复讲解。将第9章集成电路制造工艺概况放在后面串通整过工艺讲解,即通过联系单项工艺流程,具体分析讲解典型的CMOS芯片制造工艺流程,如由n-MOS和p-MOS两个晶体管构成的CMOS反相器,这样能够加深对离子注入、化学气相淀积、光刻关键技术、集成电路的隔离技术以及VLSI的接触与互连技术等内容的理解。
另一方面,指导学生查阅相关资料,对教材内容作必要的补充,微电子工艺技术的发展迅速,因此需要随时跟踪微电子工艺的发展动态、技术前沿以及遇到的挑战。特征尺寸为45nm的集成电路已批量生产,高K介质/金属栅层叠结构、应变硅技术已采用。而现有的集成电路工艺教材很少能涉及到这些新技术,为了防止知识陈旧,应多关注集成电路工艺的最新进展,尤其是已经投入批量生产的工艺技术,及时将目前主流的工艺技术融入课程教学中。
3.2教学方法的改革
(1)开发多媒体工艺教学软件,利用多媒体技术,将动画、声音、图形、图像、文字、视频等进行合理的处理,利用大量二维和三维的多媒体图片、视频来展示和讲解复杂的工艺构造过程。开发图文声像并茂的微电子工艺多媒体计算机辅助教学软件,给学生以直观、清楚的认识,有助于提高教学质量。
(2)微电子工艺综合共享实验平台建设,集成电路的制造设备价格昂贵,环境条件要求苛刻,运转与维护费用很大,国内仅部分高校拥有集成电路工艺试验线或部分实验分析设备。按照有偿服务或互惠互利原则共享设备仪器资源,创建各院校之间和与企业之间的“微电子工艺综合共享实验平台”可极大的提高集成电路工艺及其实验课程教学效果,即解决了一些院校资金短缺问题,同时也部分补偿了大型设备的日常使用和维护费用问题。其综合共享实验平台包括金属有机化合物MOCVD沉积技术、分子束外延、RF射频磁控溅射、XPS、XRD及AFM分析测试、光刻、离子注入等涉及投资巨大的仪器设备实验项目。
(3)拓展实践能力的校企合作,让学生带着理论知识走进企业的真实工程环境,探索利用企业先进的工艺线资源进行工艺实验教学与参观实习6-9]。参观实习能够使学生对集成电路的生产场地,超净环境要求具有深刻的感性认识,对单晶硅制造流程、芯片制造工艺过程以及芯片的测试和封装的了解也更加系统和全面。同时利用假期安排学生去企业实习,让学生参与企业的部分生产环节,亲身感受实际工艺生产过程,增加学生对企业的了解,也利于企业选拔优秀学生。
(4)工艺视频与工艺实验辅助教学,由于微电子工艺内容与生产密切结合,不能单靠抽象的书本知识教学,对于学生无法了解到的一些工艺实验与设备,可通过录像教学来补充。本学院购置了清华大学微电子所的集成电路工艺设备录像与多媒体教学系统,结合国外英文原版的工艺流程视频,通过工艺视频把实际工艺流程、设备和设备操作等形象地展示在课堂。多媒体教学系统提供了氧化、扩散和离子注入三项工艺设备操作模拟,可使学生身临其境地对所学的基本工艺进行简单的模拟。同时结合课堂教学开设半导体平面工艺实验,主要包括以:氧化、光刻、扩散、蒸铝、反刻、划片、装架、烧结、封装。实验以教师讲解与学生动手相结合,既培养了学生的实际动手能力,又使学生掌握了科学分析问题的方法,激发了学生的学习兴趣,加深学生对课堂理论知识的理解。
3.3多元化的考核评价体系
对学生的考核是对其具体学习成果的度量,也是检验教学改革成效的重要手段,为了更科学合理的考核学生,我们建立了多元化的更加注重过程参与的考试评价体系,降低了期末考试在总成绩中所占比例,最大限度避免学生靠死记硬背来应付考试和学生创新思维被抑制、高分低能现象产生。这种多元化、过程性的成绩评定方法,强调知识的积累与构建过程,消除了学生重理论轻实践,考前死记硬背应付考试的弊病。总评成绩由平时成绩和期末考试成绩两部分构成。但加大平时成绩的权重,平时成绩即包括了作业与考勤,还包括综合性实验成绩、设计仿真、国外工艺视频翻译、专题小论文和专题PPT论坛团队成绩等。同时在期末考题中增加openanswerquestion型、工艺过程设计型题目110-11。
4结语