化学热力学的研究方法范例6篇

前言:中文期刊网精心挑选了化学热力学的研究方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

化学热力学的研究方法

化学热力学的研究方法范文1

一、《化学反应原理》模块课程的意义

要提高《化学反应原理》模块课程教学的有效性,必须对课程涉及的学科功能和作用有清晰的认识,即《化学反应原理》模块课程是如何通过化学热力学和化学动力学这两大物理化学的分支学科,来阐释化学反应的基本原理,揭示化学反应中能量转化的基本规律,呈现化学反应原理在生产、生活和科学研究中的应用的。也就是说,通过《化学反应原理》模块课程的学习,要让学生对《化学反应原理》模块课程的功能和作用有何整体上的认识。

要研究一个化学反应,每个研究者都需要解决好以下几个基本的问题,即①化学反应最本质的特征――化学反应过程中能量是如何变化的?(化学反应与能量变化的关系)②在特定条件下,化学反应能否进行?朝什么方向进行?(自发性和方向性问题)③若化学反应能够进行,化学反应又能达到什么限度?(反应平衡问题)④若化学反应能够进行,化学反应有多快?(化学反应速率问题)⑤若化学反应能够进行,是如何进行的?(历程的问题)以上这些问题,前三者可以通过化学热力学加以解决,后两者则可以通过化学动力学研究来实现。化学热力学和化学动力学的任务和目的不同:化学热力学主要是解决化学反应的可能性问题,着眼于化学反应体系状态研究。而化学动力学则解决实现化学反应的现实性问题,着眼于化学反应过程研究。

因此,可以看出《化学反应原理》模块的教学,可以实现为学生提供研究方法上的指导,这是教学过程中应当注意把握的对《化学反应原理》模块意义的整体性认识。只有深刻认识《化学反应原理》模块所涉及学科知识的意义,才能真正把握《化学反应原理》模块课程的核心价值,理解教材各知识点的教学价值,更有效地落实教学目标。

二、《化学反应原理》模块中“化学反应与能量变化”问题讨论

在平时的教研活动和教师培训过程中,与中学化学教师交流发现,《化学反应原理》模块中“化学反应与能量变化”的问题困扰着很多中学化学教师。[2-4]比如,能量变化是化学反应的本质,决定着化学反应的一切性质;如何通过化学反应的能量变化确定化学反应的可能性和方向;化学反应与能量变化如何决定化学反应进程;化学反应与能量变化如何决定氧化还原反应进程等问题。这些问题事实上涉及到的是上文提到的研究化学反应过程中需要解决的五个基本问题的前三个问题(即化学热力学需要解决的问题)。

1. 能量变化是化学反应的本质,决定着化学反应的一切性质

能量变化是化学反应的本质,决定着化学反应的一切性质。化学反应研究需要首先弄清楚其能量的变化。教材[2]将“化学反应与能量变化”作为《化学反应原理》模块专题一的内容,其理论依据正在于此。“化学反应与能量变化”专题讨论的核心知识是盖斯定律,它为我们提供了如何确定一个未知化学反应的反应热(能量变化)的手段,从而为化学反应本质的研究打开了解决问题的门户。

(1)新教材为何要引入焓变ΔH的概念,焓变ΔH与反应热Q有何不同

为了引入盖斯定律这一核心知识,需要有其引入的前提条件。盖斯定律是建立在化学热力学研究基础之上的,必然要涉及到化学热力学最重要的性质――状态函数。没有状态函数焓变ΔH的引入,盖斯定律就无从谈起,这就是教材引入焓变的真正意义所在。

焓变ΔH与原教材用Q表示的反应热究竟有何不同?作为状态函数,焓变仅与状态有关,而反应热Q则与反应过程有关。正因为如此,从获取角度看,反应热Q只能通过实验逐个测量,但焓变ΔH,却可以在理论上为一切的化学反应研究对象通过计算加以获得,从而为该化学反应的进一步研究奠定了能量数据的基础。

(2)焓H是什么

按照能量守恒(热力学第一定律)原理:在化学反应过程的任何瞬时,内能的变化:dU=δQ-W=

δQ-ΔP外ΔV(体系放热-环境对体系做的功)。

若体系变化只做体积功(热膨胀、收缩)不做其他功时:定压条件下的体系,反应热

Qp =ΔU+P外ΔV=(U2+ P外V2)-(U1+ P外V1);

因此,体系吸收或放出的热量就体现为化学反应前后两种状态下的U+ P外V的差值。而U、P、V都是状态函数,因此U+ P外V也是一种状态函数,这就是焓H的定义H=U+ P外V。 当然,这仅是理论概念,可知而无法测量。

(3)只有恒压反应热Qp=ΔH,而恒容反应热Qc≠ΔH

反应热可以通过弹式量热计进行测量,但中学化学教师在教学中常常忽视了一点,即弹式量热计是在恒容条件下测量物质的燃烧反应热,得到的是Qc=ΔU,它并不等于焓变。要得到ΔH,需要进行以下换算:ΔH=ΔU+ P外V = Qc+ΔγRT。

例如:正庚烷的燃烧反应为C7H16(1)+11O2(g)=7CO2(g)+8H2O(1)

25℃时,在弹式量热计中1.2500 g正庚烷充分燃烧所放出的热量为60.089 kJ。试求该反应在标准压力、25℃下进行的化学反应热效应ΔH。

解:正庚烷的摩尔质量为M=100 g・mol-1,所以n=0.0125 mol,

在弹式量热计中进行定容反应,故ΔU=-60.089 kJ,

反应的ΔU= - 4807 kJ・mol-1,

由方程式可知,反应前后气体物质计数量之差为Δγ=7-11= - 4,

则根据ΔH = Qc+ΔγRT

=(-4807-4×8.314×10-3×298) kJ・mol-1

= -4817 kJ・mol-1。

知道了一个化学反应的反应热ΔH,就能为我们从理论上确定该化学反应是否能够自发进行,是否具有研究的价值。

2. 如何通过化学反应的能量变化确定反应的可能性和方向

确定化学反应研究对象的能量变化ΔH,对化学反应能否自发进行的判断具有重要意义,但并不是决定化学反应自发性的唯一判断依据,还需要考虑体系的另一个重要的状态函数即体系熵变ΔS。两者共同确立一个决定化学反应自发方向的状态函数吉布斯自由能变化ΔG,其关系式是:ΔG=ΔH-T・ΔS。吉布斯自由能变化ΔG可以从理论上给我们指明化学反应自发进行的可能性和方向。当吉布斯自由能变化ΔG

3. 化学反应与能量变化如何决定化学反应进程

当我们获得了化学反应的吉布斯自由能变化ΔG,就使我们掌握了该化学反应的自发推动力。这种推动力决定着化学反应进行的程度,即与化学反应的平衡常数之间会建立一定的关系,该关系式为:ΔG=-RTlnK。

这一关系揭示了一个化学反应中反应物与生成物变化关系的趋势,即可能性(化学热力学研究的问题仅涉及状态不涉及过程)。由上述关系可以看出,ΔG值越大,意味着化学反应的平衡常数越小,对于产物的生成来说,反应物是化学热力学稳定的,因为达到平衡时,仅有非常少量的产物生成。相反,ΔG越小,意味着化学反应的平衡常数就越大,必须消耗相当量的反应物去生成产物才能达到平衡,所以反应物是不稳定的。若ΔG=0,K=1,意味着体系处于一种特定的状态,反应的推动力为0,反应物和产物的量都不再随时间而改变。

4. 化学反应与能量变化如何决定氧化还原反应进程

按照原电池原理,任何一个氧化还原反应在理论上都能设计成一个原电池。氧化还原反应的自发反应进行的程度,正是原电池反应进行的推动力。而一个反应自发进行的推动力ΔG,与原电池的电动势之间的关系是:ΔG=-nFE。

原电池反应的推动力是两个电极半反应的电极电势不同所产生的电势差,若不存在电势差,反应的推动力就没有了。从化学热力学状态来看,此时状态下两个电极半反应的吉布斯自由能变化为0,反应就处于平衡状态。

由此可见,《化学反应原理》模块中的热力学知识,从化学反应能量变化的角度入手,从化学热力学函数焓变的引入开始,引导我们从状态变化的特征,得到了利用盖斯定律能够进行任何理论意义上的化学反应的放热或吸热计算,从而搞清了化学反应与能量变化之间的关系,为判断化学反应能否自发进行提供了重要的参考数据。在此基础上,通过吉布斯自由能的计算,形成了判断反应自发进行的判据,即解决了研究一个化学反应,首先要考虑的问题:该化学反应能否发生,是否具有研究的意义和可能。同时,吉布斯自由能变化,也为我们提供了一个化学反应如果可能发生,其反应进程大小的可能性问题。因为吉布斯自由能是化学反应可能进行的程度的推动力,与化学反应的平衡常数和电化学反应的电动势之间存在着必然的联系。

三、结语

通过以上的分析和讨论,我们认为中学化学教师在《化学反应原理》模块教学中存在很多学科性知识的误解,可以进一步加强化学热力学和化学动力学知识的学习,把握住研究化学反应过程中需要解决的五个基本问题,认真区分化学热力学和化学动力学的应用范围,以提升对《化学反应原理》模块的驾驭能力。

参考文献:

[1] 中华人民共和国教育部.普通高中化学课程标准(实验)[S]. 北京:人民教育出版社,2003.

[2] 宋心琦.普通高中课程标准实验教科书・化学反应原理[M]. 北京:人民教育出版社,2009.

化学热力学的研究方法范文2

关键词:物理化学;教学;基本概念;基础理论

中图分类号: G647.2 文献标识码:A 文章编号:1674-0432(2010)-11-0258-1

《物理化学》是化工及其相关专业的专业基础理论课程,在其专业课程中具有举足轻重的地位。它是从物质的物理现象和化学现象的联系入手,主要运用物理学的原理和方法研究化学现象和化学过程的一门科学,重点介绍基本概念和基本理论。《物理化学》主要是系统地讲授有关化学变化和与化学变化相关联的物理变化的各种基本理论和共同规律,使学生掌握物理变化的基本计算方法,培养学生分析和解决物理化学方面实际问题的能力,提高对化学现象的理性认识高度。通过课堂讲授、习题演算等环节,使学生较系统地掌握物理化学的基础知识,基本理论和基本技能,为后续专业课奠定必需的物理化学基础。该课程的主要内容包括化学热力学、相平衡、化学动力学、电解质溶液、表面现象和胶体化学等。根据《物理化学》的学科特点,其教学必须以定量描述为主,重视计算能力的培养与训练,同时也要重视理论联系专业的实际[1]。学习《物理化学》的目的是运用物理学的理论和方法对化学现象做出理论的和定量的探讨。

通过该课程的学习,要求学生对物理化学的基本理论有较为系统的了解,掌握物理化学的基本计算方法,从而在分析和解决实际问题时能运用所学的物理化学知识和技能。在理论知识方面,化学热力学和化学动力学是主要内容,要求学生正确了解物理化学中基本原理和概念的来龙去脉及适用范围,应掌握主要公式的推导和应用条件,对不属于基本理论的一些较深概念和较为冗长的公式推导,只作简要介绍或直接给出结论,仅要求学生掌握其意义、作用和方法。在计算方面,要求学生能正确分析题意,选择合适的计算公式和数据,掌握运算技巧和有效数字,正确使用有关物理量的单位,能用实验数据作图,有使用物理化学简单图表的能力。使学生系统地掌握有关化学及物理变化的一些基本原理和研究方法,并初步具有分析和解决有关化学方面实际问题的能力[2,3]。

以下,就《物理化学》教学内容中的几个方面探讨一下。

在《物理化学》整个教学的过程中,热力学所涉及的基本概念、基础理论最多。要想让学生易于接受、理解,必须用通俗易懂的教学方法进行讲解,甚至还要用上日常生活中的某些例子加以辅导、比喻以帮助理解,让学生彻底弄懂热力学第一定律和热力学第二定律中的Q、W、U、H、S、A、G之间的关系,从而进一步弄清其中的途径函数和状态函数的求解,以达到举一反三的效果。为接下来热力学中的化学势的求解以及偏摩尔量的物理意义的讲解打好良好的基础。

动力学这一块中要让学生了解动力学方程的规律性,以例题进行类比,最后反映其内在统一规律性;对于n不同而导致的不同特性也要加以说明和验证,让学生能够融会贯通、举一反三。这一方法将有意想不到的效果。

对于化学平衡和相平衡这一块,从数学分析的角度来讲解,则教学效果较好。对于化学平衡,主要从数学公式上的某一物理量的增大而导致另一物理量的增大或减小来说明平衡移动,则比较直观。然后结合学生中学所掌握的化学平衡理论知识(当时学生只是学习结论的应用),此时就可根据数学分析方法对学生讲清得此结论的来龙去脉。化学平衡移动是由一系列的原因导致,不仅可从理论上进行推导,还可运用数学公式进行验证、分析,使理论知识的学习更有说服力,学生掌握起来也更通透。

对于相平衡,则需要教会学生看懂相图,搞清自由度F的物理意义和计算方法。学会看图是一项长期且艰难的任务。如果学生本身的看图能力不强,若能学好这块内容,则对他自身数学知识的加深和以后专业课程学习都是一大帮助。这块内容完全可锻炼学生物理量的分析能力和数学知识的灵活运用,甚至可调动、提高学生学习物理化学的积极性,让他们觉得物理化学不再枯燥、难懂、晦涩(因为热力学中的某些公式、定律都属于枯燥晦涩的内容),也是可以很生动,很活跃的。让学生愿意深入思考、分析相图,从中得到乐趣。

另外,在整个教学过程中,还需要注意习题、例题的讲解。除了计算例题之外,还要经常以一些基本概念、定律、定理为基础,设置一些选择、填空、判断的例题来讲解,以帮助学生学习、理解。因为计算例题一般考查公式的综合运用,讲解起来耗时较久,并且难以反映基本概念的运用。对于基本概念、基本理论的学习和运用,选择、填空、判断这类题型能较好的反映且耗时也较短,完全可融入新课的理论讲授中讲解,有助于学生对新概念的理解,为下一步的学习打好基础。而且这样教学也可使课堂气氛更为活跃、丰富,不会显得《物理化学》都是一些呆板的基本概念,让这些基本概念都“活”起来、“动”起来,有助于教学效果的提高。

当然,《物理化学》教学还有许多需要探讨的地方,还有待在以后的教学中继续进行深入的发掘。

参考文献

[1] 武文,宣亚文,谢东坡.物理化学实验教学改革的思考[J].中州大学学报,2010,(03).

[2] 李莉,张明波,张旭,等.《物理化学》课程教学创新初探[J].辽宁中医药大学学报,2010,(01).

化学热力学的研究方法范文3

一、物理化学课程在课程体系中的地位

物理化学在两阶段工科化学(化工类)课程体系中处于枢纽地位。第一阶段由化学原理(基础物理化学)、无机化学、有机化学、分析化学等课程组成。化学原理作为理论教学内容,在对中学化学知识总结提炼上升到理性认识高度的基础上,对后继无机化学、有机化学作为应用教学内容提供理论基础。第二阶段由物理化学加后继专业或专业基础课程、选修课程组成。物理化学作为理论教学内容,既将先前所学无机化学、有机化学等知识从理性上加以认识提高,又为后继课程提供理论基础。[2]在专业教育的范畴内,物理化学是工科,尤其是化工、冶金、轻工等各专业必备的化学理论基础,它衔接基础理论和相关的专业课程,是一门专业基础课程。

二、物理化学课程的教学内容

物理化学提供应用于所有化学以及相关领域的基本概念和原理,严格和详细地阐释化学中普适的核心概念,以数学模型提供定量的预测。因此,物理化学是分析化学、无机化学、有机化学和生物化学课程,以及其他相关前沿课题的概念的理论基础。总体而言,物理化学理论课程可能涉及的教学内容如下:[3]

1.热力学与平衡

标准热力学函数(焓、熵、吉氏函数等)及其应用。熵的微观解释。化学势在化学和相平衡中的应用。非理想系统、标准状态、活度、德拜-休克尔极限公式。吉布斯相律、相平衡、相图。电化学池的热力学。

2.气体分子运动学说

麦克斯韦-玻耳兹曼分布。碰撞频率、隙流速度。能量均分定律、热容。传递过程、扩散系数、黏度。

3.化学动力学

反应速率的微分和积分表达式。弛豫过程。微观可逆性。反应机理与速率方程。稳定态近似。碰撞理论、绝对速率理论、过渡状态理论。同位素效应。分子反应动力学含分子束、反应轨迹和激光。

4.量子力学

薛定谔方程的假定和导出。算符和矩阵元素。势箱中的粒子。简谐振子。刚性转子、角动量。氢原子、类氢离子波函数。自旋、保里原理。近似方法。氦原子。氢分子离子、氢分子、双原子分子。LCAO方法。计算化学。量子化学应用。

5.光谱

光-物质相互作用、偶极选律。线型分子的转动光谱。振动光谱。光谱项。原子和分子的电子光谱。磁共振谱。拉曼光谱、多光子选律。激光。

6.统计热力学

系综。配分函数表示的标准热力学函数。原子、刚性转子、谐振子的配分函数。爱因斯坦晶体、德拜晶体。

7.跨学科的应用

生物物理化学、材料化学、环境化学、药学、大气化学等。物理化学实验课程培养学生用物理化学原理联系定量模型与观察到的化学现象的能力,深化学生对模型定性假设和局限的理解,锻炼他们采用模型定量预测化学现象的基本技能。

学生应能记录正确的测量值,估算原始数据的误差。学生需要理解电子仪器的原理和使用方法,操作现代仪器测量物理性质和化学变化,积累用这些仪器解决实验问题的经验。物理化学实验应含有结合若干实验方法和理论概念的综合实验教学内容。适用于工科化学(化工类)课程体系的物理化学实验教学内容大体如下:

1.热化学实验

计算机联用测定无机盐溶解热。计算机联用测定有机物燃烧热。温度滴定法测定弱酸离解热。差热分析。

2.相平衡化学平衡实验

不同外压下液体沸点的测定。环己烷-乙醇恒压气液平衡相图绘制。液-固平衡相图绘制。凝固点下降法测定物质摩尔质量。沸点升高法测定物质摩尔质量。热重分析。氨基甲酸铵分解平衡常数的测定。

3.表面化学实验

溶液表面张力测定。沉降法测定粒度分布。BET容量法测定固体比表面积。

4.化学动力学实验

量气法测定过氧化氢催化分解反应速率系数。蔗糖转化反应速率系数测定。酯皂化反应动力学。一氧化碳催化氧化反应动力学。甲酸液相氧化反应动力学方程式的建立。可燃气-氧气-氮气三元系爆炸极限的测定。计算机联用研究BZ化学振荡反应。

5.电化学实验

强电解质溶液无限稀释摩尔电导的测定。离子迁移数测定。原电池反应电动势及其温度系数的测定。金属钝化曲线测定。

6.结构化学实验

磁化率测定。分子介电常数和偶极矩的测定。

三、面向专业的物理化学教学内容建设

当然,一个工科类专业的物理化学教学不可能也不必要包含上列的所有内容。因此,各学科专业教学指导委员会根据专业的培养目标和规格,在已经或即将公布的各学科专业的指导性专业规范中,制订了包括物理化学在内的化学课程教学基本内容作为最低要求。如化学工程与工艺专业的规范(研究型)中规定:物理化学可分为两部分,物理化学(I)主要内容为化学热力学和反应动力学等,作为化工主干课的基础,应注意与化工热力学课程和化学反应工程课程的衔接和分界(一些内容可在化工热力学课程和化学反应工程课程中展开,以加强工程背景);物理化学(II)主要内容为溶液理论、统计力学、量子力学等方面的概要以及近展等。各专业的物理化学教学基本内容充分体现了本专业的学科特点,是在保障人才培养质量的前提下,兼顾国内各相关学校的教学条件提出的基本要求。因此,它体现的是该专业人才的知识体系的共性。由于各校的学科背景和教学条件的优势不同,要培养具有特色的专业人才,需要在教学中研究如何在满足各专业的教学基本内容要求的基础上开展物理化学教学。我们认为在教学内容建设中应坚持贯彻下列原则,才能切实发挥物理化学这一门专业基础课程的作用。[4]

1.承前启后,发挥枢纽作用。了解授课对象的先修和后继课程与物理化学的联系,深化化学原理课程中的物理化学理论,介绍其在后继专业课程中的应用,以开阔视野并兼顾系统性和趣味性。

2.少而精和博而通。传统的基础内容要突出重点,讲深讲透,体现学科框架;选择介绍相关前沿的内容以扩大知识面。

3.提倡内容侧重的多样化。针对不同专业时要不拘一格,倡导内容侧重的多样化;即便面对同一专业,内容侧重亦应有宽松的选择余地。

4.体现工科特色,强调应用性和实践性。引入研究型实践项目,使学生加深对理论的理解,提高应用水平。

四、建设物理化学教学内容的措施

华东理工大学物理化学教研室在国家精品课程和国家级教学团队建设过程中,以提高专业人才的教育质量为目标,采取了一系列措施,提高物理化学课程的教学水平和质量,促进相关专业的课程体系建设。

1.根据授课专业的先修、后继课程,研读相关教材,如化学工程与工艺专业的现代基础化学、化工热力学、化工原理、化学反应工程、化工过程分析与合成教材,了解其改革动向和内容变革,并且请有关学科的学术带头人做物理化学在学科领域应用介绍的报告,提出教学内容改革建议。这样做的结果一方面可以避免教学内容上不必要的重复,另一方面可以合理地选择教学内容侧重,实现化学基础课程与专业课程的合理衔接。

2.编写教材和教学参考书,保障教学基本内容的教学质量,介绍物理化学学科发展、在交叉领域的应用;介绍溶液模型、线性自由能关系等半经验方法,以衔接后继课程。近年来编写或修订出版了《物理化学参考》、《物理化学》(第五版)、《物理化学导读》、《物理化学释疑》、《物理化学教学与学习指南》。开展教学研讨,提高教师队伍的学识水平和在教学中贯彻少而精、博而通教学思想的能力。

3.制作相关前沿课题和理论应用实例,如“正、负离子混合表面活性剂双水相系统及其微观结构”、“温室气体CO2的捕集和封存(CCS)技术”、“复杂材料的微相平衡和结构演化的数学模拟”、“离子液体的合成、性质和应用”等教学素材,进行教学资源的储备。

4.由科学研究项目提炼研究型教学实验,如“界面上聚乳酸PLA膜的结构特性研究”、“生物柴油中脂肪酸甲酯的GC-MS测定”、“MCM-41介孔氧化硅材料的合成和表征”等;形成各类研究性课题,如“生物柴油的制备及性能检测”、“Gem-ini表面活性剂连接基团对合成硅基介孔材料结构的影响”等。

化学热力学的研究方法范文4

关键词 工程热力学 教学方法 教学质量 实践

中图分类号:G420 文献标识码:A

Research and Practice of Teaching Method on "Engineering Thermodynamics"

ZHANG Yong, LIU Yiwen, FU Lijuan

(Chongqing Automobile Institute, Chongqing University of Technology, Chongqing 400054)

Abstract Engineering thermodynamics the basic course is to train engineering students' scientific quality in the 21st century, but also important technology-based course of heat and power engineering and related fields. Articles with "thick foundation, wide caliber" of education reform ideas, the teaching practice, from the curriculum, teaching content, teaching methods and means of performance evaluation, etc., made a number of reform ideas and methods. Teaching should be a clear learning objective, integration of knowledge structure, and update course content to highlight and to grasp the dynamic interdisciplinary research, focusing on integrating theory with practice, to strengthen the practice of teaching, in order to facilitate a comprehensive evaluation of teaching quality.

Key words engineering thermodynamics; teaching methods; teaching quality; practice

工程热力学是一门以热力学普遍原理为基础,讲述热能与其他形式能量(主要是机械能)之间的转换规律及其工程应用的基础学科,是动力、能源、机械、材料、航空航天、生物(医学)、化学以及环境工程等专业的重要技术基础课,也是培养21世纪工科学生科学素质的公共基础课。

然而长期以来,由于工程热力学的概念抽象、理论深奥,对知识的理解和掌握有一定的难度,造成教师不易教,学生也不易学。学生对很多概念似懂非懂,缺乏学习兴趣,教学效果欠佳。显然,如何教好“工程热力学”,使学生掌握热力学基本原理及其工程应用,已成为该课程教学的关键。

1 课程特点及学习中存在的问题

工程热力学是以热力学普遍原理为基础,针对具体问题采用抽象、概括、简化和理想化的方法,建立分析模型,推导出一系列有用的公式,得到若干重要结论,并用这些公式和结论指导和解决工程实际问题。其显著特点如下:

1.1 概念多且抽象难懂

工程热力学不但概念多,并且概念的物理意义在不同使用条件下又有不同的引申,学习中很容易混淆。例如,功的概念,有体积变化功、有用功、排斥大气功、推动功、流动功和技术功等等。热容的概念,既可从定义出发分为质量热容、摩尔热容、体积热容;又可按热力过程的不同分为比定压热容和比定容热容;还可以根据热量计算方法的不同分为真实比热容、平均比热容和定值比热容等。热力系统的概念、热力过程的概念和循环的概念等也是如此。

工程热力学的概念、定律和分析过程较为抽象,都不涉及物质的具体结构,初学者很难深入领会。而且工程热力学的很多概念和结论都是用数学公式来表达的,且推导过程并没有结合具体的物理过程,而仅仅是通过数学关系式间的变换得出其物理结论。例如,从熵的定义式来看,熵应该与换热量和系统温度有关,但定义式又是怎样反映热过程进行的方向、限度和条件呢?由于学生以前很少接触用数学语言描述物理概念的方法,普遍感觉热力学的概念抽象难懂。

1.2 内容相互交叉且难理解

工程热力学的研究内容也很多,主要包括热力系统、状态参数等基本概念,热力学第一、第二定律等基本定律,常用工质的性质,过程和循环的分析及计算方法,化学热力学等等。有些章节的内容还可以单独成为一门学科方向,如研究燃气动力循环的内燃机学,研究气体流动的空气动力学等。

可见,这些具体的研究内容,即与热力学的基本原理相关联,又引伸出许多复杂的公式和结论,还有自己相对独立的结构体系。在学习过程中,学生普遍感觉课程的内容繁多,应付不暇,难于理解,顾此失彼。

1.3 公式应用条件复杂且难记忆

工程热力学与工程实际问题联系密切,涉及面广,公式很多。即使同一个公式,在不同的应用条件下,也有很多不同的表达形式。例如,热力学第一定律对于闭口系和开口系有两种不同的表达式;对于可逆过程也有不同的表达形式;对于理想气体的可逆过程还有不同的表达形式。这么多不同形式的公式,许多学生很难吃透公式的物理意义和具体的应用条件,在遇到热工实际问题时,往往无法确定选用哪一个公式,灵活应用就更不用说了。

2 明确学习目的,激发学习兴趣

兴趣是学习的动力源泉之一,教学成功的关键是培养学生的学习兴趣。教师可以从多个方面激发学生学习的兴趣,但最重要的就是在第一堂课上让学生明确学习的目的。教师除了要对工程热力学的发展历史,主要研究对象、内容和方法作一个常规的介绍外,还应对课程的开设情况、课程的实用价值和重要作用进行深入细致的阐述。首先,热现象几乎是每一个工程领域中都会碰到的物理现象,能量的有效与合理的利用几乎是每一个工程师都需要解决的问题。在一些领域中,热现象的规律还是制约技术发展的瓶颈问题。所以,在境内外的高等工程教育中,传热学、热力学与流体力学课程的开设相当普遍。其次,无论从工业生产过程来看,还是从节约能源消耗来看,理工科学生都应该具备合理节能、用能的意识,并懂得其基本的应用技术。而热工类课程的内容就是合理用能及节能理论中的最基础与最核心的部分。最后,还应结合生产和生活中的实例,让学生明白学到的热力学知识可以解决和解释很多实际问题,特别要强调专业与课程的联系,和实际问题在课程中的理论基础。这样,才能使学生明确学习《工程热力学》的专业目的性,对学习该门课程充满期待。

3 教学方法的改革与实践

实践证明,提高课程教学质量的关键是改进教学方法。针对工程热力学课程的特点,经过探索发现,实行启发式教育,在课堂上加强互动,就一两个中心问题展开讨论,让学生在思考中吸收新知识。先进的教学方法既可活跃学生的学术思想,激发学生的创新精神,又可显着提高本课程的教学质量。

3.1 整合知识结构,优化课程体系

调整后的新专业所牵涉的知识结构比以前广泛的多,要求学生掌握的知识面也比以前更宽。从培养复合型人才考虑,在不增加学时数的基础上,应对课程体系进行优化和整合。

教学内容应提高起点、后移重点,简化大学物理热学中已涉及的部分内容,并略去繁琐的公式推导。强调课程体系中理论与应用的有机结合和相互渗透,注意培养学生工程应用的观念。同时,适当地介绍新型制冷循环、新型节能材料的工质热物性等,本学科的最新研究成果及其应用,以扩大学生的知识面,启发学生的创造性思维。另外,注意与其它课程之间的协调,上挂高等数学、理论和材料力学等基础课程,下挂内燃机原理、锅炉原理、供热工程、制冷工程等专业课程,保证其作为技术基础课程能为后续课程的学习、今后的工作和进一步的研究奠定扎实的理论基础。

3.2 突出重点,精讲多练

在课堂教学中,根据工程热力学的特点和教学改革的要求,应采用精讲多练的教学方法。这是因为,课程的内容多而课时少,教学中也不可能做到面面俱到,而某些原理在后续专业课程的学习中还会应用,授课时应有所侧重,实行“精讲”;课程有诸多应用条件复杂的公式,只有通过多做练习,才能深入理解公式的物理意义、变换规律及具体应用条件,做到融会贯通,灵活的应用它们来分析解决工程实际问题。

3.3 正确应用图表,化抽象为形象

图表具有直观、形象、方便的特点,在工程热力学中有其特殊的作用,应用也是经常性的。因为有些热力过程或循环十分复杂,一般的分析计算根本不可能,只能凭借各类绘制的图表进行计算;借助图表还可利用计算机进行数值计算和模拟。所以,引导学生正确使用图表是工程热力学教学中应该特别重视的。

在刚开始接触简单的P-V图、T-S图时,为了给理解水蒸气和湿空气的图表奠定基础,就应提醒学生注意图表的作用和细节,如怎样在图上区分吸热、放热,对内、对外作功;怎样在图上表示热过程的方向等等。在介绍水蒸气的h-s图和湿空气的h-d图时,应重点说明它们的构图原理,并通过各种等值线簇的绘制,讲解各参数的变化规律。另外,为了让学生掌握各种图表的使用方法,还应安排一定数量的、通过图表进行热力计算的习题。

3.4 利用计算机辅助教学,促进师生互动

工程热力学课程内容含有许多抽象的工作原理图、系统循环图。常规的板书教学浪费时间效果也不太理想。如果把这部分内容制作成集声、光、色、图、文于一体的多媒体课件,既直观形象,又新颖生动。不但可加强授课的生动性,激发学生的学习兴趣,还可加大教学信息量,增加单位时间内授课内容的深度和广度,有利于学生理解和记忆课程内容。例如,我们可以用多媒体课件演示各种热过程曲线的生成,还可以利用计算机绘制水蒸气的各种图线,免除查图、查表的麻烦。

总之,在课堂上进行形象直观的教学,充分利用计算机辅助教学,发挥多媒体的作用,可以帮助教师有效地提高教学效果和教学效率,也可以改变学生死记硬背和被动接受知识的学习方式。

3.5 加强实践教学,理论联系实际

工程热力学有较强的工程应用背景,在加强基础理论教学时,还要注意紧密联系工程实际,吸收当今热工科技的新成果,培养学生的创新能力。

实验教学具有直观性强的特点,可以很好地配合课堂教学。除了开设“空气绝热指数的测定”、“饱和蒸汽P-T曲线关系的测定”等验证性试验外,还开设了综合设计性试验,要求学生根据试验目的,自己设计试验方案,写出详细的试验,并选择试验设备和用具,经教师审查合格后,方可开始试验,最后还要进行实验误差分析。通过试验,一方面加深了学生对热力学基本原理的理解和认识,另一方面也锻炼了学生的动手能力和独立分析问题、解决问题的能力。

在课堂教学中,还应注重理论联系实际,把抽象的理论知识与生动的工程实际问题相结合,用热力学理论剖析自然现象,做到学以致用。一方面,可以采用案例教学法。例如,用相对湿度的概念来解释为什么阴雨天晾衣服不易干,而晴天易干;用热效率的概念来解释为什么用电炉取暖比用电驱动热泵取暖浪费等等。另一方面,结合具体教学内容适时地向学生介绍学科的最新研究成果及其应用。例如,在讲解动力循环时,可以选择介绍目前内燃机利用兰金循环回收废热能量,提高整机效率的方法。实践证明,把教学内容与工程实际问题密切联系的教学方法,可以加强课堂教学的前瞻性和趣味性,能有效调动学生的求知欲,使其由“被动接受学习”转变为“主动研究学习”,对提高教学效果大有帮助。

4 强化考试对教学的推动作用

考试作为检验学生对课程内容掌握程度的标尺,关系到教学质量和效果。为了使考试成绩能科学、客观、公平地反映学生对工程热力学知识的掌握和应用能力,同时调动学生学习的主动性和积极性,可采用学生普遍认可的综合评定成绩的方式,即平时成绩占10%、考勤占10%、实验占10%、期末考试占70%。

为了有效避免学生死记硬背概念、定律和公式,教师应综合运用选择题、判断改错题、计算题和综合分析题编制试卷,灵活考察热力学的基本原理及应用。这是因为实际问题往往非常复杂,需要学生灵活应用多方面的理论知识才能做出正确解答。对于那些基础知识不扎实的学生,只是简单记住了书本上概念、定律和公式,面对各种似是而非的叙述也会举棋不定,做出错误判断也不足为奇。

5 结束语

工程热力学是一门充满生机的经典学科,大量的经典内容仍是现代学子为培养创新能力必须掌握的重要基础。由于课程具有概念多且抽象、知识点多且相互交叉、公式多且应用条件复杂的特点,教师要把这门课讲得精彩很不容易。因此,如何有效的提高“工程热力学”的教学质量、解决学生难学、教师难讲的问题,是值得长期研究的课题。

针对我校热能与动力工程专业课程体系的教学改革,并结合自己的教学实践,通过以上的尝试,有重点、有目的的讲解,取得了一定的效果,希望能对提高本课程的教学质量有所贡献。

参考文献

[1] 沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007.

[2] 曾丹苓,敖越等.工程热力学[M].北京:高等教育出版社,2002.

[3] 何雅玲.工程热力学精要分析及典型题精解[M].西安:西安交通大学出版社,2000.

[4] 何宏舟,邹峥等.提高“工程热力学”课程教学质量的方法研究[J].集美大学学报,2002(3):3.

化学热力学的研究方法范文5

药学专业学生通过学习物理化学课程可以更好的理解和掌握后续专业课程,物理化学的许多理论在药学实践中都有所应用,但是,现有的大部分物理化学教材,仍然是以解决化学化工问题的角度来讲述物理化学的理论,部分教材即使对药学相关方面有所涉及也仅仅是以知识拓展或习题的形式展开,学生对物理化学和药学的关系感受不深,导致学生无法学以致用。因此,我们在物理化学教学内容方面做了许多改动:热力学基本定律是化学热力学的基础[3],但其中复杂的数学推导过程导致学生望而生畏,为此,在教学中,我们只要求学生理解基本原理,了解公式的意义,掌握基本公式的应用即可。但是,对于在药学专业中有所应用的几个重要的概念,我们则特别加以强调,比如,熵函数是热力学的基本函数,在药学领域,也经常使用熵函数表征药物结构特性,确定合成条件,分析药物代谢机理,辅助药物剂型设计等,而传统教学中仍沿用了化学专业的讲授思路,没有体现出其在药学专业中的特殊意义,因此,在教学中,我们简单的通过卡诺循环引入熵函数之后,便从统计热力学开始,以微观的角度,从熵函数的物理意义出发,介绍熵函数,并进一步的通过学习掌握熵函数的应用。

化学平衡和相平衡是热力学的基本应用,学生通常会在学习这部分内容的时候意识到物理化学和药学的密切联系,作为教师,应该有意识的引导和帮助学生建立和掌握这种联系,为此,在教学中,我们通常选择以现实中存在的药物合成反应为例子,向学生讲解相关公式的应用,而在相平衡中,我们在理论教学的同时,还会向学生解释冷冻干燥技术、超临界二氧化碳萃取、水蒸气蒸馏等相关药物提取技术,特别是在学元相图时,我们会引导学生思考,低共熔点的存在,对于药物剂型设计有何影响,如何利用和避免这种影响,并向学生展示其具体应用。相比化学热力学,化学动力学与药学的关系更加明显[4],其基本理论在药物稳定性、药物体内代谢等方面具有显而易见的应用,在教学中,我们强化了这种联系,通过设计习题,以具体药物的代谢速率、药物贮存期预测等相关案例为载体,让学生亲自动手应用动力学理论,解决专业问题,这一方面有利于学生对于物理化学基本知识的掌握,也有利于学生后续相关课程的学习,采用这种以专业需求为导向的教学方法,能够明显的提高教学效果。同样的,在讲授表面化学、胶体化学部分内容时,我们也以满足专业需求为出发点调整了相关教学内容。根据我校药学专业培养计划,在讲授这部分内容时,学生已经开始了药剂学课程的学习,部分知识学生其实已经有所了解,比如表面张力、表面活性剂等内容,为避免重复,在授课时,我们更加侧重于在理论的高度去分析、解释相关的内容,这样会更加有助于学生对已学知识的理解与掌握。

2结合学生实际,改革教学方法

教学过程是一个师生之间互动的过程,目的是使学生掌握所传授的知识,然而,不同学生的学习基础不同,对知识的理解、领悟能力也有所差别,因此需要教师根据学生的实际情况,灵活的把握教学内容和教学方法。笔者所在学校为地方本科院校,学生数理基础较差,抽象思维能力不足,对公式繁多、逻辑性强的物理化学课程有明显的畏难情绪,有较多的学生认识不到物理化学与药学专业的联系,因此学习兴趣和积极性不高,同时,学校有大专和本科两个不同层次,不同层次的学生知识基础和学习能力有所差别,对于物理化学课程的要求也有所不同,这些具体的现状,既是我们在教学中所面临的困难,也是我们把握教学内容和教学方法的重要依据。

针对这些现状,我们灵活选择教学方法;提高教学效果。比如:采用案例分析法、问题引入法等教学方法,通过展示具体的药学或生活实践案例,引出其背后隐藏的物理化学原理,通过理论联系实际,启发学生思考,加强学生对于理论知识的掌握。比如,在讲解动力学部分时,分析药物在人体内的吸收、代谢过程,分析其动力学特性对于药物剂型设计的影响。活用讲授法这一基础教学方法,对教学内容有所取舍,以适应学生实际情况和专业需求。对于物理化学繁多的公式,讲授时可以弱化公式的推导过程,对于专科生则可以完全取消公式推导的讲解,转而强调公式的应用条件,并通过习题的方式,帮助学生掌握其具体应用。熟练和合理使用多媒体技术。多媒体技术的出现,让教学过程变得更加灵活有效,方便快捷,通过图像、视频,学生可以对知识有更加直观的体会。比如,在学习固体的润湿这部分内容时,通过展示大量丰富的相关图像和视频,比如,原油泄漏环境中的海鸟、“魔法砂”的神奇现象、荷叶上的水滴等,教师可以灵活的让学生理解教学内容,并用理论对这些现象进行分析,既有利于知识的掌握,又活跃了课堂氛围。

3以应用为导向,重视实验教学

物理化学实验是物理化学教学中的非常重要的一部分内容,其教学目的在于使学生掌握实验操作技能和数据处理能力,学会利用物理化学理论解决药学专业问题,培养学生理论联系实际的应用能力和解决未知问题的创新能力和探索精神。为实现教学目标,在教学中,我们主要作了如下努力:注重实验操作细节,加强基本功的训练。在实验教学中,我们发现,许多本该在其他课程中掌握的基本操作,学生掌握的并不够牢固,比如分光光度计的使用,滴定操作,甚至某些专科学生配制特定浓度溶液都无法独立完成,这些问题不仅会影响到物理化学实验的完成,还会对学生后续专业实验造成很大的影响。因此,在教学中,除了集中讲解、演示之外,实验教学人员还全程对学生进行观察,一旦发现学生有操作问题,则立即对其进行讲解和指导,直到确认其掌握为止。针对药学专业需求开设物理化学实验。

化学热力学的研究方法范文6

关键词:环境科学;无机及分析化学;教学

中图分类号:G642文献标志码:A文章编号:2096-000X(2016)24-0140-02

Abstract:Accordingtotherequirementsofthecourse,thearticleexplainshowtoselectteachingmaterialsandteachingcontentofinorganicandanalyticalchemistrycourse.Atthesametime,onthebasisofthecharacteristicsoftheenvironmentalscienceandthestudents'situation,theteachingreformoftheclassroomteachingisdiscussed.

Keywords:environmentalscience;inorganicandanalyticalchemistry;teaching

在环境科学本科专业的培养方案中,化学课程占了比较大的比重。学生首先学习的化学专业基础课是《无机及分析化学》(有配套的无机及分析化学实验课程),由无机化学与分析化学的化学分析两大部分内容整合形成。它将为后续课程的学习奠定基础,如有机化学、仪器分析化学、物理化学和环境化学等。因此,有必要对无机及分析化学的教学进行探讨,激发学生的学习兴趣,提高课堂的教学效果,以适应科技的飞速发展。

一、教材的选择

目前,该课程采用高等教育出版社的面向21世纪课程教材,《无机化学与化学分析》(第三版),史启祯主编。教材分为两大部分-主篇和副篇,主篇的内容是基础,是对学生的基本要求,副篇的内容供教师选用和学生选读。主篇共有19章,第1章到第12章为无机化学及分析化学的基础理论知识,而第13章到第17章为元素、化合物知识,第18、19章分别介绍氢和核化学的一些相关知识。与旧版相比,新版引入了学科的前沿知识,选取的教材内容更加新颖,有助于学生初步了解学科的发展趋势。为了适应新形势下的课堂教学要求,新版也调整了部分章节内容的编排顺序。别具特色的是,教材中的习题作业全部用英语表达,并且最后还给出了一些英文词汇的解释[1]。

二、教学内容侧重点的选择

该课程是对环境科学本科专业的学生开设的,而不是化学本科专业的学生,所以课时进行了一定的压缩。因此教学过程中不可能面面俱到,不需要像化学专业的学生那么深入,要求讲授基础知识。

环境科学专业毕业生应获得以下几方面的知识和能力:

1.掌握普通化学、分析化学、物理化学、工程力学、测量学、工程制图、微生物学、水力学、电工学、环境监测与评价、环境工程学科的基本理论、基本知识;2.掌握水污染控制工程、空气污染控制工程、噪声污染控制工程、固体废物处理处置与资源化工程的基本原理和设计方法;3.具有污染物监测和分析、环境监测、环境质量评价、环境规划与管理的初步能力;4.了解环境科学与技术的理论前沿和发展动态;5.掌握文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。由此出发,在主篇内容的教学中,应该把重点放在第1章到第12章的无机化学及分析化学理论知识上。

三、教学改革的四个方面

(一)在教学中渗透学科研究的前沿领域

高校教学必须重视各学科领域的最新发展,将其融会贯通到教学进程中,开阔学生的眼界,培养学生的兴趣,提高学生的知识素养,使教学与时俱进,不断推陈出新,保持足够的吸引力,为培养创新型人才打下夯实的基础。

对环境科学专业的《无机及分析化学》课程而言,教学中主要渗透的是环境学科以及无机、分析领域的发展。例如第六章《氧化还原反应与电化学》讲授中,介绍了废弃干电池是环境杀手,台湾成功大学研发以硫酸亚铁溶解废电池,再萃取成为磁性纳米吸附剂,反而成为污染防治的助手。第19章《核化学简介》讲授中,介绍了中国科学院东北地理与农业生态研究所环境修复材料与技术学科组研制出一种可净化放射性铯污染的新型纳米材料。同时,该材料还可在外加磁场作用下,实现吸附材料与废水的简便、快速分离,为土壤重金属污染治理研究提供了一条新的思路[2,3]。

(二)在教学中多媒体教学与传统教学相结合

目前,多媒体教学已经普遍应用于高校的各学科教学中,因其灵活多变,可以充分调动学生的积极主动性,大大提高了教学质量。

例如讲授现代价键理论的要点-原子轨道最大重叠时,运用多媒体教学,可以直观、具体、形象地演示这一抽象的微观过程,学生在动态的画面中,似乎看得见原子轨道的形状和取向,这是传统的教学手段无法达到的。

但也不能一味地全部采用多媒体教学,摒弃传统教学。不是所有的教学内容都适合使用多媒体手段。《无机及分析化学》涉及到许多基本定律和公式,教师用粉笔在黑板上层层深入地推导,通过板书、语言、动作和表情与学生进行实时交流,这比用多媒体教学更能使学生深刻地理解基本定律和公式的关键之处。例如,在讲授一元弱酸和弱碱平衡计算时,利用多媒体讲授,教师被“固定”在電脑前面,与学生的交流很少,哪怕是逐步地呈现公式,学生也不容易掌握。而在传统的黑板上,教师科学、严谨地一步步推导,加上富有逻辑性的推理语言、板书的停顿、近距离与学生眼神的交流,使学生更容易理清思路,紧跟教学的节奏,学生收获的不仅是一条定律或公式,更是一种思考方法。

因此,如果教师针对不同的章节内容采用不同的教学媒体,将多媒体技术和传统教学方式有机结合起来,将会达到事半功倍的效果[4]。

(三)在教学中创设问题情境

问题教学法是一种以问题为中心进行教学活动的方法。它是贯彻启发式教学的基本教学方法。在传统教学甚至多媒体教学中,“填鸭式”教学是主流模式,教多问少。教师即便提出一些问题,或者学生被动地回答,或者教师自问自答,或者教师只问不答,在教学中几乎没有给学生提供解決问题的时机,学生的能力也就无法提升。

在教学中如何创设问题情境?

1.利用学生代表性的错误创设问题情境

在讲化学热力学的基本概念-热和功时,教师提问:热和功属于状态函数吗?不少学生联想温度和压强,马上回答是!这时教师要求学生回忆状态函数的特性,讨论热、功与状态函数的性质比较,最后由学生自己得出热和功不属于状态函数。

2.利用学生固有知识与客观事实的矛盾创设问题情境

同样是在讨论热和功基本概念,教师提问:热和功是系统的能量吗?学生很有把握地说是。教师明确指出,并非如此。这时教师可以逐步地追问:系统的状态没有改变,有没有热和功?-系统从同样的始态到同样的终态,热和功一样?通过问题教学,学生真正理解和掌握了热和功这两个基本概念。

3.利用学生对同一问题的不同看法创设问题情境

在讲价层电子对互斥理论时,教师提问:水和氨分子的键角大小比较?学生的意见不统一,教师要求学生利用VSEPR理论计算水和氨分子的分子理想模型,继而通过电子对排斥力顺序判断分子的立体结构及键角大小,最后顺利地导出答案:水分子的键角小于氨分子的键角。

4.利用提出的假设创设问题情境

在讲化学热力学的基本概念-自发过程时,教师提出假设:热可以自动从低温物体传向高温物体。创设如下的问题:热从低温物体传向高温物体,再从高温物体传向低温物体,从始态到终态,系统和环境有什么变化?教师要求学生分组讨论。

5.利用课堂演示实验创设问题情境

对于化学课程来说,课堂演示实验是很重要的一种教学形式。结合现代化的多媒体技术,还可以进行虚拟的实验演示,在演示实验过程中,可以询问学生关于实验操作或实验现象的问题。

在教学中有时候会同时应用几种创新问题情境的方法,如提出假设并且利用学生的不同看法来提出问题。这类方法很多,教师只要用心,都可以游刃有余地应用到教学中。

如何给学生提供解决问题的时机?

要留出足够的时间给学生思考回答问题;要设计难度适中的问题给学生解决;给学生的提问要回答,切忌只问不答,尽量避免自问自答;

在教学中创设问题情境,不仅能使学生获取知识,熟练掌握基本技能,更重要的是能调动学生的积极性和主动性,培养学生独立思考、自主学习的能力[5]。

(四)在教学中加强各知识点的联系

在多年的教学生涯中,教师对《无机及分析化学》每个章节的关键点和知识点都了如指掌,在教学中也会强调对每个知识点的讲解,然而对知识点之间的联系尤其是各章节知识点的联系相对不够重视,也较少融入到教学中。如何突出各章节知识点之间的逻辑关系?借鉴思维导图,以图形方式说明各章节的主要教学内容,直观地给出各章节关键点与知识点之间的内在联系,可以反映知识点之间的层层推进,使学生形成一个较为完整的知识网络,培养学生的逻辑能力[6],例如图1反映了化学热力学和化学动力学的关系。

目前,我们正在录制慕课视频。接下来,我们将会尝试线上学习和线下教学按一定比例相结合的混合教学模式。总之,我们的教学模式也不是一成不变的,需要在教学中不断前行,摸索总结经验,提出更多、更好的教学方式、方法来改进教学质量。

作者;许妙琼

参考文献 

[1]史启祯.无机化学与化学分析(第三版)[M].北京:高等教育出版社,2011. 

[2]邱锐.中科院东北地理所制备出可净化核污染新型纳米材料[N].第四版.中国科学报,2014,3(6). 

[3]董斌,吕仁庆,曹作刚.无机化学研究的前沿领域在教学中的应用[J].高等函授学报(自然科学版),2011,24(2):29-33. 

[4]杨影洲.无机化学教学中使用多媒体技术应注意的问题[J].长春理工大学学报综合版,2006,2(2):113-114.