纳米技术在生物医学的应用范例6篇

前言:中文期刊网精心挑选了纳米技术在生物医学的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

纳米技术在生物医学的应用

纳米技术在生物医学的应用范文1

[中图分类号] R445.9[文献标识码]A [文章编号] 1005-0515(2010)-9-220-01

纳米( nanometer, nm)是一个长度单位, 即十亿分之一米( 1× 10- 9m)。纳米技术(Nanotechnology) 是指在 0.1~ 100 nm空间尺度上操纵原子和分子对材料进行加工, 制造具有特定功能的产品或对物质及其结构进行研究的一门综合性的高新技术学科[1-2]。纳米技术是一门交叉性很强的综合学科,在 20 世纪 90 年代获得了开创性的进展,研究的内容涉及现代科技的广阔领域。纳米技术的发展正越来越成为世界各国科技界所关注的焦点, 谁能在这一领域取得领先, 谁就能占据 21 世纪科学的制高点。随着纳米技术的发展, 纳米电子学、 纳米生物学、 纳米材料学、 纳米医学等分支学科也相继建立和发展起来。尤其重要的是这些学科正在发生相互融合、 相互渗透[3- 4]。

纳米技术与医学的结合形成了新兴边缘学科--纳米医学, 纳米生物医学是纳米科技和生物医学结合的产物, 是纳米科技的一个核心领域, 即在分子水平上利用分子工具和人体相关的知识, 从事疾病的检测、诊断、 治疗、预防和保健等。生物医学起源于诊断, 没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器已是各式各样, 在其迅猛发展的过程中纳米材料起到了关键作用。正是纳米技术在医学检测和诊断中的应用使人们在分子水平上对疾病有了更深的认识,更好的维护和提高了人类的健康水平 。

1纳米探测技术在医学检测和诊断的应用

纳米探针是一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA损伤,而且纳米探针据不同的诊断和检测目的, 将其植入并定位于体内不同部位, 或随血液在体内运行, 随时将体内各种生物信息反馈于体外的记录装置。该技术有着很高的灵敏性,可在含有 10 个原子/分子的1 cm3气态物质中, 在单个原子或分子层次上准确获取其中1个。医生可通过检测人的唾液、血液、 粪便和呼出气体等, 发现人体中只有亿万分之一的各种疾病或带病游离分子, 用于肿瘤细胞的诊断与治疗。

扫描探针显微镜目前已经用于人体多种正常组织和细胞的超微形态学观察 ,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结构改变 ,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具 - - 光学相干层析术(OTC)已研制成功。OTC的分辨率可达纳米级 ,较 CT 和核磁共振的精密度高出上千倍 ,并且它不会像 X线、 CT、 磁共振那样杀死活细胞。

2纳米生物芯片在医学检测和诊断的应用

纳米生物芯片与传统的生物芯片相比, 纳米生物芯片具有以下几个特点:(1)采用微电子,高产而成本低;(2)高度敏感性;(3)减少了样品的数量;(4)使用纳米尺度上的固定方法, 可以自主组装。这类型的生物芯片可以在血流中探测病毒、 细菌和异常细胞。 能即时发现病毒和细菌的入侵, 并予以歼灭。也可以沿血液流动并跟踪镰状细胞贫血患者的红细胞和感染了病毒的细胞。目前, 电场作用下自动寻址的细胞芯片已研究成功, 既可用于基因功能研究与蛋白质亚细胞定位, 又可用于监测基因与蛋白质的瞬间表达[5]。

3纳米细胞检疫器 ( 纳米秤) 在医学检测和诊断的应用

纳米秤又称纳米细胞检疫器,能称量10-9g的物体,即相当于1个病毒的质量。利用它可发现新病毒, 可定点用于口腔、 咽喉、食管、 气管等开放部位的检疫。

4纳米传感器在医学检测和诊断的应用

纳米材料用于生物传感器是由 Alarie 和 Vo- Dinh 等人[6]于 1996年提出的。纳米生物传感器利用其细小的尖端(仅为纳米量级)插入活细胞内, 而又不干扰细胞的正常生理过程, 以获取活细胞内多种反应的动态化学信息、 电化学信息及反映整体的功能状态, 以便深化对机体生理及病理过程的理解, 例如利用纳米生物传感器可以探知会导致肿瘤的早期 DNA损伤等; 此外, 纳米生物传感器和新的成像技术还能对疾病进行早期的检测和治疗[7]。

5纳米金属在医学检测和诊断的应用

PCR 技术发展至今, 不仅仅是实验室的“宠儿” ,而是已经成为了诊断、治疗、科研开发等等各个生命科学领域的“必杀锏”。但是经过近二十年的发展, PCR 技术依然存在这样或那样的问题, 比如准确性, 利用 PCR 技术来诊断疾病, 假阴性、假阳性等现象屡见不鲜。造成这一问题的原因一般认为是由于在体外复制过程中缺少在 DNA复制过程中担任“检测师”的 SSB蛋白[8]。

解思深院士及来自中科院上海应用物理研究所以及上海交大的研究人员应用纳米技术升级了 PCR 技术, 完成了“点金术”: 他们将几千个直径为 0.3 纳米的金原子堆积在一起, 做成一个个直径约几或十几纳米的纳米金球, 加入 PCR反应, 结果发现纳米金减少了 PCR 复制过程中的出错率, 并且提高了复制的速度和效率, 这一研究获得了国际同行的认可。通过应用纳米技术 ,在DNA 检测时 ,可免去传统的 PCR扩增步骤 ,快速、 准确 ,易实现检测自动化。这是一项新颖且重要的方法, 它为分子生物学中最为重要的标准方法 PCR 开拓了进一步改进的途径, 具有较大应用价值[8]。

6磁性纳米材料在医学检测和诊断的应用

纳米磁性颗粒在生物检测上的应用是仅次与荧光材料。各种磁性生物探针, 磁性跟踪材料都已发展到了实用阶段。洪霞等选用葡聚糖包覆超顺磁性的 Fe3O4 纳米粒子, 通过葡聚糖表面的醛基化实现与抗体的偶联, 制得了 Fe3O4 /葡聚糖/抗体磁性纳米生物探针, 在组装有第二抗体和抗抗体的全层析试纸上进行的层析实验表明该探针完全适用于快速免疫检测的需要, 达到了层析免疫检测的目的[9]。

7纳米吸附材料在医学检测和诊断的应用

实验表明,做细胞分离的试剂聚乙烯吡咯烷酮可将表面包覆单分子层的直径 30 纳米粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中, 通过离心可以使所需要的细胞分离。杨箐等撰文对聚合物纳米粒子在基因治疗中的应用作了探讨, 证明了纳米聚合物粒子具有很好的吸附包覆作用, 并已应用到动物型基因治疗的实验研究[10]。美国科学家把某种纳米颗粒 “粘”在生物分子上, 然后利用纳米颗粒的发光特性研究生物分子的活动情况。比人体细胞小得多的纳米颗粒可以被送进人的组织、 器官内, 用光线从人体外部向内进行照射, 体内的纳米颗粒也会发光, 这样就可以达到追踪病毒的效果。另外, 纳米材料其他很多特性在生物医学检验中越来越多的被应用, 如比利时的德梅博士等制备出多种对各种细胞器敏感程度和亲和力差异很大的金纳米粒子-- 抗体复合体纳米材料, 与细胞器结合后在光镜和电镜下很容易分辨各种细胞内结构。

随着人们对疾病防治及保健概念的转变 ,医学实验诊断技术也必然向着相应的方向发展。纳米技术与生物医学的结合, 为医学界提供了全新的思路, 纳米材料在医学领域的应用取得了显著效果。但纳米材料应用还很有限, 尤其是在生物医学方面还需大量临床试验予以证实,使得纳米材料在生物安全性方面的应用有待进一步提高。同时由于相关技术的不断突破 ,必然促使纳米医学实验诊断技术加速发展。随着纳米材料在生物医学领域更广泛的应用, 医学检验和诊断将变得节奏更快、 效率更高、更准确。

参考文献

[1] Keahler T. Nanotechnology: basic concepts and definitions [J]. Clin. Chem, 1994, 40(9):1797- 1799.

[2] 白春礼. 纳米科技-全面理解内涵, 促进健康发展[J]. 学会月刊,2001( 11) : 10- 12.

[3] ZhongguoYi Xue. Application of nanobiological technology in medicine and its advances in China. Ke Xue Yuan Xue Bao, 2006, 28 (4): 579- 582.

[4] 张立德, 牟季美.纳米材料和纳米结构[M] . 北京:科学出版社, 2001.

[5] Bouchie A. Microarrays come alive[J]. Nature, 2001, 411:107- 110.

[6] Alarie JP, Vo Dinh T. Antibody based submicrion biosensor forbenzo[a]pyrene DNA aduct[J]. Polycydic Aromat comp, 1996, 8:45-52.

[7] 郭梦金 ,张欣杰.纳米技术在医学中的应用现状及展望[J].河北化工, 2007 , 30 (3):16-17.

[8] 言民, 唐雪云,冼燕娥,等. “金”对人体是否具有医学和美容价值 [J].医疗保健器具,2006,7:42-45.

纳米技术在生物医学的应用范文2

凯里学院 贵州省凯里市 556000

【摘 要】随着纳米技术的应用与发展,人们对微观世界的认知更加清晰;而医学领域纳米技术的运用,给人类战胜疾病提供了更加有力的武器。本文将结合当前纳米技术应用与发展现状,对纳米技术在医学领域诊断、治疗及医学材料中的运用进行具体探究。

关键词 医学领域;纳米技术;医学诊断;临床治疗;生物材料

当前,纳米技术已在我国医学领域广泛应用,它是将纳米技术与医药技术相结合,运用日益成熟的纳米技术理论与应用方法,对医学技术、临床治疗方法等加以综合研究。随着纳米医学的不断深入,一些纳米药物制剂也被研发出来并投入医疗市场。将纳米技术与医学技术相结合,夯实了临床诊断与治疗的基础,促进我国医学研究又上一个新水平。

1 纳米技术在医学诊断中的应用

1.1 病理诊断

目前,在临床病理诊断中,免疫组织化学虽然发挥了一定作用,但是在定量诊断方面仍存在不足。如果引入纳米级粒子,则既能定性检测又能定量检测,适应性良好,可提高诊断的敏感性,也减少了处理标本的繁琐过程,诊断结果更快捷、更准确。

1.2 癌症诊断

纳米技术应用于恶性肿瘤的早期诊断,便于癌症的早发现、早治疗。当恶性肿瘤仅有约4 个细胞大小时,利用纳米微型温度计就能够检测到人体内部的癌变温度,筛选正常细胞和已经癌变的细胞,诊断后可利用高温将细胞杀死[1]。再如,中国医科大学研制并使用了超顺磁性氧化铁超微颗粒脂质体,能够检测到3mm 以下直径的肝脏肿瘤,有效避免病情恶化。

1.3 血液异常识别

利用纳米技术进入血流中进行探测,能够及时发现细菌、病毒等,以此诊断传染性疾病并及早治疗。例如,在电场的作用下,细胞芯片能够实现自动寻址,精准定位蛋白质亚细胞,便于人体基因功能研究。

2 纳米技术在医学治疗中的应用

2.1 药物治疗

纳米技术在医学药物治疗中的应用较为普遍和广泛,其主要具备如下优势和作用:其一,有利于药物的快速吸收,能够提高诊治效果。纳米转释方法应用于药物中,由于适用的表面积较大,因此加快了药物的溶解,更利于药物吸收;再加上纳米粒径的药物能够较快穿透组织的间隙,分布范围更广,增强了药物利用效率;其二,利用纳米技术进行控制与释放,如应用于纳米胶囊中,可更好地保证药物作用时间,增大药物效果,同时也能减少患者对药物的摄入量,降低副作用及不良反应发生率,同时纳米技术对提高药物稳定性也具有良好作用;其三,药物定向释放。将药物传递到人体内指定的部位,精准定位治疗,是纳米技术应用于医学领域的主要方面之一[2]。通过靶向用药方式,将药物作用于人体某一部位,以提高治疗效果、降低不良反应。如目前使用靶向药较多应用于肝脏、卵巢、心脏等部位;其四,采用全新给药途径,如临床使用多肽类药物较多、效果良好,但是这种药物成分极易被蛋白水解酶降解,而采用纳米技术,则避免了此类问题。

2.2 基因治疗

纳米技术在基因疾病方面的治疗,是纳米生物技术的一大亮点,其中包含了基因改性与基因仿生两大方面。在基因改性方面的应用,主要作用在显微镜获取的蛋白质、核算分子等图像中,在微小的环境中,利用纳米技术实现了碱基序列的重新排列,改变了DNA 分子变构;同时,有关DNA纳米仿生制造的应用,主要利用了DNA 在复制过程中会遵循碱基互补法则这一特性,再加上遗传信息的多样性,对单个原子和分子进行操作,创造出与人体生命功能类似的纳米有机- 无机复合机器。

2.3 纳米机器人

诺贝尔奖得主理查德·费曼最先提出将微型机器人应用于医疗领域,即纳米机器人。按照医生事先制定好的运作程序,通过血管将纳米机器人注入患者体内,可以将血液中含有的氧气、葡萄糖等转化为能量,清除动脉中的脂类沉积物,清理血管,杀死细菌和癌细胞,同时也可反映人体内病变情况。另外,人体器官修复也可应用纳米机器人技术,对基因进行装配,清除有害的DNA 基因,置入正常的DNA 基因,或者修复大脑及人体脏器的冻伤,在低温环境下使人复活;经纽约大学研制使用的纳米机器人,设计了两个使用DNA 制作的手臂,可以在指定的位置旋转,适用范围更广、更灵活[3]。

3 纳米技术在医学材料中的应用

3.1 人工血红细胞

纳米材料制成人工血红细胞主要应用于肺功能损伤、贫血、人工呼吸等治疗中,在约1000 个大气压的条件下,将高压氧充入100mm 内径的球体中,让氧气在球中释放浓度,此时充当人体天然红细胞的作用,且输送氧能力优于人体红细胞,能够有效维持生物炭的活性。

3.2 介入性治疗

当纳米微粒子材料与人体或者动物体内的物质产生反应时,就会发光。利用这一原理,将光导纤维深入到人体血管中,利用光谱分析物质的特征、性质等要素,这种方法多用于检测人体的血糖值,用于糖尿病的临床诊断与治疗。

3.3 医用敷料

在医用敷料中选用纳米级银粒子,主要利用其选择性与吸附性良好的特征,能够穿透人体内的细菌细胞壁,对细胞内特殊结构加以改变,破坏酶活性。一旦纳米银粒子遇到水分,其中粒子将更快地析出,扩散到四周,效果更加明显。因此,即使在湿润的环境中,该种材料仍能够起到抗菌、抗感染的作用。

总之,纳米技术的应用给人类生存与发展带来积极影响,目前已在医药、生物等诸多领域采用,未来人们战胜各种疾病的美好愿望将得以实现,各种疑难杂症将迎刃而解。因此,加快对纳米技术的研究,客观分析利弊两方面,改进不利因素,发挥有利优势,实现纳米技术在医学领域的全面应用,具有重要意义。

参考文献

[1] 张晓玲. 纳米材料和纳米技术在生物医学中的应用[J]. 职业技术,2013(02).

纳米技术在生物医学的应用范文3

[关键词] 纳米诊断材料;纳米医药;纳米靶向药物传输;环境响应性纳米给药体系

[中图分类号] R446 [文献标识码] A [文章编号] 1673-7210(2013)02(c)-0025-04

作为医学领域中的新兴分支学科,纳米医学主要研究纳米尺度的生命现象,从纳米尺度来进行原来不可能达到的医疗和防治。这是因为当材料的结构基元尺寸小到纳米量级的时候,其性能会有意想不到的变化;同时纳米量级与生命物质的结构单元尺度相匹配,能更加有效的与生物体进行物质和能量交换,从而提高治疗效果。纳米医学可分为两大类:一是传统分子医学的延伸,即在分子水平上进行医学研究,基因药物和基因疗法等就是代表性实例;二是把化学和材料领域的纳米研究新成果引入医学领域,如发展新型纳米材料并用于疾病诊断和医疗等。很多纳米材料都展现出诱人的医学应用前景。这些新方法极大地促进了纳米医学概念的形成,吸引了众多基础研究和临床实验兴趣。经过近二十年的大发展,纳米材料用于诊断的方法学已日趋完善,国际上研究重点正逐渐转移到使用纳米材料进行疾病治疗。国际上纳米医学发展标志性事件包括于2004和2005年分别新出版的专业期刊Nanomedicine、Nanomedicine:NBM Nanotechnology,Biology and Medicine和Int J Nanomedicine等。前些年曾有国内学者分别归纳过该领域进展,如纳米技术在癌症早期诊断和治疗中的部分研究进展[1],叶成红等[2]归纳了纳米技术在止血材料、骨科移植材料、血管支架材料等领域的研究进展。鉴于该领域发展很快,本文将纳米医学诊断与治疗技术研究最新进展进行综述。

1 纳米诊断材料

癌症早期精准检测诊断对其治疗具有重要的意义,目前,许多癌症患者因种种原因未能在早期检出,因而延误了病情。以肠癌为例,我国早期临床诊断率低于20%,超过80%患者确诊时已发展至中晚期。如能发展更为方便灵敏的早期检测方法,早治疗,术后5年生存率可达90%以上。肿瘤发生是多种基因参与的结果,肿瘤的浸润与转移表达能够用一套分子标志物来预测与表征[3]。肿瘤标志物的传统检测方法存在敏感性与特异性方面的问题。对于早期诊断来说,诊断灵敏度是其中至关重要的因素。利用纳米粒子的独特的光、电、热、磁和力学性能,可以显著增强检测的灵敏度与特异性,纳米技术推动了疾病诊断技术的快速发展。

目前,基于纳米粒子的肿瘤疾病诊断技术主要包括早期肿瘤标志物检测技术、活体动态多模式影像诊断技术等。例如,将能够识别肿瘤细胞表面受体的特异性配体与纳米粒子结合,待纳米粒子与肿瘤细胞特异性结合后,利用物理方法如测试传感器中的磁讯号、光讯号等,通过成像系统显影,能够对体内是否存在恶性肿瘤进行早期诊断。除了诊断功能外,利用纳米诊断材料与肿瘤细胞结合的特性,进行肿瘤细胞示踪与捕获杀灭,实现诊断-治疗一体化是肿瘤纳米诊断治疗技术的重要目标,也是本领域的研究热点[4-5]。

量子点又称半导体纳米微晶体,直径1~100 nm,是半径小于或接近于激子玻尔半径的一类半导体纳米粒子。量子点具有一般纳米微粒的基本性质如表面效应、体积效应和量子尺寸效应,在激发光的诱导下会产生荧光,具有宽的激发光谱、窄的发射光谱、可精确调谐的发射波长、可忽略的光漂白等优越的荧光特性,是一类应用于光学分子影像的纳米材料,可以同时使用多种颜色的探针而不会发生波谱重叠现象。量子点被用作荧光探针用于细胞的标记和光学探针,特别适合于活体细胞成像和多组分同时检测。为某些肿瘤的早期诊断提供一种新型分子诊断手段。同时,量子点又可以作为一种新型的光敏化试剂用于某些肿瘤光动力学治疗。化合物半导体量子点尚存在毒性问题,最近发展的碳量子点具有生物相容性优异的特点,有望真正获得临床应用。

金纳米粒子因为其独特的表面等离子共振效应被用作光学造影剂和传感器[6],其具有良好的生物相容性和稳定性,尤其是具有较高的电子密度和X 射线吸收系数,在100 KeV下,金的吸收系数是碘造影剂的2~3倍,可用于肿瘤的诊断等。利用金纳米颗粒结合杂交DN段,能够很容易地穿透细胞膜进入细胞核与核内染色体结合,并具有较高的特异作用。碳量子点是2004年发现的一种新型碳材料[7],与传统量子点和有机染料相比,不仅拥有发光范围可调,双光子吸收截面大,光稳定性好,无光闪烁,而且碳材料毒性小,生物相容性好的优点,易于规模制备和功能化,价廉,是一种临床应用前景很好的新型成像检测纳米材料。

2 药物及基因纳米传递体系

近年来药物控制释放技术的发展使给药具有定时、定向、定位、速效、高效、长效等特点。为了实现这些靶向给药、智能释药的要求,药物控制释放系统逐渐向小尺寸发展,这意味着生物医用材料与纳米技术的结合是这一领域必然的发展方向。目前大部分抗癌药物是疏水性的,很容易被人体内的一系列排斥反应排出体外,如癌细胞的多药耐药和酶降解作用等。这大大限制了癌症等疾病治疗的有效性。而两亲性高分子形成的纳米粒子可以作为药物载体,把药物包埋在疏水核内,表面由纳米粒子的亲水层保护,这样药物便可被输送到肿瘤部位等,从而起到有效治疗癌症的作用。目前临床上使用的大多数抗癌药物,由于缺乏靶向性和特异性杀死癌细胞的能力,导致在治疗癌症的同时对机体正常组织产生严重的毒副作用,已成为癌症治疗面临的棘手问题和最大障碍之一。

通过将药物纳米化,可以显著增加药物的溶解度,提高药物的生物利用度,保护药物或减少药物被降解或清除,延长药物发挥作用的时间,增加药物对肿瘤组织的靶向性等。纳米颗粒被动靶向肿瘤组织的能力基于肿瘤组织中发育不完善的多孔性脉管系统,后者为循环纳米颗粒藉超通透和蓄积效应进入其中奠定了重要的结构基础。目前只有Abraxane(paclitaxel-albumin bound)、Myocet(doxorubicin liposomes)、Doxil(doxorubicin liposomo-PEG)等几种纳米药物进入临床应用于患者癌症治疗[8]。纳米药物的形状对纳米给药系统在血液中循环时间与稳定性存在显著影响[9-10]。对比蠕虫状和球型胶束的血浆清除研究发现其形态对药物的输送过程及疗效均有影响,肝脾对蠕虫状胶束的摄取能力非常低,因而其血液循环时间非常长,但蠕虫状胶束穿过肿瘤毛细血管的能力较差。一般纳米药物载体主要有两部分:起载体作用形成囊泡的惰性组分和生物活性靶向基团。载药量低是通常遇到的问题,如脂质体载药量只有10%,为了实现增加载药量,可将药物分子直接作为载药组分,这样不仅可增加载药量、减少了惰性组分所占比例,而且降低了给药时的暴释,如利用喜树碱(camptothecin,CPT)疏水性,将其接上亲水聚乙二醇(PEG)短链,形成双亲类磷酯大分子,该体系形成囊泡后,CPT载药量可高达58%且无暴释,其空腔中还可载入亲水性抗癌药阿霉素(Doxorubicin,DOX),这样可高载药量实现两种抗癌药同时负载,实现联合化疗,尽可能最大化杀灭癌细胞,减少复发和产生耐药性机会,协同杀死癌细胞[11]。与此类似,还可将姜黄素(curcumin)接上PEG链,大大增加载药量[12]。

3 靶向纳米控释给药

克服耐药性的方法主要有两种:其一是多种药物联合化疗,其二是使用多药耐药抑制剂逆转肿瘤细胞的耐药性,配合抗癌药杀死癌细胞,这两种方法都需要控制药物在肿瘤细胞上定点、定量的精确作用,因此采用纳米给药并靶向传输是理想选择,如何使药物能够高效地到达体内的靶部位一直是药物控制释放的一个关键问题。通过药物传递系统可以将药物运送到与疾病相关的特定的器官、组织或细胞。例如靶向到肿瘤、大脑、肝细胞、巨噬细胞等,可以提高靶部位的药理作用强度并降低全身的不良反应,提高药品安全性、有效性,是治疗癌症等疑难疾病的重要方法。

药物的靶向释放分为被动靶向和主动靶向。一定尺寸范围的微米级、纳米级药物传递系统通常具有被动靶向性,被动靶向给药系统对靶细胞并无识别能力,但可经尺寸效应到达靶部位进行释药。由于疏水性粒子在进入体循环时易被快速清除,如网状内皮系统的巨噬细胞吞噬,从而影响药物到达靶区,通过表面亲水性PEG修饰等方法可以延长其在体内的循环时间。制备体内稳定性好的药物传递系统是实现靶向给药的关键点之一。主动靶向给药系统则具有识别靶组织或靶细胞的能力。通过引入靶向基团可使纳米药物传递系统具有主动靶向能力,可以将药物运送到特定的器官、组织或细胞,是治疗癌症等疑难疾病的重要方法。常见的靶向基团包括多肽、蛋白质类,如抗体及抗体片段、转铁蛋白等,维生素类如叶酸、生物素等,碳水化合物类如半乳糖等[13]。

叶酸是细胞所必需的维生素,参与多种代谢途径的一碳转移反应。叶酸的细胞转运通过两种跨膜蛋白,即低亲和力的还原性叶酸载体和高亲和力的叶酸受体来完成。叶酸具有与叶酸受体的高亲和力、低免疫原性、易于修饰、体积小、高度化学稳定性和生物学稳定性、高的肿瘤渗透性、以及低成本等优点,因此叶酸介导肿瘤靶向的研究得到迅速发展[14]。与单靶向体系相比,在纳米粒子的表面同时引入不同的两种靶向基团可明显提高靶向效果[15]。

具有细胞靶向作用的多肽称为靶向肽。研究最多的是对肿瘤具有识别能力的多肽[16]。例如酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸五肽YIGSR似的活性有效部分,可与癌细胞表面大量的层粘连蛋白受体识别,具有肿瘤细胞靶向性,另一方面,它通过竞争与肿瘤细胞的相应黏附因子结合,封闭了肿瘤细胞与体内正常细胞的细胞外基质和基底膜上层粘连蛋白结合的可能,抑制肿瘤的转移[17]。

特罗凯(盐酸厄洛替尼片)是2007年罗氏医学部在中国上市的新型高效的靶向治疗药物,用于晚期非小细胞肺癌在既往化疗失败后的三线治疗。这一药物适用于所有非小细胞肺癌患者,是目前世界上唯一被证明能够显著延长非小细胞肺癌患者生命的靶向抗癌药物,分别于2004年11月和2005年9月在美国和欧洲通过审批,用于化疗失败后的非小细胞肺癌的二或三线治疗,在全球超过75个国家批准上市。Zhou等[18]对比特罗凯单药与化疗用于表皮生长因子受体EGFR突变肺癌患者一线治疗的研究最优化方案,最终证实了接受靶向治疗的有效率高达83%,患者中位无进展生存达13.7个月;而普通化疗有效率仅为36%,患者中位无进展生存为4.6个月。

利用生物体内蛋白纳米微结构作为药物载体形成纳米医药是很有意义的方向,有望得到理想的药物传输系统。穹隆体存在于哺乳动物细胞的细胞质中,最大的穹隆体是核糖白复合物,其大小在100 nm以下。内部中空的穹隆体一般为桶形结构,可以封装各种蛋白。由于自身是天然蛋白质,所以不会产生免疫应答。穹隆体可以定位细胞表面受体,并可通过微孔缓慢释放药物。利用穹隆体递送药物的难点在于如何将药物封装在穹窿体内。采用了纳米小碟技术[19],利用可与穹隆体结合的脂蛋白形成纳米小碟的双层脂膜,然后用不溶性的全反式维甲酸封装穹隆体,进而解决了这一难题。这样就把载有药物的纳米小碟装入了穹隆体,从而屏蔽外部介质。由于穹隆体可以容纳很多纳米小碟,大大提高了局部药物浓度。

4 环境响应性给药纳米体系

可以利用癌症细胞和正常细胞组织微小的环境差异,例如癌症细胞内外pH在5.0~6.8或温度稍微高于体温,改变聚合物分子链之间或者聚合物分子链与溶剂之间的相互作用,从而使其本身发生结构、形状或者性能上的改变,来实现药物对癌症细胞的释放而达到仅杀死癌症细胞的目的。近年来,作为一种非常有效的抗癌药物,硼替佐米(Bortezomib,万珂)已经被批准应用于多发性骨髓瘤的临床治疗,且在治疗初治或难治多发性骨髓瘤以及非霍奇金淋巴瘤(NHL)等其他血液系统恶性肿瘤,因其拥有显著的疗效而受到越来越广泛地关注[20]。由于硼替佐米分子上硼酸基团的存在,其可以与含有1,2或者1,3-二羟基的分子或者聚合物在中性或者碱性条件下实现络合,并在酸性条件下可实现解络合。这样的pH依赖性的相互作用,已经利用并报道了含有苯邻二酚基团的PEG对硼替佐米在pH=7.4或者碱性下的有效负载和在pH=5时的可控释放[21]。含有双硫键的给药系统因二硫键对还原物质敏感,在药物释放领域具有重要意义,例如,当包载药物的含二硫键给药体系进入细胞时,二硫键会被细胞内谷胱甘肽酶还原而迅速降解[22],释放出药物。含二硒长链药物载体具有比含二硫基团的体系具有更为灵敏的氧化还原响应性,在很温和的氧化(0.01%双氧水)或还原条件下(0.01%谷胱甘肽)就可实现疏水二硒链段断裂,使纳米微胶囊解离并释放包载的药物,同时,很低剂量的伽马射线(5 Gy)就能使二硒键断裂,为获得的化疗与低损害放疗联合治疗肿瘤提供了一种新途径[23]。

5 结语

纳米技术在预防与控制癌症等疾病方面将大有作为,在纳米医学领域,待解决的问题主要包括以下几点:一是如何拓展在药物治疗方面的用途,目前直接用于治疗的纳米微粒只有有限几种,且集中在对癌细胞的杀灭研究,大多数纳米材料的优良性能还没有得到有效利用;二是开发方便耐用的医用材料和药物,用特定的纳米复合结构和材料实现药物的广谱、速效治疗;三是把纳米技术和基因疗法相结合,降低因基因载体选择不当造成的排异反应。目前具有挑战性的问题是如何提高体内灵敏度,以及消除潜在毒性。此外,纳米材料与人体相互作用的长期后果还不清楚,纳米医学材料生物安全性越来越被人们重视,在设计材料的同时,其生物安全性成为研究工作首要考虑的因素[3,24]。随着今后纳米医药领域深入系统的研究,有望为许多疾病治疗和诊疗进步提供新技术。

[参考文献]

[1] 胡德红,龚萍,马轶凡,等.纳米技术在癌症早期诊断和治疗中的研究与展望[J].癌症,2009,28(9):1000-1003.

[2] 叶成红,奚廷斐.纳米技术在医用材料领域中的应用[J].中国组织工程研究与临床康复,2008,12(45):8897-8900.

[3] 王英泽,黄奔,吕娟,等.纳米技术在生物医学领域的研究现状[J].生物物理学报,2009,25(3):168-174.

[4] Kelkar SS,Reineke TM. Theranostics:Combining imaging and therapy [J]. Bioconjugate Chem,2011,22(10):1879-1903.

[5] Chen X,Gambhir SS,Cheon J. Theranostic nanomedicine [J]. Acc Chem Res,2011,44(10):841-841.

[6] 郑林丰,王悍,张贵祥.纳米金在分子影像学中的应用进展[J].现代生物医学进展,2011,10(4):1983-1986.

[7] 王富,刘春艳.发光碳量子点的合成及应用[J].影像科学与光化学,2011,29(4):316-316.

[8] Wang J,Sui M,Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics [J]. Curr Drug Metab,2010,11:129-141.

[9] Geng Y,Dalhaimer P,Cai SS,et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat Nanotechnol,2007,2(4):249-255.

[10] Alemdaroglu FE,Alemdaroglu NC,Langguth P,et al. Cellular uptake of DNA block copolymer micelles with different shapes [J]. Macromol Rapid Commun,2008,29(4):326-329.

[11] Shen Y,Jin E,Zhang B,et al. Prodrug lipid forming high drug loading multifunctional nanocapsules for cancer intracellular drug delivery [J]. J Am Chem Soc,2010,132:4259-4265.

[12] Tang H,Murphy J,Zhang B,et al. Amphiphilic curcumin conjugate forming nanoparticles:in vitro and in vive anticancer activity [J]. Nanomedicine(UK),2010,5:855-865.

[13] Torchilin VP. Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery [J].Peptide Science, 2008, 90(5):604-610.

[14] Yang XQ,Grailer JJ,Rowland IJ,et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging [J]. Biomaterials,2010,31(34):9065-9073.

[15] Quan CY,Chang C,Wei H,et al. Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release [J]. Nanotechnology,2009,20(23):335101.

[16] 陈荆晓,王慧媛,许小丁,等.用于基因和药物传递的多肽材料[J].高分子学报,2011,8:799-811.

[17] Sarfati G,Dvir T,Elkabets M,et al. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin [J]. Biomaterials,2011,32:152-161.

[18] Zhou CC,Wu YL,Chen GY,et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer(OPTIMAL,CTONG-0802):a multicentre, open-label,randomised,phase 3 study [J]. The Lancet Oncology,2011,12(8):735-742.

[19] Buehler DC,Toso DB,Kickhoefer VA,et al. Vaults Engineered for Hydrophobic Drug Delivery [J]. Small, 2011,7(10):1432-1439.

[20] 臧健,李晨,任道凌,等.套细胞淋巴瘤的治疗进展[J].肿瘤防治研究,2008,3:354-654.

[21] Su J,Chen F,Cryns VL,et al. Catechol polymers for pH-responsive,targeted drug delivery to cancer cells [J]. J Am Chem Soc,2011,133(31):11850-11853.

[22] You YZ,Yu ZQ,Cui MM,et al. Preparation of photoluminescent nanorings with controllable bioreducibility and stimuli-responsiveness [J]. Angew Chem Int Ed,2010,49:1099-1102.

[23] Ma N,Li Y,Xu HP,et al. Dual redox responsive assemblies formed from diselenide block copolymers [J]. J Am Chem Soc,2010,132(2):442-443.

纳米技术在生物医学的应用范文4

准确地说:自20世纪80年代以来,我们已是处在一个信息爆炸的时代、一个知识经济的时代。有人还更形象地说:这是一个一“网”情深的时代;一个“网”事如歌的时代;一个无“网”而不胜的时代。的确,进入20世纪的后期,我们已实实在在地处在了一个信息网络化的时代中。未来学家们又进一步预言说:21世纪将是生物科技的时代,或者说是生命科学的时代。因为生物技术和信息技术的迅猛发展已向人们展现出了更加诱人前景,并使得将生物学和信息学结合起来的生物信息学的研究成为可能。运用生物信息学的原理或机制去提示生命的奥秘,认识和探讨人类疾病的发生和发展及至康复等医学问题,将是一个全新的课题,并有望开启一个崭新医学时代。生物信息医学的时代。这是一个将“物质、能量和信息”三基元的思想用来指导医学的研究和发展的新阶段,是对现代医学仅从人体的物质结构和功能(能量)或者注重从生物物理和生物化学的角度去认识疾病和防治疾病方法的一种进步和完善。换句话说:我们将从生理、生化和生物信息三方面去看待机体和生命,去认识和防治疾病。这不正是我们传统中医学的“形、气、神”理论的现代体现吗?所以,我们认为,21世纪的医学发展趋势将是以生物信息为主导的医学新时代。

下面我想从4个方面来分析和探讨一下,我们所提出的“生物信息医学”形成的可能性或可行性。即:①现代高新科技发展所提供的时代科技背景;②信息时代新的哲学思想原则为之提供的认识论和方法论;③生物信息医学已存在的历史和发展现状;④生物信息医学未来的发展前景展望。

1生物信息医学形成的时代背景――现代高新科技

现代医学科学的每一个新进展都与当时的科学研究和技术的支持是分不开的,在当今蓬勃发展的医学背后有现代高新技术强有力的支撑。

现代高新科技来自现代尖端科学的研究,所谓尖端科学就是人类探索自然界规律,攀登科学知识高峰的前沿。当前,科学研究的最前沿主要可以归结为以下几个方面的问题,即物质的组成或结构,生命的本质和演化,人类生存的环境,宇宙的起源和人类智力的奥秘。正是对在这些问题探索研究的过程中,人们不断获取尖端科学知识,并应用这些知识,又进一步开发出了如下高新科学技术,即:①生命科学技术(或称生物科学技术)――对生命的本质和演化的探索;②信息科学技术――对人类智力的探索;③软科学技术(或称管理科学)――对人类智力的探索;④海洋科学技术――对生存环境的探索;⑤空间科学技术(或称航空航天技术)――对宇宙空间的探索;⑥环境科学技术――有益于环境的高新技术;⑦新材料科学技术――对物质的组成或结构的探索;⑧新能源和可再生能源科学技术――对物质的组成或结构的探索。

这高新技术中,其中信息科学技术、生命科学技术和软科学(管理科学)是与人的生命和智力的探索直接相关的。自然也是与医学是密切相关的科学和技术。海洋科学和空间科学及环境科学,主要研究人类生存空间的拓展和生存环境的保护,也是以人为本的。新材料科学和新能源及可再生能源科学则主要是为人类寻找更好的使用工具和动力资源,提高人类劳动效率和生存生活质量。同时,其新材料科学技术还将会为我们的医学提供更精细和精密的诊疗仪器或技术手段。例如:纳米技术可使我们造制出更加精细的检测仪器,如:纤维镜、胃镜等,也可提供更精细手术器械等。

在现代高新科学技术的基础上,现代医学科学研究方法的特点:一是研究更为深入,利用现代生物学先进技术,在核酸、蛋白质等生物大分子水平上阐述生命体的结构和功能特征,并且利用基因技术使人们能够设计和改变生物体特征;二是研究技术的综合应用,以往各学科单一的研究方法、系统正在被跨学科多水平的实验体系所取代,高水准的研究一般都在整体、离体组织、细胞、分子多种水平上证实一种论点;三是高新技术的发展完善,使得元损伤非侵入式研究越来越广泛被采用,不仅可以在实验动物上得出与人更接近的结果,还能直接用于人体的研究;四是信息科学技术又为现代医学科学的研究提供了新的思路和方法。它使我们对生命体的认识不再只考虑其物质结构和能量代谢两个方面的问题,而是将生命体内物质、能量和信息三个基本要素都考虑进来。目前,对于人体信息系统的组成、信号转导及有关的分子家族、信号转导过程、细胞内信号转导、细胞间通讯、神经信息的传递、大脑信息的加工、处理等有了前所未有的详细认识。

因此,在这里我将重点介绍一下信息科学技术和生物科学技术。因为,这两项技术与我所提出的生物信息医学是紧密相连的。

1.1信息科学技术

1.1.1信息的定义及本质的讨论:从20世纪中叶开始,对于信息的定义及其本质的问题在世界范围内已引起了非常广泛的讨论,但仍未有一个定论。

其实,信息现象十分古老,早在人类历史发端以前,信息已存在于物质世界。如阳光普照,星光灿烂,就是宇宙天体发出的信息,在人类社会诞生以后,信息不仅来自物质世界,而且来自精神领域。人类认识和改造客观世界的过程,实质上就是一个信息过程。所以,人类自诞生以来,一直是在不断地进行信息的加工、传递、交流和利用等过程。

人类虽然很早并一直在接触和利用信息,但对信息进行有意识的科学阐析,都是20世纪以后的事。在此之前,我们对信息的认识和理解,主要是指一些通知、报告、新闻消息、报道、情报、知识见闻、资料等,进一步指思想、事实、思维、意念、资讯等,在通信科学发展的时代中是指信号、指令、代码、数据、图像等等。这些都是我们的日常可能接触到的一些信息。。然而,从哲学的角度去深究信息的本质,是相当艰难的,在学术上也一直是争论不休的。这些争论,始终是围绕着信息同物质、能源的关系,同认识、意识的关系问题展开的。由于人们认识上的差异以及观察角度和采用方法的不同,各国学者在探索过程中,给“信息”下的定义已有四五十个之多,每种定义都有理性的面,但还没有一个是定义在世界范围内得到公认。不过,从这些讨论中可以肯定的是:信息与物质和能量一起共同构成了人类可利用的三大基本资源要素。换句话说:整个世界(包括人体)是由物质、能量和信息三大资源构成的。信息论的创始人之一,美国学者唯纳说过一句有名的话,他说:信息就是信息,它不是物质也是能量;不承认这一点的唯物论,在今天就不能存在下去。

随着信息科学和技术的发展与完善,相信人们一定会对信息的本质作出一个比较全面的科学阐析。目前,对信息的单位已确定了用“比特”来表示。所谓的信息流也就是比特流。美国麻省理工学院媒体实验室主任尼古拉•尼葛洛庞帝先生说过:信息社会的基本要素不是原子,而是比特。比特与原子遵循着不同的安全法则。比特没有重量,易于复制,可以以极快的速度传播。它在传播时,时空障碍完全消失。而原子只能由有限的人使用,使用的人越多其价值越高。尼葛洛庞帝还说:“我觉得我们的法律就仿佛在甲板上吧达吧达挣扎的鱼一样。这些垂死的鱼拼命喘着气,因为数字世界是个截然不同的地方。大多数法律都是为了原子的世界而不是比特的世界而制定的”。可见信息与物质和能量有着本质的不同。另外信息网络带来的挑战,可能会更超出我们所有人的想象。所有这些都将有助于我们对“信息”的进一步理解。对于信息的定义值得一提的有:《中国新闻实用大辞典》(人民日报出版社)从“实用”的角度,把“信息”表述为:一切事物的状态和特征的反映。它普遍存在于自然界、人类社会以及人们的认识和思维过程中。人类生活的世界是一个充满信息的世界。另有一个比较通俗的说法:即认为凡是人和动物通过眼睛、耳朵、鼻子、舌头、身体、大脑接受到的外界事物及其变化,统统都含有信息。如五彩滨纷的图画、火车的鸣叫、香水的芬芳、苹果的酸味、棒击的疼痛、灵感的触发等等。据专家统计,一般来说,人类通过视觉获得的信息占83%,通过听觉获得的信息占12%,而其余6%的信息通过嗅觉、触觉和味觉获得。然而,这些也只不过是指人体从外界接收或获取的体外信息,只是机体信息中一个方面。而另一方面在生物体内自身还有其信息的加工、处理、发出、传输、储存和利用等过程。如大脑的思维、心理活动、神经反射、激素调节、体液传导、遗传变异、气功意念、经络传感、细胞、组织的新陈代谢等等,都是一些重要的生物信息过程。可见,“生物信息”的过程要比现在我们了解的“电子信息”处理的过程更为复杂。

现代医学是建立在分子生物学、细胞学、组织胚胎学、解剖学、生理学和生物化学的基础上的。它注重的是机体不同部分之间的差异性,即每发现一个部分在结构和功能上的不同,就给予这个部分一个命名,就成为一种新发现。这也正是科学界历来所信奉的“结构决定功能”的理论观念。由于这种思想观念的指导,使人们对机体内部各个部分都有了深刻的研究和了解,便于得到各部分之间的结构方式和本质差别,进而了解其功能特征。然而,这种只从物质结构状态和功能(或能量)特征去认识机体是不全面的,它忽视了生物体不同部分之间还有其信息的联系和控制调节等特点,即生物体内的“信息调控机制”问题。因而,现代医学也就遇到了许多理论难题和临床疑点问题,这些问题也正是影响医学和生命科学全面发展的主要因素。因此,未来医学则必须是建立在生物物理学(物质结构功能,即分子生物学、细胞学、组织胚胎学、解剖学、生理学等)、生物化学(物质和能量代谢)和生物信息学的基础上。

1.1.2信息技术的发展历程:在人类诞生之初――即最原始的人类,其信息交流可能主要是靠叫声和动作手势,进而就有语言的产生,最后又有了文字符号,并进一步又有印刷术的出现。紧接着又有书报、信件、邮递员、信鸽等信息传播工具或媒体,这些是古代信息传播技术发展的一个基础过程。到了近代,随着电的发明和发展,利用电来传递信息的技术得以研究和发展。最初是电报、电传,到了1876年3月10日,贝尔运用电声转换技术发明了电话,随后又是有了无线电广播、电影、电视的发睨。这些使人类的信息传播技术产生的一个飞跃,是一次信息革命

进入20世纪后,电话、无线电广播、电影和电视得到了极大的发展和应用。更有意义的是:20世纪上半叶又有了电子计算机的出现,计算机改变了人类对信息储存、加工、处理和复制的基本方式,也使传统的印刷术发生了一场革命。使之告别了铅与火,代之以光和电。进入20世纪90年代以后,以Intemet为代表的计算机网络得到了飞速的发展。它从最初的教育科研网络,逐渐发展成为商业和民用网络,并正在改变着我们工作和生活的各个方面。可以毫不夸大地说,Intemet是自印刷术以来人类通信方面最大的变革。目前,Intemet与电话和电视并称为三大通信网络。从计算机网络(Intemet)的发展速度和趋势来看,有可能以它为核心将“三网合而为一”。

1993年9月15日,美国政府了一个在全世界引起很大反响的文件,其文题是“国家信息基础结构行动计划”。后来人们又通俗、生动而形象地把这个“行动计划”称作“信息高速公路”。紧接着全世界所有的工业发达国家和很多发展中国家都纷纷研究和制订本国建设信息基础结构的计划。这就使得计算机网络(Intemet)的发展进入了一个新的历史阶段。应该说,这正是我们进入信息化时代的一个标志。当然,这个时代是经历了由信息科学研究一信息技术革命一信息产业化、商品化一信息的社会化一信息化时代的过程,也差不多是经历了一个世纪的发展历程。

在这个信息化时代,我们所有的人都可以感受它给我们带来的快捷和便利。也更惊叹它的发展速度以及其社会变化竟是如此变幻莫测。有一个著名的定律是美国贝尔电话实验室的穆尔提出的,叫穆尔线性定律:他说一个硅片上的晶体管数量,按每18个月增加1倍的集成度的速度增长。目前,一块计算机芯片上晶体管的集成度已达几亿个以上。据估计,到2007年将达到2000亿个晶体管。所以,有些学者说,在信息化时代,我们只能预测到5年(最多10年)以内的发展情形,10年以后是很难以预料的,因其发展太快了。如果说20世纪末的信息时代是那么地变幻莫测,那么21世纪的生物科技时代,就更难以预测了。因为,21世纪人类的生存、生活、婚姻、家庭以及伦理、道德等方式都将有可能被重新定义或定位。你想想,可以将人进行复制,并使生命延续的克隆技术已予示着将打破一切条条框框(这正是下面我将要介绍的生物科学技术的发展及态势)。

1.2生物科学技术的发展态势:生物技术应该说不完全是一门新兴学科,它包括传统生物技术和现代生物技术两部分。传统的生物技术是旧有的制造酱油、醋、酒、面包、奶酪、酸奶及其他食品等传统工艺。现代生物技术则是指20世纪70年代末80年代初发展起来的,以基因工程为核心,以DNA重组技术的建立为标志的新兴学科。目前我们所提的生物技术基本上是指现代生物技术。

现代生物技术包括:基因工程、细胞工程、酶工程、发酵工程、蛋白质工程以及生化工程等。.不久的将来也许还将有生物信息工程的诞生。

1.2.1基因工程:1944年Averg等科学家阐明了DNA是遗传信息的携带者;1953年Wats。n和Crick提出了DNA的双螺旋结构模型,阐明了DNlA的半保留复制模式,从而开启了分子生物学研究的新纪元;1961年M•Nirenberg等破译了遗传密码,揭示了DNA编码的遗传信息如何传递给蛋白质这一秘密;1972年Berg首先实现了DNA体外重组技术,这标志着生物技术的核心技术――基因工程技术的开始,它向人们提供了一种全新的技术手段,使人们可以按照意愿在试管内切割DNA,分离基因,并经重组后导人其他生物或细胞,藉以改造农作物或畜牧品种;也可以直接导人人体内进行基因治疗。基因治疗主要包括制备正常基因取代遗传缺陷的基因,或者关闭异常表达的基因,或者降低异常基因的表达强度。这样可以对一些由于基因突变、缺失和异常表达所引起的疾病,如遗传病、恶性肿瘤等有望达到较理想的治疗效果。

根据基因工程技术而进行的基因工程药物的研究自20世纪70年末也已经开始,如人工胰岛素、干扰素、生长素类、白细胞介素类和肝炎疫苗等。一还有转基因技术对人工选育优良品种也取得了成功。其中克隆羊的成功为动物转基因研究揭示了广阔的前景(有关克隆技术在下面的细胞工程中介绍)。

1.2.2细胞工程技术:所谓的细胞工程是指以细胞为基本单位,在体外条件下进行培养、繁殖,或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改变生物品种和创造新品种,加速繁育个体,或获得某种有用的物质的过程。在这里我重点介绍一下细胞核移植技术-克隆技术。进入20世纪90年代,利用幼胚细胞核克隆哺乳动物的技术接近成熟。世界上许多国家和地区,如美国、英国、新西兰、中国、台湾等纷纷报道成功克隆猴子、猪、绵羊、牛、山羊、兔等。不过最让生物学家和全世界震惊的重大突破是英国PPL生物技术公司罗斯林(R。slin)研究所的维尔穆特(Wilmut)博士于1997年2月27日在世界著名权威杂志《Nature》上宣布的用乳腺细胞的细胞核克隆出一只绵羊“多莉”(D。lly)的消息,“多莉”的诞生,既说明了体细胞核的遗传信息的全能性,也翻开了人类以体细胞核竟相克隆哺乳动物的新篇章。仅仅过了一年半,1998年7月5日,日本人就喜迎来了叫作“能都”和“加贺”的两头克隆牛犊的降生。它们是用母牛输卵管细胞的细胞核克隆成功的,几乎与此同时,一组科学家在美国檀香山宣布,他们已经采用卵泡细胞的细胞核克隆成功的小鼠“卡缪丽娜”再克隆出了下一代。祖孙三代22只克隆鼠组成的大家庭具有完全一致的遗传基因和信息。随后,德国和韩国的科学家也相继宣布用体细胞成功克隆出哺乳动物的消息。可见,几个世纪以来人类梦寐以求的快速、大量繁殖纯种动物的夙愿,在20世纪快要结束之前正在变成现实。

如果说1997年2月克隆“多莉”羊的新闻轰动了世界,一些人还是持怀疑态度的话,那么随着“能都”和“加贺”等多头克隆牛的问世以及克隆老鼠的再克隆成功,用体细胞而不是用早期胚胎细胞的细胞核克隆的哺乳动物,已经成了广为科学界和普通群众接受的事实。在此基础上,克隆人已经不再是科幻小说中的故事了。1998年初,美国哈佛大学的理查德•希德宣布了他的克隆人计划,立即招来了全世界一浪高过一浪的反对呼声,紧接着欧洲19国联合签署了禁止克隆人的协议,我国政府以及美、英、德、日也已明确表示反对。然而这位69岁的博士称:克隆人“只不过是人类生育的另一项先进技术”。他计划把自己的体细胞核与捐献者的卵相结合后,再将这个胚胎植入他妻子格洛丽亚的子宫中,以期生下他的复制品。目前全世界都以关切的目光注视着希德的举动和美国政府的一些反应。另据报道,韩国科学家已于最近克隆成功了人的早期胚胎,但摄于法律的约束,又主动将她销毁了。正象核能的开发具有截然相反的作用那样,人类对克隆自身已采取了十分慎重的严肃态度。

但是,科学的发展是无法阻挡,即便是法律最终也可能无能为力,它也只能为顺应科学的发展而变化或制订新的条文,以此来对新生事物加以规范或约束,强制阻挠是愚蠢的。正如信息时代一样对信息犯罪必须重新修订法律条文。所以,克隆人最终还是会变成现实的。据了解,目前在医学领域是允许可以克隆器官的,以便提供被人体易接受的一模一样的器官移植。

总之,这项技术必将对21世纪的医学科学、生命科学以及农学等诸多领域产生重大的影响和变革。如果一旦被允许可以克隆人时,那么,整个社会的形态,生存和生活的方式都将发生变化,人与人之间的关系、婚姻、家庭和伦理道德等概念都将会被重新改写或定义,因为,一种新的生育方式将改变这一切。因此,21世纪的生命科学时代的确是人们难以预料的。

1.2.3生物信息学的萌生:随着人类基因组计划等大型国际项目的实施,以及生物技术和信息科学技术的进一步研究和发展,一门新兴的边缘学科――生物信息学已应运而生。因为,生物科技和信息科技等高新技术的发展已为生物信息学的研究、开发和利用提供了可能,并已成为当前一个前沿领域和研究的热点。

生物信息学是以核酸(DNA分子)、蛋白质等生物大分子的信息密码;细胞间的通讯;脑科学和神经网络;内分泌激素的信使作用和免疫调节,以及中医的经络学说和精气神理论为主要研究对象。以数学、信息学、计算机科学和仿生学为主要手段,以计算机硬件、软件和通信网络为主要工具,对浩如烟海的原始数据和纷繁复杂的生命信息进行存储、管理、注释、加工、解读,使之成为具有明确生物意义的生物信息。通过对生物信息的查询、搜索、备份、比较、分析,从中获取基因编码、基因调控,核酸和蛋白质的翻译和其结构功能关系,大脑的信息加工、处理机制、神经信息的传输原理等等知识。在弄明白这些大量的生物信息的基础上,再结合已有的生理、生化知识去探索生命的起源、生物的进化、生命信息的传输调控机制、大脑的思维和神智;人类的疾病与康复,以及细胞、器官和个体的发生、发育、衰亡等生命科学中的重大问题,搞清楚它们的基本规律和内在联系,是完全可能的。因此,生物信息学对21世纪的医学科学和生命科学具有不可估量的奠基和推动作用。

高新技术的重要特征之一是学科的横向渗透、纵向加深、综合交错、发展迅速。所以,我们所提出的生物信息学也正是在现代多学科发展的基础上横向结合而产生的。它是生物学与信息学,信息学与生物医学工程学等学科之间的相互交叉、相互渗透的一门边缘学科。同样,生物信息学又将与生命科学和医学科学进行交叉和渗透,并进一步形成生物信息医学这门新兴分支学科。它将促进医学科学的发展,并有可能引发一场医学革命,使我们步入生物信息医学时代。虽然,我们目前尚不能作出一个比较完善的定义或解释,但是,今天我们大家大概都不会否认,信息过程是生物体(人体)的一个重要过程。这一过程从根本上来说,是个体为了适应机体内、外瞬息万变的各种环境。事实上,现代生物遗传工程、转基因技术、细胞工程学和克隆技术,还有现代医学的脑科学研究、神经生理学、内分泌激素、免疫学、心理医学和思维医学,以及我们祖国传统医学中的针灸学、经络学说、气功和推拿按摩学等等,这些都已不同程度地揭示了机体内的一些信息过程中内涵。这些探讨生命过程中的信息问题,对于了解生命的本质、演化以及疾病的发生、发展和转归等无疑是十分重要的。因此,我们有理由相信,生物信息医学将成为21世纪医学科学研究和发展的主流。

2信息时代的哲学思想原则与方法

19世纪和20世纪初,我们把它称为工业化的时代。在工业化时代,牛顿力学有力地支撑了对立统一的哲学思想原则,也使我国古代就已形成的“物生有两,体分左右,皆有二也”的朴素“二元论”辩证法观念找到了近代科学的解释。然而,牛顿力学观察的是两个物体之间的相互作用,是以质量和能量作为物质的两个本源特质的。人们很容易理解,任何事物都有正反两个方面,非此即彼,非我即敌的机械认识论观点就是这种思想方法的极端体现。

进入20世纪后半叶,现代科学技术发展把人们推进到了信息化时代,人们遇到的诸多问题已经不可能在牛顿力学的单一因果链的思维平台上获得满意的答案,除了对立双方之间的力学作用之外,还必须考虑介质或者环境变化的信息作用问题。对立双方长期斗争的结果并不总是一个吃掉另一个,而往往是两败俱伤,由第三者或第三态主导局面。因此,信息时代的哲学思想原则应该是至少要考虑三个最基本的要素而不是两个。比如:物质、能量和信息;元序、有序和自序;整体、局部和媒介;主体、对象和环境;正态、负态和零态;宏观、微观和中观等等。现已知晓:物质、能量和信息是人类可利用的三大基本的战略资源。整个世界包括我们的人体,是由物质、能量和信息三者所共同构成的。因此,一位美国科学家曾经说过这样一首诗,他说:“没有物质的世界是一个虚无的世界;没有能量的世界是一个死寂的世界;没有信息的世界则是一个混乱的世界”。可见,物质、能量和信息这三者是缺一不可。物质可以被加工成材料,为工具准备形体;能源可以被转换为动力,为工具注入活力,驱动机器运转;信息则可以被提炼成为知识和智慧,为工具和机器提供智能指令。在这三种资源之中,物质相对直观;信息资源相对抽象;而能量资源则介于两者之间:人类认识世界的规律是由直观而至抽象,这就决定了一个极为有趣的生产力发展进程。在农业时代,人们主要利用物质一种资源来制造人力工具(称为一维工具、死工具),这种“物质”又全部取之于自然环境;在工业时代,人类进一步学会了高效地利用能量资源,并把它与材料结合起来制造动力工具(称为二维工具、活工具)物质和能量大显身手、大出了风头,使我们看到了电灯代替油灯,汽车代替了马车。到了信息化时代,人类又学会了利用信息资源,并把它与物质和能量结合起来制造智能工具(称为三维工具、聪明工具),也使我们看到计算机代替生产线上的工人。也因此在信息时代,大量的下岗和失业是在所难免的。

由此可见,人类的生产活动,实际上是通过能源的开采、运输和变换,作用于各种物质,使之发生物理的和化学的种种变化,使之成为人们所需要的各种产品。这种能量流和物质流的结合程度,取决于信息流的注入程度。我们人类的医疗实践活动似乎也遵循了这一发展规律,在原始的农业时代,人们的医疗手段主要是靠自然医疗和天然药物医疗。那时只能凭借自然界的现有条件来同疾病作斗争。到了工业时代,人类也就掌握了运用化学药物和切开手术医疗手段来战胜疾病,这些正是将物质和能量的结合利用。那么,到了信息化时代,人类也将会把信息导入医疗实践活动,并把他作为一种新的诊断和治疗手段,或与药物和手术结合起来应用,使其医疗手段更加先进和完善。在工业化时代,人类对自然资源的过度开采和大量索取,造成了有些资源短缺、物种的灭绝和环境的严重污染或破坏等,已使人类饱偿大自然对人类的惩罚。同样,现代医学由于大量使用化学药物和手术切除或置换修补,致使药源性和医源性疾病的发生和泛滥。也使人们也偿到苦头,并感到了恐慌。把生物信息资源导入医疗实践,将很有可能改变这一不利局面。

我们知道,在生产力体系中,物质、能量为实体因素,而信息是非实体因素。信息对物质和能量起着结合和控制作用。没有信息的参与,物质和能量无法正常发挥作用,生产就混乱而无法进行,除了这种“结合”和“控制”作用外,信息还起到放大或倍增作用――即信息可以凭借它“携带”的科技和经济知识、管理智慧,使物质和能量十倍、百倍甚至千倍地产生效益。一旦人们掌握了新的技术信息和管理知识,就可以创造发明新的工具;利用新的能源,掌握控制先进的生产程序,就可以十倍、百倍地提高劳动生产率。同样的道理,将信息作为一种诊断和治疗手段或要素参与医疗实践,无疑将可以降低化学药物的用量和手术的创伤使疗效成倍的提高;甚至可以免去不必要的手术和化学药物的应用,使治疗效果更加稳定、可靠,副作用也更小。

总之,在信息时代,人们对信息的本质和作用的认识也越来越深刻。并受到广泛的重视,传统哲学的二元论思想原则已受到挑战。一种以“物质、能量和信息”三基元的哲学指导思想正在起着主导作用。这种新的哲学思想认为:任何事物都是由三个具有正交完备性的最基本的要素构成的,比如热力学有三定律,机械学有三定律,生物学也有三定律(遗传、变异、自然淘汰),现代交叉科学有老三论(控制论、信息论、系统论),新三论(协同论、突变论、耗散结构论),有三个基本原理,彩色电视中有三基色原理,任何事物可能都是由物质、能量和信息三个基本要素的完整体现,任何事物(包括机体)的组织形态也可能都存在着无序、有序和自序这三种极端模式等等。这种“三基元论”的哲学指导思想原则,无疑将改变我们对所有自然科学的研究方法和认识论观点。

我们知道,西方近、现代自然科学受英国启蒙科学家培根(R.Bac。n,1220~1292)的巨大影响,抛弃了古代科学家习惯使用的思辩方法,强调“实验方法”和“数学”的伟大作用,倡导一种直观形象的思维方法或模式,采用一种实证方法来进行验证。也就是我前面所提到的科学界所信奉的“结构决定功能”科学思想观念。因此,在18世纪以来,实验和观察成为所有自然科学的主要研究途径和人类认识客观世界的第一位的最重要实践活动。并进而将现代科学技术推进到一个很高的水平。

现代医学(西医)正是在这种哲学指导思想和科学发展的背景下得以取得了巨大发展的。其思维模式是以具体(个体)的形象思维为主导的,即将其分割后进行验证,运用形象的逻辑推理的方式,来找到或发现有可能的因果关系。因此现代医学(西医)较偏重于局部的组织结构和功能的研究,而对于整体的宏观信息调控的考虑则相对较少,如解剖学、细胞学、组织胚胎学、分子生物学、病理学、细菌学、生物化学等,这些学科都是从不同的角度,通过实验方式进行研究和观察。它注重和强调具体的人体物质结构和形态的存在形式。与此正好相反,我们传统的中医学却仍然坚守着古代哲学的思辩方法,即是从复杂的整体环境和现象中寻找规律,通过比类取象的方法,对物质世界进行一种抽象的概括或综合归纳。因此,中医学偏重于整体的宏观研究和经络信息网络的调节机能,是以整体的、运动的、辩证的观点在活的机体上来认识人体,依据“天人同理” 原理,采取比类取象的方法,以自然和社会的规律及现象来类比观察人体与疾病。如中医的阴阳五行学说、形气神理论、天人合一理论、五运六气和脏象学说等,都是我国劳动人民在长期的生产和生活实践中测天观地、比类取象,并引伸到人体的生老病死中,以整体的抽象思维方式概括而成的。同样,针灸学中的经络学说也是古人根据人体复杂的“气”感和穴位效应等机体信息变化现象而抽象概括描述出来的。

这两种不同的思维模式也就导致中西医两种截然不同的理论体系。现代医学因抛弃了抽象的思辩方法,因而在认识上就不够全面了,这也是现代医学不能完全取代传统中医学的原因。信息时代的“物质、能量和信息”三基元论的哲学指导思想原则将使我们重新调整对人体的认识方法和医学的研究方法。前面说过,物质是具体而形象,而信息相对抽象;能量则介于两者之间。因此,西医的形象思维和中医的抽象思维模式都只能是认识论的一个方面的,都有一定的片面性或局限性。如果将它们结合起来作为医学的一种新的认识研究方法,即形成第三种思维方法――维象思维模式,我想我们医学的发展就会有较大的突破,中西医两种医学也就可能真正结合到一起。我们所提出的生物信息医学正是以这种新的哲学指导思想原则和维象思维模式为指导,它将会使我们传统中医学的一些抽象理论和神奇的治疗方法得以挖掘和科学的阐析。因此可以说,信息科技时代将是我们传统中医学得以振兴和科学解析的时代。

3生物信息医学存在的历史和发展现状

3.1传统中医学中的信息医疗方法和思想:《灵枢•官能篇》日:“语徐而安静,手巧而心审谛者,可使行针艾……缓节柔筋而心和调者,可使导引、行气”。这就是说在传统的针灸和按摩治疗中,已体现出了一种朴素的信息医疗思想观念。它对从事针灸的施术者(医生)提出了要修心养性,语言和蔼,施术时要安静,注意意念集中,以便达到最佳的信息调节治疗效果。对从事气功推拿的要求是:应加强修炼,使动作柔缓、心理调和,这也是强调意念信息的调理作用。还有针灸针的针柄也给了我们一个很好启示,针柄上的“线圈”不应单单只是为提插捻转的方便而设计。这种金属“线圈”还当然具有接收和传导生物信息的功能,它可接收术者的意念信息或外界环境的某些信号并传导给被施术的病人体内。从而达到一种生物信息的调节治疗,因此针灸疗法实质上是一种信息刺激调节疗法。所以,我们可以这样来认为:药物治疗主要是给机体补充“能量”以增强机体的抗病能力,是一种“能量”治疗,而手术的切除、修补或置换是对机体物质结构形态的改变,是一种物质治疗方法。那么,针灸、推拿治疗则主要是运用信号刺激和传输而达到调节生物“信息”节律为目的的信息医疗思想和方法。这也正是这类疗法的抽象神奇之所在,因信息的调控机制尚未被揭示,所以,只知其然而暂时不知其所以然。尽管针灸早已引起世界各国科学家的关注并成为研究的热点,但从信息论的角度来研究还只是近几年的事。例如:随着山东大学张颖清教授对生物全息律的发现和全息生物学的创立。针刺疗法的信息映射传输反应也从一定的程度上得到一些提示和发展,随之也就有全息胚针灸学的出现。我们坚信,随着生物信息学的研究深入,针刺的治病和镇痛机制将会得到科学的解释和进一步的发展。

不仅仅如此,我国劳动人民在医疗养生保健活动中,还积累和创造了其它很多宝贵的“信息疗法”。如:心理疗法、思维疗法、物境疗法、生物钟疗法、生理饥饿疗法、睡眠疗法、想象疗法、信念疗法、静思疗法、善美疗法、阅读疗法、技艺疗法、音唱疗法、笑骂疗法、暗示疗法、音乐疗法、幽默疗法、认识行为疗法、精神分析疗法。还有在临床上经常使用的气功疗法、埋线疗法、刮痧疗法、灸法等等。另外,在中医诊断学中的切脉就是一种很抽象的“信息”诊断法,它是通过对脉搏的动态信息变化来进行分析、推测和辩证诊断的。在中药治疗学中,是很强调中药性味的归经和配伍的,其中药味的甘、辛、苦、寒,其实就是一种可以传输给机体的信息,并通过经络信息网络传递给所要治疗的脏腑器官。而现代的中成药几乎是完全去掉了中药的味,只取其性,因而其效果大打了折扣,所以对中药进行化学提纯或深加工,并不一定是很理想的选择。

中医的经络学说一直是科学界关注和广泛研究的课题,科学家一直试图想找到它的物质结构形态。可最终所得到的不是神经,就是血管,要不就是网织的胶原纤维组织,根本没有属于经络自身的物质结构或组织,其实,如果我们按照中医学“天人同理”思想,将经络与现代的信息网络类比,就不难明白,现代通信网络是由不同的地域(局域网)、系统网、有线网和元线网等通信子网互联而成的一个很大而且开放的通信网络。并且还有电信网、广播电视网和计算机网等三大异质网络系统。它们的传输途径和媒介有光纤传输、电缆传输、卫星传输、地面微波接力传递等等,还可以互相转换信号,如:模数或数模转换等。我们的神经系统、血液循环系统,就如同有线通信子网,机体还存在一个无线通信子网,如:内分泌激素、免疫系统等。这些机体通信子网的互联通讯就构成了一个人体完整的信息网络系统。所以,我们可以把经络系统理解为神经系统、血液循环系统、内分泌激素、免疫系统、细胞间的联系等组织、器官和系统的信息子网的互联,即人体信息的互联网络。

中医的相生相克理论认为,机体的五脏六腑、四肢百骸都存在着相互化生和相互制约的关系。中药的配伍也存在其相生相克的关系。世界的万事万物都存在着相生相克的关系。所以,机体(个体)与机体之间也有一个相生相克的关系。这种相生相克其实就是一种生物信息的相互生成或互相冲突(干预)。因而,在临床医疗过程中,我们可能会发现这样的一个现象:对同样一个人,两个针灸师采用的是同样的施针方法,选择的也是同样的穴位,可是达到的效果却不一样。这种情况一般认为是由于针灸师的临床经验不同而造成的。其实这里面也应该存在一个机体之间生物信息的相生相克机制问题。如果一个针灸师的生物信息场与病人的信息场是相克的关系,那么他对病人进行针刺信息调节治疗,其效果肯定是不理想,甚至可能还会加重病情。同样,施行气功导引和推拿的医师也存在这种现象。还有,同一名医师,他在不同的时期行医,也可能表现出在不同时期虽然采用的诊治方法一样,但临床诊治效果却不同。这可能是这名医师在不同时期,因自身的身体状况和精神因素变化而造成的生物信息动态变化所致。其一定时期的生物信息可能刚好与那些病人的生物信息场相生,所以治疗效果好。而另外某一个时期的生物信息场不好,正好与病人相克,所以治疗效果不佳。其实,这也反应了中医学要求行医者必需注意个人修练,保持心静、气调、神清的医德思想境界。

中医的脏象学说中的“象”是指什么?所谓“象”就是脏腑所表现出的动态的时空信息变化,即“时空信息花样”。中医学的“形、气、神”正好与我们所说“物质、能量和信息”是一一对应的。只是中医学缺乏对现代科学知识的引入,加之信息科学发展较晚,以致无法揭示“神志”的内涵致使中医学显得有些神秘摸测,甚至有的人还对他的科学性表示怀疑。随着生物信息学的研究和发展并逐步引入中医学的研究中,相信一定会使中医学重新大放光彩。

中国的气功科学尽管还有不少疑点,但确能强身治病,这是举世公认的。气功强调“调心”、“调神”、“调息”、“以意领气”、“意念观想”等。这可能都是强调用意念和精神因素来调节或控制神经、免疫、内分泌等信息经络系统,使其达到健身、治病和提高生活质量的目的。在气功文献和气功医学实践中,有迹象表明(当然还不是证实)大脑中想象的愿望、状态、图景、符号、口决、童趣,以及想象的动作、行为、刺激、过程等,都可通过经络信息系统的调控作用而影响人体生理活动,并可强身治病。这与西方医学和心理学中的“摸拟情绪”影响免疫和内分泌功能有着异曲同工之妙。

3.2现代医学中所体现出的信息医疗思想和方法:过去人们流行的观点是“生命在于运动”,并把死亡的标志确定为以呼吸的停止、心脏的停跳为标志。随着近几十年来脑科学的研究与发展,人们对于脑在整个机体中的重要地位的认识已日益深刻。脑是人体的信息中枢,人体的各个组织、器官和系统都受它的调节和控制。科学研究显示,人类大脑工作时,大脑的神经细胞会从大脑以外的细胞那里搜集信息,并把这些信息综合起来作出判断,然后再输出指令,让人体的某些部位做出相应的反应。对于端起一杯咖啡这一简单的动作,就需要几百万个神经细胞的协调工作。美国国立老年研究所使用计算机控制的电子显微镜测定,经常用脑的老年人脑细胞比一些中年人还多。国外学者通过调查5000名已故的运动员后发现,他们当中多数人的寿命短于一般人。美国学者马劳斯在研究不同职业者的寿命时也发现,超级球星和优秀拳击运动员的寿命比学术上有成就的学者、专家平均短8~83岁,究其原因是因为长时间进行剧烈运动会使人体的新陈代谢长期处于旺盛状态,缩短了人体细胞分裂的周期,从而加快了机体器官组织的磨损与衰老。而经常使用大脑的人,由于大脑的信息调控作用,使机体各部位的协调运动,保持动静平衡,进而达到延年益寿。据此,有人将“生命在于运动”的命题引伸为“生命在于脑运动”。并且现代医学对死亡标志作了新的认定,即脑死亡是人死亡的主要标志。因此,人体健康首先是应该脑的健康和运动。

现代医学也已充分地注意到了心理、精神和社会因素对健康和疾病的影响,例如:心理和精神因素对心脏病、高血压、胃溃疡、糖尿病和癌症等均有很大影响。于是,就有了心理医学、思维医学和身心医学的提法,并运用心理疗法来配合这些疾病的治疗。对癌症的病人一般不直接告知患者本人的患病情况,只告知其家人――这在医学上称为“善意的谎言”,目的是不要让患者的心理负担过重,否则,精神就会夸掉。身心医学就是研究社会、心理和精神等因素与疾病发生与发展关系的一门医学新学科。国外已有人证明,心理刺激可通过氧化自由基而损伤DNA。

人类文明在进步的同时也给人类带来了许多新的文明病。其中以“大脑信息”失控或失调所致的精神心理障碍性疾病最为突出。据世界卫生组织的统计数字,全世界约有5亿人患者有不同程度的精神错乱,有5200万人患有严重精神病,约有1.5亿人患神经官能症,3000万人患癫痫。加上患有精神过敏症和其它心理障碍的人数,估计已占到总人口的20%以上。对于这些精神心理性疾病,现代医学的药物或手术疗法已显得力不从心了,只能采用心理疗法或思维疗法等信息调适方法,也有人把目光投向传统的中医、针灸、气功等信息疗法。从而也使我们看到了这些朴素的信息医疗方法对于现代文明病的攻克,显示出了广阔的发展前景。

在现代医学的诊断学中,心电图和脑电图的检测技术,其实就是一种探触大脑和心脏动态信息的检测技术;现代分子生物学已揭示了基因遗传信息的编码和控制蛋白质合成的信息链板;脑科学的研究也从一定程度上揭示了大脑进行信息搜集、加工、分析、处理并发出信息指令的部分原理;神经生物学、内分泌和免疫学则揭示了一部分机体信息交换、传输和产生反应的机制。随着生物信息学的研究和发展,现代医学在上述这些研究领域一定会取得更大突破和进展。

4生物信息医学的发展前景

“电脑”是人们对电子计算机的俗称,表现了人们的一种愿望――使计算机像人类大脑一样工作。这种仿生技术的发展和应用,必将对脑科学和机体信息调控机制的研究产生巨大促进作用。

迄今为止,科学家们已经模拟出了神经系统的一连串的活动规律,并据此编制出了相应的计算机程序;美、英科学家已合作成功研制出了世界上第一个硅神经元――一种能够模仿生物大脑细胞信息处理功能的微型芯片。这种面积只有01平方毫米的芯片的工作速度,比同样大小的生物神经细胞的工作速度还要快l00万倍;与此同时,日本三菱电机公司也已开发出了每秒可达800亿次的神经元芯片,这一成果把神经元芯片记忆一个字符所需的时间缩短到了万分之三秒。神经细胞是神经系统的基本单元,它采用电子工作方式。硅神经元在模拟神经细胞时,其电子特性和神经细胞一样能够独立运行,有自己的“行为规范”,不受控制者的“指挥”。因此,从理论上说,几百万个芯片就可以组成一个功能强大的“人造大脑”,科学家还研制成了生物芯片,生物芯片传递信息的速度比人类大脑还要快l00万倍。同时,当芯片出现故障时,它可以自我修补,成为一种半永久性的器件。

神经元芯片和生物芯片的获得,为生物计算机――仿生电脑研究带来了勃勃生机。而与之相关的神经元网络研究上的突破,更使生物计算机的研究大大向前推进了一步。神经元网络是科学家们在神经科学、心理生理学研究的基础上发展的,它具有联想记忆、相似性识别和分类、误差较正、时序保留和概括等功能。当神经元网络之间高度连接时,会引起并行机制而使神经元集团具有独特的计算性质,如同人脑的一些高级思维和信息处理或控制功能。试想,生物计算机技术对揭示人类的大脑和生物信息节律的调控机制将会起到多么关键的作用,对于大脑疾病、神经官能症、精神和心理障碍以及癫痫等疾病的有效诊治,其为期难道还远吗?

如今人们常常是,“谈癌色变”因为癌症的确困扰医学很久了,尽管有了很多新药的研究开发以及手术的改进,但这些并非是医治癌症的良方或万全之策。在生物信息医学时代,我们很有可能找到医治它的良方,比如:依据生物信息原理,我们可以研究“修复”癌细胞缺损或变异的信息密码技术,也就是对癌细胞进行“重新教育”使之“改邪归正”,或者是恢复对癌症等病灶的正常生物信息指令控制。这就好比怎样平息一个“地区”的“独立判乱”一样,其武力解决(病灶切除)并非是上策,通过说服教育,使人心归顺,才能算得上对该地真正收复。另外,对于一些组织器官或系统的功能紊乱,可以使用模拟相应的生物信息(信息编程)仪器或电子信息药丸,并设法让它进入该信息系统进行调节控制,使之恢复其生物信息节律的平衡。这种同疾病作斗争的方式的确如同“现代战争”(大家可能看过电视剧《突出重围》……)。在现代战争中,“电子信息战”已越来越突出而重要,与常规武器和生化武器等的协同作用威力也是越来越大。《孙子兵法》中云:“不战而屈人之兵,乃上之上策也”。这不正是信息战的伟大之处吗。同样,我们未来的医疗实践,也必将是以生物信息调节为先导,或将信息调控、药物治疗及手术治疗结合起来以达到协同作战的最佳效果。所以,我们不难预想21世纪的医疗实践将是一个更加先进和完美的生物信息化的医疗时代,或者可以简称之为“信息医学”时代。