生物燃料的优点范例6篇

前言:中文期刊网精心挑选了生物燃料的优点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

生物燃料的优点

生物燃料的优点范文1

[关键词] 生物质电厂;燃料;皇竹草;组织模式

[作者简介] 刘毅,中国能源建设集团广东省电力设计研究院工程师,研究方向:热能与动力,广东 广州,510663

[中图分类号] S216 [文献标识码] A [文章编号] 1007-7723(2013)06-0019-0003

生物质发电主要利用在农林业生产中产生的废弃物作为发电燃料,是一项具有广阔发展前景的可再生能源产业。根据2005年国家颁布实施的《中华人民共和国可再生能源法》,可再生能源被列为能源发展的优先领域,是国家大力推动的能源产业。同时,在《国家中长期科学和技术发展规划纲要(2006~2020年)》中,生物质发电也被列为能源领域中重点开发利用的技术,并作为国家能源战略的重要组成部分。随着石油、煤、天然气等资源日益枯竭,生物质发电将越来越受到重视,在未来的应用将越来越广泛。

从目前国内已建成的生物质电厂运行情况来看,多数电厂在燃料的收集、运输和储存过程中均存在难题。特别是50MW的大型机组,燃料组织环节的问题已成为制约电厂生存与发展的关键因素。针对这种情况,本文提出一种新型的燃料组织模式:种植皇竹草作为原料。通过对这种新型燃料组织模式的探讨,笔者希望能为以后的生物质电厂燃料系统的设计提供一种新思路。

一、传统的燃料组织模式

生物质电厂的燃料一般采用在农林业生产中产生的废弃物,如秸秆、锯末等。这些燃料具有密度小、热值低、分布范围广等特点,且具有季节性。一个容量为2×50MW的生物质电厂每年所需燃料量大约为60×104t,燃料收集半径大约为30~60km,根据各地资源分布情况不同而有所差异。

目前最常见的燃料组织模式大致分为以下几个步骤:a)从农户处收集燃料;b)在厂外收储站对收集到的燃料进行切碎、打包等再处理;c)将处理好的燃料运输至场内储料场储存。

而为了降低电厂的初始投资及管理难度,减少电厂的人员,并兼顾燃料供应安全性,降低风险,大多数电厂的燃料组织都是采用电厂自主组织完成和由当地的农户或经纪人组织完成相结合的方式,只是在各自完成的比例上有所差异。

二、燃料组织过程中的常见问题

(一)燃料收集困难

首先,农林业生产具有很强的季节性,在农林作物未收获的时段,将会产生燃料供应不足的问题。其次,生产过程中产生的废弃物的所有权分属千家万户,在收集过程中电厂要与收集半径内的多个农户个体或经纪人打交道,工作量非常大。再次,电厂作为需方,缺乏对供方的约束力,有时甚至还会出现农户单方面涨价或突然停止提供燃料的情况。最后,农户对燃料的收集主要是以人力为主,效率低下,导致其积极性不高。上述因素都会导致燃料收集困难。

(二)燃料运输成本高

我国农村地区实行土地承包责任制,少有机械化集中生产,人均耕地面积少,导致燃料分布零散,运输工作量大,成本高。无论是电厂挨家挨户去收取,还是由农户各自送货上门,运输成本最终都会反映到燃料成本上。即使设置厂外收储站,也只能使运输成本高的问题有所缓解,而无法得到根本改观。

(三)燃料质量难以保证

目前生物质电厂普遍采用炉排炉和循环流化床锅炉。锅炉对燃料含水率的设计值一般在20~30%。但农户均采用自然风干的办法对燃料进行处理,最终含水率一般在30%以上。有时由于风干时间不够长,含水率甚至会远超30%。同时,在燃料收集过程中,由于不可能做到每户每次都详细检测,农户往燃料中掺水掺石块的事情时有发生。

含水率过高会导致燃料在储存时易发酵、自燃,从而产生安全隐患,而且在进入炉膛燃烧时会增加锅炉排烟损失,使锅炉效率下降。往燃料中掺石块则可能会损坏解包机、给料机等上料设备。

(四)燃料供应的安全性难以保证

生物质燃料具有密度小、体积大的特点,因此储存设施占地大,储量却很少。而出于成本控制方面考虑,储存设施的容积也会受到一定的限制。

但是在燃料的组织过程中,存在诸多经常遇到且难以回避的困难。例如,燃料供应的季节性影响、燃料收购的价格上涨、电厂与农户之间产生纠纷、恶劣的气候因素影响等。当这些因素的影响超过厂内和厂外储存设施的缓冲承受能力时,电厂将不可避免地遭遇“无米下锅”的尴尬情景。

据笔者了解,国内的生物质电厂曾出现过多例因燃料供应紧张,燃料收购价格在短时内大幅上涨的事件,甚至还曾有电厂因为缺少燃料而被迫停机。

三、新型燃料组织模式

为了电厂长期安全稳定运行,避免出现以上问题,国内某生物质电厂工程正在尝试采用一种新型的燃料组织模式。该电厂主要采用在电厂周边50km范围内种植的皇竹草作为燃料,同时也可以收集该半径内的各类农林业废弃物作为燃料。

电厂规模为2×50MW机组,年利用小时按6000h计,年消耗燃料量折合成含水率10%的皇竹草约为48×104t。

(一)皇竹草的特性

皇竹草是我国从南美洲哥伦比亚引进的高产量优质牧草,其植株高大,根系发达,为多年生植物,主要繁殖方式为无性繁殖,适宜种值于各种类型的土壤,并具有很强的耐酸性和抗干旱能力。皇竹草性状介于荻苇与高粱之间,其外形和生长形态类似甘蔗,但中空,节间较脆嫩,属于软质秸秆。

皇竹草最适宜在热带和亚热带气候条件下生长,而且对气温条件的适应性较强,在靠近北方的地区也可以种植,但是温度较低会抑制其生长。在我国南方地区种植皇竹草生长周期短,收获期长,春季栽植后2~3个月即可收割,每年可收割4~6次,栽植一次可连续收割6~7年,每亩每年可产鲜草达25t。

皇竹草鲜草含水量为75%左右,除去水分,主要成分为纤维素、木质素和半纤维素,占固体物料总重量的80%以上。除此之外,还含有蛋白质、脂类、灰分、果胶、低分子的碳水化合物等。对含水率10%的皇竹草进行元素分析,结果表明,在同等含水率基础上,其热值低于树枝、锯末的热值,而与水稻、玉米秸秆等大多数生物质的热值相当。

(二)种植模式及规模

该电厂所在地区为经济欠发达的山区,有大量山坡地可用来种植皇竹草。项目公司计划利用山坡荒地共约15×104亩,由当地政府引导农户种植,项目公司负责技术支持和技术服务,并回购收获的皇竹草作为电厂的燃料。

依靠种植,这些荒地年产皇竹草鲜草最高可达375×104t,折合含水率10%的干草约为105×104t,作为电厂的主要燃料。同时在周边地区收集当地的农林废弃物,每年约26×104t,可作为补充,满足电厂需要。

(三)燃料组织模式

该电厂的燃料组织模式策划为:项目公司+政府+燃料公司+经纪人+农户。首先,项目公司和当地政府签订项目合作协议书,政府在政策上给予大力支持,对当地农户的种植予以科学引导。然后,由项目公司组建燃料公司,同时发动并培育一批当地的经纪人,并在每一个种植乡镇为电厂配套建设燃料收储站(约20个)。

农户种植皇竹草可以采用两种模式,一种是自己承包土地种植,将收获的产品卖给燃料公司;另一种则由经纪人承包土地,农户受其雇佣进行种植。

皇竹草收获后,就地进行晾晒,然后由农户自行送至电厂或厂外收储站,或者由燃料公司或经纪人上门收取。收集到燃料后,合格的直接入库储存,需要再处理的则经过切碎、脱水等处理之后再入库储存。

电厂设置20个厂外收储站和1个厂内储料场,共可满足2台机组65天的燃料量。

(四)优点及缺点

这种新型的燃料组织模式有自己独特的优点:a)农户或经纪人可以承包大面积的土地进行种植,燃料的分布变得比较集中,收集工作比较容易;b)燃料产地集中,使运输工作量和成本大大降低;c)电厂收购燃料需面对的对象较少,可以建立起规模较大的长期、稳定的合作关系,而且可以在收购时进行抽检,都有助于保证燃料的质量;d)皇竹草的种植有当地政府和项目公司组织和引导,有利于维持燃料市场的稳定、有序。皇竹草的生长受季节的影响要比其它农作物小得多,通过合理调配收割时间,燃料供应可以做到全年无间断。这些都是电厂燃料供应安全性的有力保障。

以上是新型燃料组织模式的优点,但任何事物都具有两面性,这种模式也有一些缺点:a)皇竹草的种植需要大面积的土地,同时农户的利益也需要担保,这些都需要政府部门的积极参与和大力支持,而且项目实施的初始阶段难度较大;b)该模式具有一定的地域性限制,较适合在南方地区进行。因为皇竹草虽然对气温条件的适应性较强,但是越靠近北方其产量越低,该模式的经济性越差;c)该模式尚未经过工程实际检验,拟采用该模式的生物质电厂尚处于可行性研究报告审查通过的阶段,在以后的项目实施阶段是否会遇到新的困难尚未可知。

四、结 语

因为篇幅的关系,本文仅在技术层面对新型燃料组织模式和传统燃料组织模式进行对比分析,未再在经济性方面进行探讨。

本文提出的这种新型的生物质电厂燃料组织模式从技术上来说完全可行,而且可以明显改善甚至解决一些在传统的燃料组织过程中无法回避的难题。但是它也有自己不可忽视的缺点,希望能有后来者继续这个课题,找到能够改善的办法。

[参考文献]

[1]GB 50762-2012, 秸秆发电厂设计规范[S].

[2]徐晓云. 生物质电厂燃料运输、贮存及输送系统的设计研究[J].电力技术, 2010,19(6).

[3]文科. 大型生物质电厂燃料收储运系统工程应用分析[J].广西电力, 2011,34(6).

[4]陆涛. 生物质电站收储运系统在农垦环境下的应用[J].可再生能源, 2011,29(5).

生物燃料的优点范文2

电池在我们的生活中发挥着非常重要的作用,但在使用过程中却带来了严重的环境问题。一节一号电池腐烂在地里,能使一平方米土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。严峻的现实迫使我们寻找电池发展的新出路,生物燃料电池的问世让我们看到了曙光。本文初步介绍了生物燃料电池的基本情况,以期能开阔视野,对中学化学教学有所裨益。

1穿越历史,生物燃料电池向我们走来

早在19世纪初,英国化学家戴维就提出了燃料电池的设想,1839年英国人格拉夫发明了最早的氢燃料电池[1]。可以说发展到今天,氢燃料电池已成为了最成熟的燃料电池,但在氢气的制备、输送、电池的能量转化率、使用安全性等方面存在许多问题,陷入了尴尬的发展处境[2]。生物燃料电池的出现又让我们充满了新的期待。

生物燃料电池的发展可追溯到20世纪初,1910年英国杜汉姆大学植物学教授Michael Cresse Potter用酵母和大肠杆菌进行试验时,发现了微生物也可以产生电流,从而拉开了生物燃料电池研究的序幕。六十年代,为了将长途太空飞行中的有机废物转化成电能,美国航空航天管理局投入了大量的人力和物力进行研究,真正掀起了生物燃料电池研究的。后来尽管由于技术原因,生物燃料电池曾一度陷入停滞状态,但七、八十年代出现的石油危机又让电池家族的新成员成为人们瞩目的中心,自此之后迎来了更加广阔的发展前景[3]。

简言之,生物燃料电池就是以微生物、酶为催化剂,将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。

2两种典型的生物燃料电池

2.1 微生物燃料电池

典型的微生物燃料电池如上图所示,它由阳极室和阴极室组成,质子交换膜将两室分隔开。它的基本工作原理可分为四步来描述:(1)在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2)介体捕获电子并将其运送至阳极;(3)电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4)氧气在阴极接收电子,发生还原反应。我们以葡萄糖为例来具体地说明这个过程[1]:

阳极半反应:

C6H12O6+6H2O6CO2+24H++24e-E0=0.014V

氧化态介体 + e-还原态介体

阴极半反应:

6O2+24H++24e-12H2O E0=1.23V

2.2 酶燃料电池

如下图,葡萄糖在葡萄糖氧化酶(GOx)和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。双氧水得到电子,并在微过氧化酶的作用下还原成水。

阳极半反应:葡萄糖葡萄糖酸+2H++2e

阴极半反应:H2O2+2H++2e2H2O[3]

2.3生物燃料电池中的介体及其作用

2.3.1介体的作用

在生物电池的设计中一个最大的技术瓶颈就是如何有效地将电子从底物运送至电池的阳极。科学家设想在阳极室加入一种或几种化学物质,作为运输电子的介体。介体的作用如图3所示。

2.3.2 介体需满足的条件[1][3]

经过研究发现充当介体的分子必须具备严格的条件:①介体的氧化还原电极电势应与代谢物的电势相一致;②介体的氧化态和还原态都应易溶于电解质溶液;③在溶液中有足够的稳定性且不能吸附在细菌细胞或电极的表面;④介体的电极反应快;⑤微生物燃料电池中的介体应易于穿透细胞膜且对微生物无毒害作用;⑥微生物燃料电池中的介体在得到电子后应易于从细胞膜中出来;⑦介体的任一种氧化态都不会对微生物的代谢过程造成干扰。

生物燃料电池中常用的介体有硫堇、EDTA-Fe(Ⅲ)、亚甲基蓝、中性红等。

3 生物燃料电池的优点

与传统的化学电池技术相比,生物燃料电池具有操作上和功能上的优势(表1)。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的生物能处理,生物燃料电池能在常温、常压甚至是低温的环境条件下都能够有效运作,电池维护成本低、安全性强。第三,生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,不会产生污染环境的副产物。第四,生物燃料电池具有生物相容性,利用人体内的葡萄糖和氧为原料的生物燃料电池可以直接植入人体。第五,在缺乏电力基础设施的局部地区,生物燃料电池具有广泛应用的潜力。

表1化学燃料电池与生物燃料电池比较[3]

4生物燃料电池的用途[1][5]

4.1改善汽车的燃料结构

使用生物燃料电池,1L糖类物质的浓溶液氧化产生的电能可供一辆中型汽车行驶25-30 Km,如果汽车的油箱为50L的话,装满糖后可连续行驶1000Km而不需要再补充能源。使用生物燃料电池,一方面可控制因化石燃料燃烧导致的空气污染问题,另一方面还可避免因发生交通事故而引发的汽油起火燃烧甚至是爆炸。

4.2污水处理

2005年,由美国宾夕法尼亚州立大学的科学家洛根率领的一个研发小组宣布,他们研制出一种新型的微生物燃料电池,可以把未经处理的污水转变成干净用水和电能。

4.3为可植入人体内的设备提供能量支持

2005年日本东北大学教授西泽松彦领导的研究小组新开发出了一种利用血液中的糖分发电的燃料电池。这样的生物电池可为植入糖尿病患者体内的测定血糖值的装置提供充足电量、为心脏起搏器提供能量。

4.4 在机器人设计中的作用

2001年英国西英格兰大学的科学家们研制出了一种名为“Slugbot”的机器人(如图5),专门用于搜捕危害种植业的鼻涕虫。“Slugbot”将抓获的鼻涕虫放在一容器里,在酶的作用下将其转化成电能。

2000年美国南佛罗里达大学科学家斯图亚特.威尔金森(Stuart Wilkinson)宣称,他们已经研制出了一种需要吃肉以给体内补充电能的机器人Chew Chew。 这种机器人体内装有一块微生物燃料电池,为机器人运动和工作提供动力。这种微生物燃料电池可以通过细菌产生酶,消化肉类食物,然后把获取的能量再转化为电能,供给机器人使用。

4.5在航空航天上的使用

为处理密闭的宇宙飞船里宇航员排出的尿液,美国宇航局设计了一种巧妙的方案:用微生物中的芽孢杆菌来处理尿液,产生氨气,以氨气作为微生物电池的电极活性物质,这样既处理了尿液,又得到了电能。一般在宇航条件下,每人每天排出22克尿,能得到47瓦电力。

5 生物燃料电池发展展望

在化石燃料日趋紧张、环境污染越来越严重的今天,生物燃料电池以其良好的性能向我们展示了一个美好的发展前景。但不可否认的是,由于技术条件的制约,目前生物燃料电池的研究和使用还处于不成熟阶段:电池的输出功率小、使用寿命短。例如美国得克萨斯大学亚当・海勒博士研制的葡萄生物电池能提供的功率仅为2.4微瓦,这说明要点燃一个小灯泡需要100万株葡萄,并且产电能每天都在衰减。由此导致生物燃料电池的使用范围非常狭小,远没有达到全面推广的时期。研究人员正在积极研究,努力克服这一瓶颈。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

5.1开发无介体生物燃料电池[5]

有一类铁还原性微生物,由于其细胞膜上有丰富的细胞色素,表现出较强的电化学活性,在生物电池中能直接将电子转移至阳极而不需要借助任何介体。研究表明Rhodoferax ferrireduler和Geobacteraceae种群的微生物都具有这种功能,它们在电池内发生的反应可表示为:

C6H12O6+6H2O+24Fe(Ⅲ) 6CO2+24Fe(Ⅱ)+24H+

+24e-。

无介体生物燃料电池的优点主要表现为有充足的空间,有利于提高电子转移的效率和速率。

5.2加强对电极的修饰[4]

学者Derek R. Lovley等用石墨毡和石墨泡沫代替碳棒作为电池的阳极,研究发现电池的电能输出大大增加,约为原来的三倍。说明增大电极的表面积可以增大吸附在电极表面的微生物和酶的密度,从而增加电量的输出。

Zhen He等在微生物燃料电池中用微生物来修饰阴极,加快了氧气的还原反应速率,极大地提高了电池输出的电流密度。

5.3 选择合适的质子交换膜[4][6]

质子交换膜能有效地维持电池两极室内酸碱度的平衡,保证电池反应的正常进行。Liu和Logan在电池的设计中取消了质子交换膜,结果发现电池的库仑输出效率由55%降到了12%;Min et al.研究发现如果氧气由阴极室进入阳极室,电池的库仑输出效率会从55%降至19%。这说明质子交换膜的质量好坏关系到生物燃料电池的性能,选择合适的质子交换膜,增强质子的穿透性而降低氧气的扩散成为了生物燃料电池开发中的一个重要环节。

5.4 开发光化学生物燃料电池[5]

利用光合细菌或藻类吸收太阳光,并将其转化成电能的装置称为光化学生物燃料电池。科学家曾设计出这样的一种电池:用石墨作阳极,阳极室内有项圈藻和可溶性奎宁介体;阴极也为石墨电极,电解质溶液为铁氰化钾。把这种电池先放在阳光下光照10小时,然后在黑暗的环境中放置10小时,发现可产生1mA的电流(外电路电阻为500欧),只不过光子转化成电子的效率只有0.2%。后来人们又用Synechococcus细菌来代替项圈藻,发现转化率可提高到3.3%。

参考文献:

[1] A.K.Shukla,P.Suresh,S.Berchmans ,A.Rajendran.Biological fuel cells and their applications[J]. Current Science,2004,(4):455-468.

[2] 沈萍.微生物学[M].北京: 高等教育出版社, 2000,446-450.

[3] 刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006,(11):1530-1536.

[4] 连静,祝学远,李浩然,冯雅丽.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005,(22):1671-1815.

[5] Frank Davis and Séamus P.J.Higson.Biofuel cells-Recent advances and applications[J].Biosensors and Bioelectronics, 2007,(22):1224-1235.

[6] Alyssa L.Walker,Charles W.Walker Jr.Biological fuel cell and an application as a reserve power source[J].Journal of Power Sources,2006,(160):123-129.

[7]袁丽霞.多种多样的电池[J].化学教学,2006,(12):53-56.

[8]仇红亮.漫谈氢能源发展的尴尬[J].化学教学,2005,(6):37-38.

致谢:本文在写作过程中,得到化学系乐翠娣老师的指导和帮助,谨致以诚挚的谢意!

生物燃料的优点范文3

1 生物质固体成型燃料

农作物秸秆通常松散地分散在大面积范围内,且堆积密度较低,这给收集、运输、储藏和应用带来了一定的困难。在一定温度和压力作用下,将秸秆压缩成棒状、块状或颗粒状等成型燃料,提高其运输和贮存能力,改善秸秆燃烧性能,提高利用效率,不仅可以用于家庭炊事、取暖,也可以作为工业锅炉和电厂的燃料替代煤、天然气、燃料油等化石能源。

2 不同类型的生物质固体成型燃料

3 生物固体成型燃料的特点

生物质固体成型燃料是生物质能开发利用技术的发展方向之一,可为农村居民和城镇用户提供优质能源,近年来越来越受到人们的广泛关注。其体积缩小6~8倍,密度约为1.1~1.4吨/m3;能源密度相当于中质烟煤:使用时火力持久,炉膛温度高,燃烧特性明显得到了改善。

二 国外生物质固体成型燃料发展现状

1 国内外发展现状

目前,国外生物质能固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用整个产业链的成熟体系和模式。

2 生物质固体成型设备

3 热利用设备

4 发展现状

2005年,世界生物质固体成型燃料产量已经超过了420万吨,其中美洲地区110万吨,欧洲地区300万吨。预计2007年将总产量超过500万t。欧洲现有生物质固体燃料成型厂70余个。仅瑞典就有生物质颗粒加工厂10余

家,单个企业的年生产能力达到了20多万吨。国外生物质固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用的产业链成熟体系和模式。

5 欧盟标准-CEN/TC335固体生物质燃料

欧盟固体生物质燃料标准化工作始于2000年。按照欧盟的要求,由欧盟标准化委员会(cEN)组织生物质固体燃料研讨会,识别并挑选了一系列需要建立的固体生物质燃料技术规范。欧盟标准化委员会准备了30个技术规范,分为术语;规格、分类和质量保证;取样和样品准备,物理(或机械)试验;化学试验等5个方面。技术规范的初始有效期限制为3年,在2年以后CEN成员国需要提交对标准的意见,特别是可否转成欧盟标准。(表2)

三 我国发展生物质固体成型燃料的有力条件

1 国内发展现状

我国生物质固体成型技术的研究开发已有二十多年的历史,20世纪90年代主要集中在螺旋挤压成型机上,但存在着成型筒及螺旋轴磨损严重、寿命较短、电耗大、成型工艺过于简单等缺点,导致综合生产成本较高,发展停滞不前。进入2000年以来,生物质固体成型技术得到明显的进展,成型设备的生产和应用已初步形成了一定的规模。

2 形成了良好的政策法规环境

国务院办公厅《关于加快推进农作物秸秆综合利用意见的通知》中指出“结合乡村环境整治,积极利用

秸秆生物气化(沼气)、热解气化、固化成型及炭化等发展生物质能,逐步改善农村能源结构。”财政部出台了《秸秆能源化利用补助资金管理暂行办法》,采取综合性补助方式,支持从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的企业收集秸秆、生产秸秆能源产品并向市场推广。

3 核心技术趋于成熟

目前,我国秸秆固体成型的关键技术已取得突破,特别是模辊挤压式颗粒成型技术,已经达到国际同类产品先进水平,有效地解决了功率大、生产效率低、成型部件磨损严重、寿命短等问题,并已实行商业化。全国秸秆固体成型设备的生产和应用已初步形成了一定的规模,固体成型燃料的年产量约20万吨,主要以锯末和秸秆为原料,用于农村居民生活用能、锅炉燃料和发电等。生物质炉具的开发也取得一定的进展,开放了秸秆固体成型燃料炊事炉、炊事取暖两用炉、工业锅炉等专用炉具。

(1)不同的成型技术(图5、6、7)

(3)生物质固体成型燃料示范工程案例

示范地点:北京大兴区:建设规模:年产20000吨固体成型燃料,包括:颗粒燃料生产线1条,年产10000吨:压块燃料生产线1条,年产10000吨;原料类型:各种农作物秸秆、木屑、花生壳等。

工艺技术路线:(如8所示)

执行情况:已完成秸秆固体成型设备的研究设计,形成了具有自主知识产权的成型机,产品如图9、10、11、12所示。

2008年5月通过农业部科教司组织的鉴定,鉴定结论:技术为国内领先,主要技术经济指标居国际先进水平。

(4)生物质固体成型燃料炉

根据用途的不同,生物质固体成型燃料炉具可分为炊事炉、采暖炉和炊事采暖两用炉;根据使用燃料的规格不同,可分为颗粒炉(图13)和棒状炉;根据进料方式的不同,可分为自动进料炉和手动炉;根据燃烧方式的不同,可分为燃烧炉、半气化炉(图14)和气化炉。

(5)拟引进国外先进技术

引进了瑞典Gordic Environment AB公司的pellx生物质固体成型燃料高效燃烧器。(图15)

热输出:10~25kW;

燃烧效率:大约90%;

功率消耗:大约40W

(6)我国生物质固体成型燃料标准体系(图16)

(7)近期拟(已)制订计划(表4)

4 秸秆收储运模式初步建立

农作物秸秆通常松散地分散在大面积范围内。收购组织面广量大,涉及到千家万户,这给秸秆能源化利用带来了困难。经过探索和尝试,各地因地制宜,形成了“农户+秸秆经纪人+企业”、“农户+企业+政府”等各具特色的秸秆收储运模式。(图17)

需求分析:

生物质固体成型燃料适用于农村居民炊事和采暖用能,大中城市工业锅炉、发电和热电联产等。生物质固体成型燃料可为农村家庭提供室内取暖燃料,未来发展潜力巨大;随着国家节能减排政策的实施,大中城市取缔燃煤的工业锅炉将成为必然,将燃煤锅炉改造为燃生物质固体成型燃料锅炉则是一个可行的选择;木质颗粒燃料具有燃烧效率高、自动化程度高、清洁卫生等优点,适合于别墅壁炉等高端人群的冬季采暖,也是未来一个应用方向。

四 发展前景与展望

《可再生能源中长期发展规划》中明确提出“重点发展生物质固体成型燃料”到2010年,生物质固体成型燃料年利用量达到100万吨;到2020年,生物质固体成型燃料年利用量达到5000万吨。(图18)

效益分析:

拉动内需。建设1处年产3000吨秸秆固体成型燃料的示范点,需投资180万元,需要水泥100吨、砖30万块、沙子170吨、钢材70吨。

增加就业。建设秸秆固体成型燃料示范点可引导农村劳动力就地就近就业,每条生产线需要操作工30人,均来自当地农民,按照1000元/月计算,年人均收入可达1.2万元。同时,从秸秆的收集、储存和运输整个收购环节,可以间接带动当地的一部分劳动力参与到这个行业中来。按照每年收购12000吨原料计,可以吸收至少200人参与该行业。

生物燃料的优点范文4

一、生物质能在能源系统中的地位

生物质能一直是人类赖以生存的重要能源,目前,全世界约有25亿人的生活能源依靠生物质能,仅次于煤炭、石油和天然气,居世界能源消费总量的第四位,在整个能源体系中占有重要地位。煤炭、石油、天然气是化石能源,究其根源也是由生物质能转变而来的。专家认为,生物质能极有可能成为未来可持续能源系统的组成部分。预计到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。因此,专家称生物质能为21世纪的绿色能源。

目前,生物质能技术的研究与开发已成为国际重大热门课题之一,受到世界各国政府与科学家的关注。许多国家都制定了相应的开发研究计划。我国既是一个人口多的农业大国,又是一个经济迅速发展的国家,面临着经济增长和环境保护的双重压力。改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源,对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义,尤其对我国的农村地区更具有特殊意义。因此,生物质能优质化转换利用势在必行。

二、生物质能与常规能源相比的三大优点

生物质能具有资源丰富、开发方便、含碳量低的特点。

第一,资源丰富。它是人类可以利用的最丰富的能源之一,我国是农业大国,农林废弃物特别丰富,可以说取之不尽,用之不竭。

第二,开发方便。地球上,只要有农作物和树林的地方,就可以就地开发利用,农村更具有利用的价值。

第三,清洁能源。在开发和利用生物质能时,原料易燃烧,污染少,灰分较低,废渣、废水、废气少,也没有噪音。更重要的是,不会影响生态平衡。三、开发适合国情的生物质能燃料和设备

在加拿大、瑞典、芬兰等欧美国家,生物质能锅炉使用的燃料仍停留在木质颗粒燃料上,原因是农作物秸秆及野草质类的颗粒燃料含钾等成分高,容易结渣,他们现有的生物能供热设备和技术不能解决结渣问题,影响设备自动燃烧的正常运行,不得已摒弃秸秆燃料,使用木质燃料。国外专家的研究方向是用基因技术改良秸秆、野草类植物的成份含量,降低颗粒燃料的结渣成分,来保证生物质能锅炉的燃烧过程正常运行。我国利用生物质能如果直接引用国外现有的设备和技术,显然不符合国情,而基因改造秸秆的技术距离现实和大规模推广还远。

北京老万生物质能科技公司对自己提出的要求是:既要利用国内现有的生物资源,又要解决自动燃烧的难题。科研人员从我国树木少、农作物秸秆多的国情出发,确定了生物质能锅炉以秸秆、树木类等为生物质燃料的方向。他们与国外专家合作,经过潜心钻研,克难攻坚,研制出了秸秆颗粒和块状燃料的科学加工技术,开发了采用这些燃料的自动燃烧生物质能锅炉。经过清华大学热能研究所和热能工程系联合检测,老万生物质能锅炉的燃烧效率达到99%,热效率达到86.07%,各项环保指标都达到了欧洲现行的排放标准。

老万自动燃烧生物质能锅炉系列产品随后通过了国家农业部科教司主持、全国著名专家组成的鉴定委员会的鉴定。评价是设计独特,结构新颖,造型美观,自动供料,燃烧充分,属高新技术产品。其技术国内领先,达到国家先进水平。该技术在解决生物质燃料燃烧结渣和焦油处理上实现了重大突破,填补了我国生物质能高效利用和燃烧的空白。

这正是:小企业拥有高技术,小企业干出大名堂。

四、实现“低消耗、低排放、高效率”,造福百姓

老万生物质能产品是目前国内外高效利用生物质能的佼佼者。其技术特点和主要优势有三点:

1 高效便利性

(1)生物质燃料的高效性:老万公司研发的成型(颗粒、块状)燃料,是将农、林废弃物如玉米秸秆、棉花秆和锯末等,经过粉碎、烘干、筛选、高压成型制成的高密度颗粒燃料和压块燃料,容积密度大,1000~1100公斤/立方米,具有较高的强度。这种燃料表面细致光滑,发热量高达3700~4200大卡/公斤,起火速度快,燃烧效率达99%,热效率达86%以上。它的燃烧性能已经相当于中质烟煤,而硫和灰分等有害物质的含量却相当低,胜于烟煤。这种再生能源最清洁且廉价,国际公认是化石能源的最佳替代物之一。

(2)锅炉的便利和安全舒适性:老万生物质能锅炉采用先进的自动控制清洁燃烧技术,核心技术在于燃烧器。燃烧器由主燃室和副燃室组成,采用二、三次风火焰扰动和独特的火焰导流混合燃烬技术。以温度为控制点,自动点火、自动进料、自动排灰,自动化程度较高,提高了燃料的燃烬率和锅炉热利用率。在运行中基本是每日加一次料和倒一次灰,不需要高深复杂的操作,非常便利。由于是常压运行,强制排烟,又配备了泄压阀、静音风机、屏蔽水泵和超温保护功能,安全性高,工作环境舒适。

2 环境保护性

(1)烟气黑度和烟尘浓度低:燃料在燃烧中迅速释放的挥发成份没有得到充分燃烧时,未燃烬的含炭烟尘被烟气带出,就造成烟气黑度高,烟尘浓度高。老万生物质燃料的燃烧性能相当于中质烟煤,而二氧化硫和灰分等排放物却大大低于烟煤。同时,生物质能锅炉创造了先进的自动控制清洁燃烧技术和火焰导流混合燃烬技术,使燃料在炉内充分燃尽,减少烟尘的产生,消除了黑烟。2008年1月22日,北京京环科环境保护设备检测中心检验结果表明,老万锅炉的S02、烟尘排放、氮氧化物等化学排放指标远远低于欧洲环保标准,烟气黑度小于林格曼1级,二氧化碳排放减少100%!所有指标完全符合北京市《锅炉大气污染物排放标准》。

(2)燃烧后的灰渣不存在二次污染:由于燃料全部使用秸秆生物质原料,在成型燃料的加工过程中也不添加任何化学成分和添加剂,所以,燃料燃烧之后全部变成了草木灰,既可当做肥料,也可回收作为建筑材料,不带来二次污染的问题。

3 经济节能性

老万生物质能锅炉使用的燃料纯粹是颗粒燃料或压块燃料,极大地提高了燃料的燃烬率和锅炉的热利用率,其热能利用远高于燃煤的利用率。这一绿色的能源无论是用于取暖、炊事、洗浴,都非常适宜。

以采暖为例,假设一家有150平米的房间面积,如果使用颗粒燃料,一个采暖期大约需要4~6吨,按850元/吨计算,每平米采暖费是23~34元。如果使用压块燃料,一个采暖期大约需要5~7吨,按500元/吨计算,每平米采暖费17~23元。如此看来,生物质锅炉取暖费和集中供暖、燃煤取暖费用相当,远远低于使用燃油炉、燃气炉和电采暖的费用。

生物燃料的优点范文5

近年来,生物质固体成型燃料作为可再生能源的重要组成部分,越来越受到人们重视。生物质固体成型燃料是指在一定温度与压力作用下,将原来分散、没有一定形状的经干燥和粉碎的秸秆压制成具有一定形状、密度较大的成型颗粒。生物质固体成型燃料可作为农村居民生活用燃料,也可作为取暖燃料,还可以充当发电燃料,节目中主要以颗粒生产系统和压块生产系统为例,介绍生物质固体成型燃料的主要生产环节。

《青饲青贮玉米高产栽培技术》

青饲青贮玉米一般是指用青绿鲜嫩植株作饲料的玉米。在不同生育阶段收割青绿的玉米茎叶和果穗直接饲喂家畜:或在乳熟期至蜡熟期收获包括玉米果穗在内的整株玉米经切碎加工贮藏发酵,调制成青绿饲料:或在蜡熟期,先收获玉米果穗,然后再收获青绿茎叶的植株,调制成青贮饲料,饲喂牛羊为主的家畜。

本节目主要从品种选择、分期播种、加大播种量、增加密度、勤于肥水、掌握好收获时间等方面介绍青饲青贮玉米高产栽培技术。

《解读》

苗种是水产养殖生产第一物质基础。近年来,随着我国水产养殖生产的发展,水产养殖种类不断增加,水产苗种生产能力迅速扩大,产量不断提高,苗种对水产养殖业健康持续发展发挥的作用越来越重要。

为加强水产苗种管理工作,保护我国水产种质资源,提高苗种生产质量,农业部制定并修订了《水产苗种管理办法》。节目从种质资源保护和品种选育、生产经营管理、进出口管理等方面对《水产苗种管理办法》进行了解读。

《奶牛难产的原因及救治》

奶牛难产如处理不当,不仅会危及奶牛及胎儿的生命,且会引起奶牛生殖道疾病,影响以后的繁殖力,给奶农造成很大的经济损失。因此,积极防止及正确处理奶牛难产,对于养牛户来说是一项极为重要的工作。本节目详细介绍了奶牛难产的原因及救治技术。

《食用菌仿野生栽培技术》

本节目介绍的食用菌仿野生栽培是人工栽培和仿野生出菇管理相结合的栽培新模式。由于在出菇期间模仿其原来的生态环境进行管理,使人工栽培的菇产品具有野生菇的色泽和风味,并克服了传统袋栽后期缺水、补水的不足,如管理得好,产量更高。

生物燃料的优点范文6

化石燃料储备的枯竭、全球气候变暖、人口的持续增长、高成本的废物回收及存在的其他问题,都促使了可再生能源或消费品的出现。作为石油能源的替代品,生物质的生产也将会得到发展。这就提供了一个生物炼制的概念,即剩余生物质中的成分可以提取出来并利用它们的功能来生产非食品和食品物质、工农业生产中间体和合成的中间体。其涉及到3个重要的工业领域:分子领域、材料领域、能源领域。以生物残渣为原料不仅能合理利用资源,而且可以减少对环境的危害。基于工厂化生产的生物炼制,可以发展的更普遍。废料和副产品的减少不仅与工厂化生产有关,而且还和属于不同公司的工厂、不同生产过程之间的互补有关。初级产生的废料和副产品,可以作为二级生产的原料或是三级生产的能量来源。原材料、副产品流动的最佳化与不同生产之间能源的最佳化联合在一起,使通过工业代谢实现的生物炼制更普遍化[1]。生物产物对石油产品的取代将会发展成新的生物经济,也会产生新的可持续发展生物工业化过程。工业化的生物炼制,将和基于12个绿色化学产生的新过程有关(如清洁过程、原子经济、可再生原料等)。生物技术,尤其是白色生物技术将会在生物转化(酶和微生物)与发酵工程中占有很大比例。世界上每年都会产出大量的木质纤维素废料,包括农业残渣、食品农业废弃物、绿色食品废弃物、修剪树木残留物、城市有机和造纸部分的剩余固体废料。目前,常用的处置方法对环境和经济不利,包括填埋、焚化,甚至饲养动物。作为替代方案,应开发使废物增值的高附加值产品,也就是废物升级,这具有很大的经济效益和生态优势[2]。可通过升级固体废物来制得范围广泛的高附加值产品,如酶、生物燃料、有机酸、生物聚合物、生物电、食品和药物等。

1废物中的生物燃料

1.1生物乙醇

世界上乙醇生产量较大的国家是美国、巴西和中国。2009年,美国用玉米生产了39.5×109L乙醇,作为第二大乙醇生产国的巴西用甘蔗生产了30×109L乙醇[3]。2015年,生物乙醇市场达到100×109L。事实上,美国能源部已经设定了一个到2030年年产2.7×109L可再生燃料的目标,而欧盟也制定了一个强制性的目标,到2020年,可再生燃料的比例占到10%。然而,利用食物生产乙醇会造成食品供应的竞争,所以唯一可持续化的方法就是利用木质纤维素的剩余物来生产乙醇。其优势在于地球上含量丰富、分布广泛,而且不和食品供应竞争。木质纤维素转换成乙醇主要涉及:①对木质素的预处理和使细胞壁多糖显露出来;②利用酶分解纤维素酶的混合物;③用乙醇工业酵母发酵糖。现在已经有很多预处理方法得到了发展,如物理处理、化学处理(碱性或酸性)、生物处理和物理化学处理。其中,物理化学处理包括蒸汽爆炸、氨纤维膨胀、超临界流体处理和热化学处理[4]。预处理后,用酸或酶使纤维素和半纤维素水解成单糖(己糖和戊糖)。相比较而言,通过纤维素酶水解纤维素是一个首选的方法,因为它与酸水解比较,具有产量高、低腐蚀性、毒性小的优点[5]。然而,对于提高纤维素水解成乙醇的这一过程仍然面临很大的挑战,尤其是酶成本投入仍然是这一技术的关键,降低酶成本的努力还在进行中,这包括通过提高酶的专一性来提高酶的活性,或通过直接进化或定向位点诱变来使酶的剂量最小化,或者通过提高发酵过程中纤维素浓度,使用便宜的取代物生产酶来降低酶生产的成本等。酶水解可能分步发生,这叫做分步水解发酵(SHF),或是己糖的糖化和发酵同时发生(SSF),或是己糖和戊糖的糖化与共发酵同时发生(SSCF)。它们最终的目标是一步到位地将木质纤维素加工成生物乙醇[6],所有步骤都发生在一个单一的反应器里,在这个反应器中微生物可将预处理的生物量转化为乙醇。考虑到当地的气候条件,必须执行严格的木质纤维素废弃物鉴定要求,要考虑到可行性的处理方法。例如,在法国、意大利、西班牙、土耳其和埃及等国,粮食作物、橄榄树、西红柿和葡萄加工的剩余物提供了丰富的木质纤维素来源,在这些国家,他们可以用这些来源作为生产乙醇的原料,这就使他们拥有了生产1.3×108t油当量的乙醇潜力。由于在其他的地中海国家缺少足够的农作物剩余物供应,所以他们正打算用城市固态废弃物作原料生产乙醇。地中海盆地每年生产18×108t废弃物的一半最大程度上可以生产3000×108t油当量的乙醇,而其中的管理将成为最关注的问题[7]。很多水果生产中的废弃物,像香蕉皮、芒果皮、菠萝皮已经成功地作为取代物生产乙醇。非洲广泛生产的木瓜废弃物也已经成为最常见的替代品用于酵母发酵生产乙醇[8],而且通过黑曲霉和酿酒酵母同时糖化发酵24h后,能达到生产乙醇的最大产率5%。最近,葡萄废弃物也被酿酒酵母发酵成乙醇[9]。小麦秸秆、水稻秸秆、燕麦和大麦秸秆用于生产生物乙醇的事例也被大量报道,玉米秸秆和大豆剩余物也被用于发酵生产乙醇[10]。Mutreja等人[11]对8种不同木质纤维素废弃物的预处理进行了研究,并且在30℃下酸处理得到乙醇的最大产率为1.42g/L。Singh和Jain[12]报道了蔗糖作为替代物分批生产乙醇的事例。使用城市固体废弃物生产乙醇这一做法是一个较有前途的战略,可以满足世界能源的需求和减少温室气体排放。尤其是用可降解的城市固体垃圾对废物进行管理,减少二氧化碳排放量,对改善水的质量、增加土地利用率和生物多样性带来很多好处[13]。之前的一项研究表明,约52%的发酵用葡萄糖来源于可降解城市固体垃圾。最近,可降解废弃物,像厨房垃圾、花园垃圾和废纸都很适合于替代乙醇的生产,在优化条件下可产生约90%的葡萄糖。所以,可降解的城市固体废弃物作为生物乙醇生产的原料拥有很大的优点,既可以减少垃圾填埋与焚烧,还可以减少温室气体的排放。作为通过一步发酵直接得到乙醇的例子,利用梭状芽孢杆菌植物发酵柳枝得到乙醇已经成为现实。梭状芽胞杆菌被选来用于一步发酵,是因为可以在不同的底物上生长,而且产出的乙醇中有很少的醋酸盐副产物[14]。研究显示,固体发酵中,乙醇的最大体积分数在第12天测出来,醋酸盐和乙醇的体积分数在开始的前6d接近,从第6天到第14天乙醇体积分数显著增加并且超过了醋酸盐的最大体积分数。不同的是,在淹没状态下发酵,醋酸盐和乙醇的体积分数增加到第6天后就不再增加了。Kamei等人[15]报道了只用单一微生物而不用额外的化学物质或酶将木本植物发酵成乙醇的事例。他们利用白腐病真菌将好氧条件下的脱木质化和厌氧条件下的糖化发酵联合在一起,这种真菌能够在有氧固态发酵条件下选择性地降解木质素,从而直接从好氧培养液中生产乙醇。经过56d的有氧发酵后,40.7%的木质素和葡萄糖被降解,并且在有氧无额外添加纤维素的条件下,20d后会生成乙醇最大理论值43.9%。

1.2生物丁醇

丁醇是ABE(丙酮、丁醇、乙醇)发酵的一种产品[16],它是一种非常好的化学原料(在塑料工业中)。更重要的是,相比乙醇而言,它是一种更好的燃料,它腐蚀性弱、吸湿性弱、污水溶解性好。由于蒸汽压低,因此蒸汽爆炸可能性小,同样的丁醇和乙醇,丁醇的能量比乙醇高30%,与目前未经改装的车使用的汽油相比,它拥有更大的混合比例[17]。丁醇可以通过一系列微生物发酵制得,其中最常用的是丙酮丁醇梭菌和拜式梭菌来进行发酵制得。

1.3生物氢

氢气正在变成良好的新型能源,因为它清洁、可循环,而且可以用于燃料电池来直接提供电能[18]。发酵得到的氢气来源于有机底物的发酵转化,而这是由不同细菌使用多元酶体系体现出来的,这个体系涉及到3个相似的无氧转化。暗发酵反应不需要光源,所以它可以24h持续发酵[18]。光发酵不同于暗发酵,因为它只在有光的条件下才反应,可以通过绿藻进行直接的光发酵或是蓝藻进行间接的光发酵得到。光发酵需要厌氧喜光细菌,而暗发酵需要厌氧发酵细菌。最近的研究工作中发现,光发酵细菌能利用几种不同的废弃物材料作为碳源来进行生产氢气产物的发酵。利用发酵技术将木质纤维素转化成氢气产物,包括纤维素水解和氢气产生两步,而这两步发生在一个反应器中,或者说是两步过程,纤维素水解是第1步,紧接着是无光条件下产生氢气,这是第2步。

1.4生物高聚物

潜在的可以生物降解的聚合物,尤其是可以从农业资源中得到的聚合物逐渐被认识到。可降解塑料从可再生资源中制得,它不仅可以降低石油消耗速率,还可以减少塑料垃圾的处理问题,因为它可以在土壤、堆肥甚至海洋环境中得到降解。这个所谓的农业聚合物,可以取代传统的塑料材料用于食品包装业。聚羟基丁酸酯和聚羟基脂肪酸酯是通过生物技术得到的主要可降解聚合物;聚乳酸也是一个可降解聚合物,它是由木质纤维素得到的乳酸单体聚合而成。

1.5生物电

在生物废弃物处理方面微生物燃料电池(MFCs)是一个新想法,通过微生物新陈代谢的途径将废弃物转变成生物电[19]。MFC(微生物燃料电池)是一种混合型的生物电化学装置,可直接通过微生物介导的生物电化学反应,用化学键的聚集实现能量转换,从得失电子的氧化还原反应中得到所需能量,用于同化作用,这个生物媒介在细菌的新陈代谢活动中得到发展[20]。微生物燃料电池有很多技术之外的优点。首先,可以直接并高效地将底物能量转化成电能,大约转化为氢能源的8倍[21];其次,室温下就可以进行高效操作;第三,不需要气体处理,因为排出的气体中富含二氧化碳;第四,用气体提供阴极时不需要能量输入,因为这是被动充气,具体的转化效率和经济效益取决于废弃物材料的化学组成和特征。

1.6微生物固体发酵得到的附加值产品

固体发酵(SSF)在缺水或接近缺水的条件下实现,具有能源消耗低、定容生产能力大、附加值产品浓度高、废物产生少、异化作用抑制低等特点[22]。很多不同的废弃物都被报道,成功地作为固体发酵底物而得到了高经济价值的一系列产品。固体废料的简单预处理包括研磨和按不同粒径分类,这样就实现了材料同质化并且确保对下步反应有较小的影响,通过这些预处理就可以使细菌活下来。这种固体发酵方法在深层发酵工艺中引人注目。

2结论