有机化学在生活中的应用范例6篇

前言:中文期刊网精心挑选了有机化学在生活中的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

有机化学在生活中的应用

有机化学在生活中的应用范文1

【关键词】应用化学;新型材料

化学是一门由来已久的科学,从地球的发生开始,无处不是化学现象。根据生物学家对于生命起源的猜想,生命很可能是在地球最原始,最恶劣的环境中通过长期的化学作用与碰撞,最后由无机物质产生有机生命,如此说来化学对于生命的产生也有巨大的影响。人类产生后,化学作用更是做出了巨大的贡献,首先在人类完整的身体里各个系统通过化学作用来调整人类身体中的平衡与健康,燃烧使得人类认识到火的重要性,有了火之后人类开始慢慢吃烤的食物,使得营养既健康又多元化,为人类文明的兴起提供了必要的条件,当朝代出现之后,人类发现铁可以通过冶炼来铸造铁器与武器,于是人类在文明的路上又跨进了一大步。中国人在化学方面的进展在古代就可见一斑,在商朝,中国人就掌握了染色,酿酒,冶金等各种技术,已经可以很好地利用大自然中的资源来改造生活,贾思勰所编著的《齐民要术》已经囊括了许多简单的农业商业的技巧,如食盐精制,酿酒,香料等的生产,沈括的《梦溪笔谈》已经提及了自己发现石油,并且将其做成墨的过程,在宋代,冶金业,造纸业已经极为发达,李时珍的《本草纲目》详细记载了各种草药的用途与性质,宋应星的《齐民要术》更是第一部集化学,医学等科学于一身的百科全书。在西方,化学也是推动文明发展的重要因素,有一些对化学充满热诚的化学家,很早就开始研究各种元素及其单质与化合物,门捷列夫更是依据各元素的原子量与性质,制成了元素周期表,这是化学史上的一个大进步,接下来有机物性质的不断揭开,更是为工业生产开辟了新的道路,正因为是有了化学长足的进步,人类对于物质的理解才能进一步地加深,化学作为科学出现以前, 对食品、染料、冶金、医药的实际探索已经总结出了大量的知识并推动和指导了生产和生活的实践活动, 并由此而孕育了现代化学的产生。

正因为化学在生产生活中广泛地应用,所以人类需要一门专门的科学来研究如何更好地利用化学,实现人类生活与文明的更大提升,能在不对地球产生巨大破坏的前提下,最大限度地利用地球上的资源来服务于人类,并且实现地球资源的可持续发展。而很多化学家把时间都投入到了探索化学更深邃更神秘的一面,而不是把化学拓宽到人类的生活中,基础化学家已经不能应付在快速发展中人类对于各种各样的需要的提高,因而亟待一个科学的产生,就是应用化学,应用化学被IUPAC定义为“化学在人类需求方面的应用”,应用化学主要研究化学中有关食品,农业,肥料,医药等许多与生活密切相关的产品,化学的另一分支化学工程则可以专注于整个生产过程中的微操作,两者相辅相成。

应用化学是一个涉猎广泛的科学,不像其他分支,如物理化学,生物化学,有机化学,无机化学等研究范围狭窄而刁钻,同时应用化学需要的储备知识更加多,因为一样产品从原材料选择到加工再到最后产出,提纯,除杂,废物处理的过程,需要各方面知识的基础,了解其中涉及的触发剂,催化剂,敏化剂等等化学物质,并且要时刻注意不引入杂质,并且不改变产品的性质,保证产品的产率,质量与速率。应用化学从研究的方向上来讲分为三个方面,无机,有机,生物。

无机应用化学是最早开始研究的一门,因为人类对于应用化学的入门以及理解最早,人类对于无机物的接触与认识比较多,无机化学研究的又可以分为平常生活中的与工业生产中的,生活中的无机物大多结构简单,性质比较突出,相对比较安全,例如氯化钠,碳酸钠等,而工业生产中的无机物则很多都难以在正常的条件下稳定存在,有易于潮解的,如氢氧化钠,硝酸铵等,有易于与氧气反应的,如钠单质,铝单质等,有易于与空气中燃烧的,如氢气,甲烷等,有的不能稳定存在于空气中,如一氧化氮,有的更是有毒的,会威胁到人的健康,如氯气,对于这些物质,必须要妥善地处理,要不然轻则导致产品不纯,或者只是产品产出的下一级产品有杂质,重则会出现工业事故,导致大量伤亡。例如氯气则是一种有剧毒的黄绿色气体,如果氯碱工业产生的氯气不能妥善地收集,提纯,处理,导致氯气泄漏,则会使肺部细胞受到大量损伤,轻度中毒会导致支气管炎,咳嗽,中度中毒会导致支气管肺炎,重度中毒更会导致呼吸困难,窒息,昏迷,甚至死亡。所以在无机应用化学中,必须要在保证整个生产过程中安全,操作正确的情况下,再确保最大化劳动力与资源,提高产率,质量与产量。另外,冶金以及硅酸盐制品也是无机应用化学的重要组成部分。而这些产业相对于其他属于传统工业,应用化学则更着重于传统工业的新开发,比如硅酸盐制品的功能化,半导体材料的制备等。

有机应用化学至今为止也有了长足的进步,最初人类对于有机物的认识一直很狭隘,知道维勒,利用氰酸胺合成出了尿素,打破了有机物与无机物的界限,人类对于有机物的研究终于像打开了一扇大门,自此以后有机物渐渐地走进了生产生活中,现在的司机可以使用甲烷作为汽车燃料代替汽油,更加清洁高能,并且价格较低,现在的人可以使用聚乙烯制成的塑料袋及其他塑料制品来乘装物品,而不是用笨重巨大的簸箕,竹篓等,虽然有机物为人类的生活做出了不可磨灭的贡献,但是它的生产业存在许多亟待解决的问题。有机物结构较为复杂,很多有机物的结构已经要使用三维结构来展示,同时有机物的反应缓慢,很多都需要使用催化剂,并且条件严苛,有些反应可能会因为反应条件的偏差而产生一种甚至几种副产物,例如乳酸的聚合,在不同的条件下,其产生的产物至少有十多种之多,所以足见有机物生产之复杂,这些都是应用化学需要解决和完善的问题。并且有些有机物在废弃之后由于很难被降解,例如饭盒,就很容易堆积在一处,成为白色污染,不及时解决的话,污染更会扩散和演化。应用化学不仅仅要解决产品生产的问题,更要解决如何处理产品造成的危机,避免污染。

生物应用化学是近现展的一个分支,生物的研究从来不能只依靠一个自己,要以其他学科为工具,以自己的理论为先导来进行,化学便是其中一个工具之一,最简单的例子就是DNA是主要遗传物质理论的证明实验,赫尔希和蔡斯利用了放射性元素找到了遗传物质的踪迹。现在,化学更被广泛地应用在更多的研究上,如微生物和发酵化学品,生物学中的痕量过渡金属,分子遗传学等。与此同时,更多人造器官的出现也离不开应用科学的贡献。应用化学需要找到什么物质可以不与人体免疫细胞排斥,什么结构与免疫细胞上的受体最接近,这些都依赖于应用化学对于分子模型的构建与重组。

总而言之,应用化学作为一种历史悠久,底蕴深厚,发展潜力十足的科学,必定可以大放异彩。

【参考文献】

[1]李临生.应用化学的历史及其意义[J].大学化学,1999(06).

有机化学在生活中的应用范文2

关键词:生活化;场景模拟;机电一体化专业;教学效果;情感运用

中国分类号:TH―39

在高校机电一体化专业教学中,结合生活化的场景模拟教学,让学生在兴趣中学到与生活息息相关的知识点,并在具体的教学过程中将情境教学、生活化场景互动等方式融入到教学之中,形成个性鲜明的教学过程,有利于学生思维的整体培养。

一、背景分析

在高校机电一体化专业教学中,有些教师注重书本知识的传授,对于生活中的各种现象与原理的结合度运用不够,没有及时练习课外内容,学生学习的实用感不强。学生在课外知识的延伸上,教师没有及时的引导,造成学生机械化的背诵公式、理解概念,不能与生活中的各种表象相衔接,影响思维的整体宽度。情境运用是有些高校教师善于运用的教学手段,好的情境引导能激活学生内心的思维意识,尤其是通过生活化的场景模拟,能激发学生自我探求的心理欲望。但是,在当前的高校机电一体化专业教学中,有些教师只追求表面的繁华,对于真实性的生活场景理解、应用不够,造成学生理解上有偏差。

(1)专业定位模糊

从教学计划中可看出,目前职业院校机电一体化专业基本是按既培养机械方面又培养电气方面来设置课程,但是机械与电气又各自为两大学科,内容丰富,知识涉及面广,让学生在三年的时间里要系统地掌握好两大学科,是不太可能的。所以在定位时应按培养方向分清主次,不应采取机电并重的培养方案。

(2)实训条件落后,实践操作训练水平有待提高

总体来看,职业院校虽具有机电一体化专业基础课和专业课的实训设备,但基本是以单个实训课题为主,很少有机电一体化专业综合性实训设备,最终使学生专业技能和实践操作能力差。因此,各职业院校应尽快建立和健全综合性实训设备。

(3)缺少“双师型”的教师

在职业院校中真正“双师型”教师所占比例很低,专业理论课教师不能带学生开展实训实习,而实习指导教师理论基础知识较薄弱,不能讲授专业理论知识,导致理论与实训脱节,教学效果不佳。

二、重要性阐述

机电一体化专业培养的是面向机电一体化机械设备、机械零件制造的企业,具有一定的机电专业基础理论知识和中级职业技能,同时具有良好的职业道德,能够从事机电一体化设备的安装、调试、操作、检修、管理等工作的技能应用型高级人才。也就是说,毕业生要具备机电一体化的综合技能。实训教学是培养学生职业技能的重要途径,目前多数院校缺乏对机电一体化专业系统性的培训。许多学生在毕业后只是对机械或电气方面的知识了解,但这无法从事机电设备的综合安装、调试、运行、维护等工作。随着职业教育的不断改革,应实行创新式的实训教学模式,强化机电一体化专业学生综合实践技能和职业道德的培养,提高培训效果。

三、生活化场景模拟教学在高校机电一体化专业教学中的运用方式

1、社会实践活动的融入教学

在高校机电一体化专业生活化场景模拟教学中,教师要及时联系生活热点,将教学中与学习紧密相连的各个知识点形成情景素材,将日常生活中的自然现象与事实进行各种综合时间活性的开展,从而有效的激发学生学习的动机,产生浓厚的学习兴趣。在一体化教学中,整个教学的设计和组织都以实践操作为主线,突出技能训练,围绕实践操作进行理论知识的教学,实现理论教学实践教学一体化。教师采用讲解、演示、示范、指导、评价相结合,循序渐进地开展教学活动。并在现场巡回指导,及时发现问题、解决问题,共性问题集中讲解、个别问题个别指导,促进理论教学过程与实践教学过程的融合。引导学生在做中理解理论知识、掌握技能,在操作中验证理论,同时又用理论指导操作,实现理论与实践的有机结合。

2、实验教学中穿插生活化的现象教学

在高校机电一体化专业教学过程中,实验是一个重要的部分,其中,可以构建与生活息息相关的场景实验模式,让学生对于各种机械的运用化原理、公式有深刻的理解,并在实验的过程中,通过学生自我动手操作的方式,加深对实验现象的理解,教师可以将各种与生活中的内容融合在一起,进行生活化实验教学。譬如,“PLC在机械手中运用”教学。①进行机械手拆装,现场演示机械手的结构,并作详细讲解;②到仿真实验室,运用三菱PLC仿真软件FX―TRN-BEG-CL进行模拟教学,让学生观察机械手的真实运行过程,根据运行过程编制机械手运行程;③设计一个“机械手的安装与调试”项目,在机电一体化实训室进行教学,要求学生完成机械手的安装、编程、调试等工作任务。这样多种方法配合运用,先让学生了解机械手的结构,再掌握运行特性,然后进行安装调试,教学过程符合学生的认知规律,使学生编程水平、动手能力、自主学习能力、合作意识都得到进一步提升。

3、多媒体教学与生活化场景教学的创新改革

在电气控制与PLC课程教学中,要结合现代化的教学手段,丰富教学过程,围绕学生学习兴趣展开教学,采用动画课件演示教学形成精细化的教学模式,对于电器元件与结构等知识,通过多媒体教学能全面了解元件的功能与工作原理,让学生在视觉上深入感知,形成理解能力的综合提升。在电气控制与PLC教学中,多媒体教学的主要效果就是要形成电气控制、知识点、兴奋状态、求知欲等多个环节的空间要素,从情境驱动中的视听说三个方面来促进语教学活动的圆满性,充分利用教学多媒体结合相关教学内容进行导入,教学实践中有众多的教学案例都表明利用多媒体直观教学设施能加深学生的感性认识,能收到更好的效果。

四、结语

生活化场景模拟教学与机电一体化专业知识的融入,并通过综合实践、实验教学、生活素材、情境引导等方式,从学生的个性发展与知识需求角度出发,在整个教学过程中,教师通过围绕学生的主体性知识结构,采用灵活多样的教学手段,形成良好的教学课堂的内外模式,对于提升学生掌握知识、运用知识、解答生活疑惑等能力,具有催化剂的效应。

参考文献:

有机化学在生活中的应用范文3

关键词:有机合成 闪速化学 微反应器

有机合成是人类改造、创造世界的有力工具,是有机化学不可分割的重要内容,其发展水平直接关系到有机化学研究的发展。近年来,随着我国社会经济的快速发展和科学技术的不断进步,在有机合成化学领域也取得了许多令人瞩目的成绩,例如生物活性天然产物合成、金属参与有机合成等方面有很多突破性的成果,并逐渐从物理有机化学向化学生物学、计算化学、绿色化学等领域发展,科研与生产能力得到了大幅度的提升。本文对闪速化学的原理与应用进行研究,旨在发挥新理念、新技术的优势,更好的促进我国有机合成化学的发展。

一、有机合成化学发展回顾

据统计,目前已知的有机化学反应数量达到3000多个,被广泛应用的有200多个,并且不断有新的有机合成被研发出来投入应用,这些有机化学反应直接催生出2000多万种有机化合物。在有机合成化学领域研究中,合成路线、合成策略、合成方法需要兼顾原子经济性、高效性、环境友好等原则,通过科学合理的合成设计与巧妙的方法确保有机合成的综合效益。

在1902年至2005年前,诺贝尔化学奖有25项给予了对有机合成领域有突出贡献的科学家,可见有机合成的重要地位及其发展速度之快。最近几十年来有机合成领域发展速度进一步加快,传统有机合成已向绿色合成转变,并渗透到生命科学等学科中产生了巨大的推动作用,组合化学、正向合成分析等理论与技术为精细化学品的研发提供助力,超声波、微波等技术的应用日益广泛,微生物、人工酶的利用工艺日益精湛,很好的体现了有机合成的创造性魅力,为人类的生产生活提供方方面面的支持和帮助。

二、闪速合成目标化合物的原理及特点

在有机合成过程中,我们通常要考虑如何在不降低产物收率的情况下更大幅度的减小反应时间,而一般情况下二者相互矛盾难以统一,降低反应时间往往导致反应过程无法有效控制,最终导致产物收率降低,甚至生成许多副产物。为了有效解决这一问题,Yoshida提出了闪速化学的方法,并在聚合物快速合成中实验成功。其实早在上个世纪该理念便已体现在有机合成中,例如我们所熟知的闪速真空热解技术即是利用载气将前驱物带入裂解室快速获得产物,但因无法控制反应过程仅停留在理论层面。

新世纪以来微反应器技术的应用使闪速化学的实现成为了可能,微反应器的结构特点决定了其具有高效的热转换能力,可以对反应温度进行有效控制,能够快速、精确混合反应物料,并且精确控制滞留时间、快速实现物质分离转移,避免不必要的副产物生成。借助微反应器的诸多功能优势,闪速化学得以真正在有机合成中得到应用,对提高合成产物的产量和效率做出了重大的贡献。

闪速化学反应包括五种类型,主要针对有活性物质参与,或是易生成副产物、产物不稳定、放热剧烈以及需要高活性激发源的有机合成反应。闪速化学反应的特点主要是反应时间短,需要对反应物分子通过热激发、微波辐射等方式进行活化,并且往往产生敏感的高活性物质。

三、闪速合成目标化合物的应用

闪速化学的应用领域十分广泛,可以在氧化、酰化、取代、缩合等反应过程中应用,借助微反应器可以完成许多常规容器中无法实现的反应。下文中将进行列举分析。

1.中间体易分解反应中的应用

在常规容器中中间体易分解的反应,可以利用微反应器的滞留时间控制能力,在中间体分解前转移到后续反应,使化学合成得以顺利实现。例如以醇制备羰基化合物时需要进行低温 Swern-Moffatt 氧化,反应过程需要在零下50℃条件下进行以抑制副产物生成,而利用微反应器,在20℃条件下将滞留时间控制在0.01s产物收率高达90%,与使用常规容器相比不仅对反应条件限制更小,而且产物收率更高。又如羟醛缩合反应中生成的烯醇盐活性高不易积累,而借助微反应器控制滞留时间将其快速转移,仅用15s即可生成高产率的合成产物。另外如溴锂置换反应等均可通过控制中间体滞留时间来实现闪速置换。

2.易生成副产物反应中的应用

为了提高合成反应速度通常需搅拌反应体系,导致难以研究动力学过程和产品选择性,需要依靠降温等方式来减慢反应速率。而凭借微反应器可以在自然速率下控制反应,获得动力学信息,得到选择性产物。例如通过微反应器控制格式反应能够抑制多取代产物的生成,其他如微反应器中的芳香化合物碘化反应也可提高产物选择性。

3.产物易分解反应中的应用

许多有机合成反应产物稳定性差,滞留时间长会分解从而降低收率,凭借微反应器中的闪速合成可以精确控制滞留时间,避免产物分解。例如β-羟基酮的酸催化脱水反应在微反应器中用氢氧化钠溶液冷浸停止,能够有效降低产物滞留时间,避免酸催化产生的环化产物等副产物,获得接近100%纯度的产物。

4.高放热反应中的应用

对于高放热反应常规方法是控制反应速率,然而局部过热现象难以避免,利用微反应器可以及时导出热量,对反应温度进行有效控制,从而提高产物收率和反应速率。有文献研究证实,凭借微反应器对氟化反应的放热量和反应温度进行控制具有显著效果,类似的研究还有硝化反应、卤素与金属置换反应等等。

四、结语

有机合成是化学研究领域的重要内容,推动有机合成化学的发展对于经济发展与科技进步具有积极意义。闪速化学借助微反应器的功能优势,能够更高速、高效的完成许多常规容器内无法实现的合成反应,对于有机合成化学的发展有着重要的促进作用。但是关于闪速化学的研究与应用尚不成熟,未来需要进一步深入研究,将其推向工业生产,以满足现代生产生活对分子快速合成的需求。

参考文献

[1](美)卡雷,(美)松德贝里.高等有机化学:反应与合成[M]. 科学出版社,2009.1.

有机化学在生活中的应用范文4

作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。

1 污泥的来源与组分

从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(Cl)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右[4]。

2 污泥制备活性炭的国内外研究现状

污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。

2.1 物理活化法

物理活化法主要包括直接热解法和气体活化法。

2.1.1 直接热解法

直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加热至热解温度后保持恒温一段时间,再经后续处理得到粉末状污泥基吸附剂。Fan等[5]利用天津市污水处理厂产生的厌氧消化污泥为原材料,用氮气作保护气,以15 ℃/min的升温速率升至500℃,并在此温度下直接热解3 h,制得的污泥基活性炭主要以中孔和大孔为主。新加坡学者Lu等[6]采用直接热解法制备污泥基吸附剂,由研究可以得出,在较低的温度范围内,随着热解温度的升高与停留时间的延长,污泥基吸附剂的比表面积也呈现出逐渐增加的趋势;当温度在550~650℃之间时,随着热解温度的升高,其比表面积却呈现出了下降的趋势;当热解温度超过850℃以后,比表面积逐渐减小。

2.1.2 气体活化法

气体活化法制备污泥基活性炭是指先对污水污泥直接进行高温热解,然后利用水蒸汽、CO2、O2等活化气体,在600~1200℃下对碳进行弱的氧化作用,疏通材料的孔径,使其发生造孔与扩孔的现象,进而形成碳基吸附剂的多孔微晶结构。有研究结果表明,热解温度、热解时间和气体流量会影响污泥基吸附剂的孔径分布,改变活化气体中CO2与H2O比例可以控制吸附剂的孔径分布。

Jindarom等利用污泥制备活性炭吸附材料,采用二氧化碳气体作为保护气体,于750℃下活化30 min,升温速率为20℃/min,制得的污泥基活性炭的比表面积为61 m2/g。Méndez等利用污水处理厂产生的厌氧与好氧消化污泥作为原材料,采用气体活化法制备污泥基活性炭。在隔绝空气的条件下采用氮气作为保护气,在450℃下热解1h,制得的污泥基活性炭的比表面积分别为16 m2/g和81 m2/g。为了进一步提高污泥基活性炭的吸附性能,在N2和O2的混合气流下,以10℃/min的升温速率升温至275℃,并在此温度下活化4 h,其中,O2与N2的体积比为1:29,流量为150 mL/min。碳化-气体活化后的污泥基活性炭的比表面积分别增加至102 m2/g和105 m2/g。由此实验结果可以得出,气体活化法可以显著的提高两种污泥基活性炭的比表面积值,其中对于厌氧消化污泥制备的污泥基活性炭吸附性能的提高效果更为显著。

2.2 化学活化法

化学活化法对于制备高比表面积污泥基吸附剂具有显著优势,目前采用的化学活化剂主要有H2SO4、H3PO4、ZnCl2、NaOH和KOH等。在污泥的热解工艺中,由于污水污泥的来源和特性不同,活化剂的选择显得非常重要,选择出合适的化学活化剂不仅可以提高污泥基吸附剂的产率与碳含量,还可以缩短制备过程中的活化时间,更可以大幅度的提高污泥基吸附剂的吸附性能。

2.2.1 硫酸活化法

目前,国内外大多数的采用硫酸作为活化剂制备污泥基吸附剂研究均采用先将污泥在各种不同浓度的H2SO4溶液中浸渍24~48h,然后在N2氛围下热解一定时间,热解温度对制得的污泥基吸附剂的比表面积会产生一定的影响。

Bagreev等采用肥料厂产生的含水率为5%的污泥作为原材料,于300℃下制备的污泥基吸附剂比表面积值很低,仅为26 m2/g;当活化温度增加到600℃时,污泥基吸附剂的比表面积有了明显的提高,由原来的26 m2/g增加到了170 m2/g。Zhang等[13]利用有机污泥制备污泥基吸附剂,当热解温度为650℃、热解时间为60 min时,实验测得污泥基吸附剂的比表面积为408 m2/g,为直接热解法制备的污泥基吸附剂的2.97倍。由二者的对比可以得出,污水污泥的来源和特性对于污泥基吸附剂的比表面积有很大的影响,采用H2SO4作为化学活化法制得的污泥基吸附剂吸附性能明显优于直接热解法和气体活化法。

2.2.2 氯化锌活化法

采用ZnCl2作为化学活化剂制备污泥基吸附剂是目前国内外研究中通常采用的方法之一。在高温热解活化过程中,ZnCl2主要起润涨、脱水以及缩合的作用,对纤维素的降解产生促进作用,避免热解过程中焦油的产生以提高吸附剂含碳量,从而制备具有孔隙结构发达的吸附剂[14]。当ZnCl2浓度较小时,污泥基吸附剂主要孔隙结构是微孔,随着氯化锌浓度的增大,微孔逐渐转变为中孔。过长的浸渍时间和过大的浸渍浓度会导致微孔变成中孔甚至形成大孔。有研究表明,较高的氯化锌浓度可以提高污泥基吸附剂的产率。采用氯化锌作为化学活化剂可以制得比表面积较高的污泥基吸附剂。ZnCl2对污泥的化学活化作用很明显,是一种效果很好的化学活化剂。制得的污泥基吸附剂中含有的氯化锌晶体可以通过酸洗和水洗去除。

2.2.3 磷酸活化法

磷酸作为活化剂时,在活化过程中同时起到脱水和酸催化的作用。Zhang等[13]采用H3PO4作为化学活化剂,活化温度650℃下制得的污泥基吸附剂的比表面积为289 m2/g。但是,磷酸具有很强的腐蚀性,会严重的腐蚀设备,因此限制了它在工业化生产中的应用,而且,采用磷酸作为化学活化剂时,所采用的污泥的化学成分有一定的限制。

2.2.4 氢氧化钾活化法

KOH作为活化剂时,在氧化反应中其自身具有一定的催化作用。有研究表明,在采用“碳化-浸渍活化”两段法制备污泥基吸附剂的过程中,采用KOH作为化学活化剂时,污泥基吸附剂的比表面积较高。

一般认为,KOH的活化原理为:4 KOH+CK2CO3+K2O+2H2

Ródenas等采用“碳化-浸渍活化”两段法制备污泥基吸附剂,其比表面积为1900 m2/g。其中,碳化阶段制得的污泥基吸附剂的比表面积为7 m2/g,而经过KOH活化后制得的污泥基吸附剂的比表面积增加了大约270倍。由此可以得出,KOH作为化学活化剂制备的污泥基吸附剂的比表面积较高,其造孔效果明显。

黄正宏等采用KOH作为化学活化剂制备粘胶基活性炭纤维,实验结果表明:试验中所采用的两种活化方法制备的粘胶基活性炭纤维均以微孔为主,但是,KOH活化制得的粘胶基活性炭纤维的孔径分布不同于其他方法制备的粘胶基活性炭纤维,具有更窄的孔径分布。

总之,不同的化学活化剂在活性炭吸附材料的制备过程中所起的作用是不同的。目前,H2SO4、ZnCl2应用的最多,H3PO4和KOH应用的相对少一些。

2.3 化学物理联合活化法

化学-物理联合活化法是指将化学活化法与物理活化法有效地结合起来,通过调整活化气体流量以及污泥与活化剂的质量比来获得满意的污泥基活性炭。由化学活化法制备的活性炭以微孔为主,由物理活化法制备的活性炭主要是多孔微晶结构,由化学-物理联合活化法制备的污泥基活性炭以中孔为主,比表面积大,而且表面形成了特殊化学官能团。

3 污泥基活性炭的实际应用

污泥基活性炭的吸附性能良好,但是由于污泥基活性炭中含有重金属以及其比表面积的限制,目前主要应用于环境污染控制领域,主要集中在废水和废气的治理方面。

3.1 在废水处理中的应用

目前,污泥基活性炭在废水处理方面的应用主要包括以下几个方面:吸附废水中的重金属离子,吸附废水中的染料,吸附苯酚或苯酚类化合物,在“活性污泥―活性炭粉末”处理工艺中的应用,吸附其他污染物,如COD、苯甲酸、四氯化碳等。在利用污泥基活性炭吸附废水中的各种污染物时,不仅要考虑污泥基活性炭的孔径结构和比表面积,同时还要考虑其表面官能团的化学作用。

方平等采用ZnCl2作为化学活化剂对污泥进行高温热解制备污泥基活性炭,并将其应用于废水中Pb2+的去除。 Otero等利用污泥制备活性炭,并对此活性炭去除有机废水中水晶紫(C16H8N2O8S2)、靛青红(C25H30ClN3)和苯酚等三种污染物的效果进行了研究。还有研究将污泥基吸附剂应用于废水中苯酚的去除,实验结果表明,当苯酚的浓度在100 mg/L~2000 mg/L范围内,吸附剂的质量浓度为0.5%,温度为25℃时,苯酚的平衡吸附容量为55 mg/g,吸附平衡时间为4 h。

3.2 污泥基活性炭在废气处理中的应用

目前,污泥基活性炭在废气处理中主要应用于恶臭气体H2S、二氧化硫等气体的去除。污泥基活性炭吸附去除H2S的主要机理为污泥基活性炭表面附着的一些金属氧化物对于H2S转化为S单质的催化氧化作用,主要与污泥基活性炭表面的空隙结构和污泥基活性炭表面催化剂的分布、位置及其与活性炭的结合方式有关,其中污泥基活性炭表面的空隙结构决定了反应产物固态硫的存储和转移,后者则决定了催化反应发生的程度。中孔结构较为发达的污泥基活性炭有利于氧化产物固态硫的储存,而且污泥基活性炭表面的金属氧化物有催化氧化作用,因此,对于H2S气体的去除,污泥基活性炭比商品活性炭更具有优势。有研究表明,当污泥基活性炭用于去除H2S时,其吸附容量为商品活性炭的2~3倍,平均100 g的污泥基活性炭就可以吸附10 gH2S气体。

污泥基活性炭吸附二氧化硫时首先发生的是物理吸附过程,二氧化硫被吸附到活性炭表面以后继续被氧化为三氧化硫,最后与水反应生成硫酸,硫酸再与污泥基活性炭中的无机氧化物发生反应,生成可溶性的硫酸盐,当污泥基活性炭中的活性无机组分消耗完毕时,反应停止。

4 结语

将城市污水处理厂产生的污水污泥制备成孔隙结构发达的污泥基活性炭,既可以解决污泥的处理处置问题,又可以充分利用污泥中丰富的有机质,达到污泥资源化的目的。然而,不同物理活化剂和化学活化剂之间在污泥热解过程中存在不同的相互作用,探明活化剂之间的相互作用机理,对确定物理活化剂与化学活化剂的最优组合很关键,有待进一步深入研究。污泥基活性炭的制备过程中,挥发一定的有毒有害气体,需要研究其净化方法,以防止二次污染的发生。

[参考文献]

[1] 谷晋川, 蒋文举, 雍毅. 城市污水厂污泥处理与资源化[M]. 第一版, 北京: 化学工业出版社, 2008.

[2] Burton F. L., Stensel H. D., et al. Wastewater Engineering Treatment and Reuse, 4th Edition [M]. New York. McGraw Hill Book Company, 2002.

[3] 何品晶, 顾国维, 李笃中等. 城市污泥处理与利用[M]. 北京: 科学出版社, 2003.

[4] 万洪云. 利用活性污泥制造活性炭的研究.干旱环境监测,2000,14(4): 202~206.

有机化学在生活中的应用范文5

关键词:计算机技术;应用;发展

【中图分类号】 F224 【文献标识码】 A 【文章编号】 1671-1297(2013)03-0358-01

二十一世纪一个信息化的时代,以计算机技术为代表的信息技术已经逐步渗透到社会的各个领域,而且正在改变着人们的生产与生活甚至是学习。掌握计算机应用技术不仅是每个人的基本素质,也是今后谋生的重要技能。

一 计算机技术的涵义

计算机技术是指运用计算机综合处理和控制文字、图像、动画和活动影像等信息,使多种信息建立起逻辑链接,集成为一个系统并具有交互作用。这与传统的多种媒体简单组合是完全不同的。计算机技术是将视听信息以数字信号的方式集成在一个系统中,计算机就可以很方便地对它们进行存储、加工、控制、编辑、变换,还可以查询、检查。

计算机的应用技术不仅是自身在飞速发展,而且已贯穿到许多其他学科,现在的各个科学领域的发展都得益于计算机技术的应用。随着微型计算机的发展和迅速普及,计算机的应用已渗透到国民经济各个部门及社会生活的各个方面,现代计算机除了传统的应用外,还应用于生产自动化、日常生活,现代化教学。

二 计算机技术在生产领域得到了广泛应用

在工厂,工程师们普遍运用计算机技术设计产品,现在,人们在进行建筑设计时,只要输入有关的原始数据,计算机就能自动处理并绘出各种设计图纸。在生产中,用计算机控制生产过程的自动化操作,从而实现自动进料、自动加工产品以及自动包装产品等等。计算机广泛应用于工业生产中,加速了工厂生产的自动化。由此可见计算机技术在材料加工自动化生产中的应用已日益得到人们的高度重视。这是由于采用了电子计算机技术可以实现对材料加工过程精确,快速的监测和控制。

美国的华尔街日报给自己的IT专栏作家一个特殊的任务:度过一周没有电脑的生活。根据当事人的回忆,刚开始的时候,他确实感到非常难受,没有网络,没有邮件,就好像失去了生活重心。对于这个网络化的时代,计算机网络技术给人们的生活带来了极大的方便,对人类的技术是产生了不可磨灭的影响,它改变了人们传统的生活方式,我们可以坐在家里跟海外的朋友聊天视频,可以看电影,还可以网上购物等等,没有网络的我们的生活该是多么缺少色彩。

三 计算机技术在现代化教学中的广泛应用

我国在二十世纪八十年代就已经开始了计算机教育,老师也采用了计算机辅助教学(简称CAI)——多媒体教育正将计算机技术与数学、物理、化学、英语、语文、生物、音乐等各学科教学结合起来,内容丰富、形象生动有趣的教学软件提高了学生们的学习兴趣,增强了教学效果;此外,将课程内容及练习编成软件,计算机还可以成为我们的一位百问不厌的家庭老师。计算机多媒体具有图,文,声并茂甚至有活动影像这样的特点,所以能提供最理想的教学环境,它必然会对教育,教学过程产生深刻的影响。

四 计算机技术的迅速发展带来了第三产业——软件业的兴起

软件业的发展关系到一个国家的未来,软件产业将成为21世纪拥有最大产业规模和最具广阔前景的新兴产业之一。软件领域包括系统软件、嵌入式软件、数据库软件、财务及企业管理软件、教育软件、游戏软件,目前我们国家正处于国际软件产业链的中低端环节,因此我们仍需要向世界主要软件出口大国学习,学习它们在计算机技术方面的先进技术和研发理念,学习它们的管理经验。由于IT技术在通信建设、医疗、教育、交通、军事,生产自动化等各个方面的全面发展,促进了各个软件开发方向的发展。

随着计算机技术的深入发展,计算机网络也随之产生。计算机网络是现代化通信技术与计算机技术相结合的产物,其已然在社会中发挥越来越重要的作用。计算机网络的发展使人类社会发生了巨大变化,它创造出一种与农业社会和工业社会不同的社会文明形态――网络社会文明形态,渗透到人们生活的方方面面,影响到人们的日常生活,改变着人们的生活形态。计算机网络有广阔的发展前景,下一代计算机网络技术应是一个能够提供一个系统开放,可伸缩的,安全稳定和高性能的融合平台,实现国际电联提出的“通过互联互通芙蓉电信网,计算机网和电视网等网络资源的无缝融合,构成一个具有统一接入和应用界面的高效率网络,是人类在任何时间和地点,以一种可以接受的费用和质量,安全的享受多种方式的信息应用”的目标。

五 未来计算机技术的发展趋势

1.无线化趋势。 计算机实现无线化一直是人们梦寐以求的,这与当前笔记本实现的无线是不同的,未来计算机无线化是指网络与设备间的无线连接,如果无线化得到了实现,未来在家中使用台式电脑比用笔记本还方便,因为显示器与主机不用再连线。也就是说实现无线显示器,这种技术被称为UWB技术,属于无线通信技术,可以为无线局域网和个人局域网提供方便,带来低功耗、高带宽的优势。

2.网络化趋势。 目前,信息技术获得了快速发展,计算机也越来越普及,各种家用电器也开始走向智能化,未来有可能实现家电与计算机之间的网络连接,计算机可以通过网络调控家电的运作,也可以通过网络下载新的家电应用程序,从而提高家电的性能。同时利用互联网也可以远程遥控家中的家电,在办公室就能让家中的电器工作,为生活提供便利。

有机化学在生活中的应用范文6

关键词:不对称 小分子催化 合成 药物合成 应用

随着科技的发展以及人们对化学的合成、药物制作和材料科学方面的认识的提高,手性越来越受到人们的重视。要想获得光学活性物质,其有效的方法之一就是进行不对称催化,催化剂的合理设计与使用能够让反应的立体选择性得以提高。有机金属催化剂发生具有立体选择性的不对称反应是比较多样的,不过其反应需要的价格是比较昂贵,再加上回收套用以及残留金属处理问题限制了该有机金属催化剂在有机合成行业中的应用地位。

相比有机金属催化剂,其有机小分子催化剂则成为了更好的选择,有机小分子能够在温和的反应条件、对环境不造成危害条、较低成本条件下以及反应不存在残留金属等等条件下都能够发生,因此手性有机小分子催化剂成为了当前世界上诸多学者们研究的有机合成的对象,手性有机小分子从此便成为了在酶催化与手性金属络合物催化两者之后的第三个有广泛用途的手性催化剂,即手性有机小分子催化剂的黄金应用时期。

一、小分子催化反应分类

1.给体的活化——亲核性催化

利用手性有机小分子催化剂进行催化的过程中,让反应底物内的给体与催化剂进行反应,进而得到反应活性中间体,其亲核性要高于原有给体,即与受体进行反应的能力增高,该催化剂活化机制成为亲核性活化。

2.亲电性催化活化

亲电性催化活化反应过程中是让反应底物中受体与催化剂进行反应产生中间体,中间体的亲电性要高于原有受体,使得其与给体反应产生产物的能力增强。该类型催化以仲胺类化合物为主,结合受体得出亚胺离子历程,进而通过减小反应中心电子云的密度来使其更易接受亲核试剂的进攻。

二、药物合成方法

1.外消旋体拆分法

该方法需要有一定的溶剂才能进行,而且最主要的是拆分剂要想找到一个合适的是非常困难的。因此利用外消旋体拆分法的缺点就是需要先合成外消旋的目标产物才能进行不对称水解拆分来制备手性化合物,且其拆分收率最高不超过一半。

2.化学—酶合成法

当前在工业合成上使用广泛的合成法是化学-酶合成法,即利用纯酶或者微生物催化来完成一些合成反应内的主要步骤,而一般步骤则使用化学合成法,进而能够将两者的优点都体现出来。化学生物等学科开始相互联系与交融,使得生化合成法(化学-生物合成法)的优势逐渐体现出来,进而也确定了手性药物未来的研究方向。

3.酶催化手性药物合成法

该方法相比于化学法而言有着较强的立体选择性,其能够在温和的反应条件下进行,且有着较低的成本和污染,操作也简单易懂,其能够完成一些化学法不能进行的反应。不过生物催化剂需要较高成本投入,且选择底物方面要求较高。该合成法的优点为:反应条件温和、环境友好以及立体选择性较高。

4.不对称催化法

该合成催化法的优点为:经济性高、对映选择性高。工收化实现较为简单且能够进行手性增值,其是当前手性药物合成中前途最好的方法。其优点中优势最高的就是手性增值,利用量级的催化反应手性原始物质进而去进行立体选择生产,得到较多的手性目标产物。该过程无需使用过多手性试剂,但是可能会使用到一些较为昂贵的过渡金属,甚至是比过度金属概要归的手性配体,这也是不对称催化法受到限制的主要原因之一。因此我们应积极探索出其简单的手性配体的合成方法,进而能够将立体性与活性都高的催化剂筛选出来。

三、在药物合成中的应用——形成非共价键活化底物

小分子催化过程中,会出现一类催化剂,其与底物之间是通过分子间的微弱作用力进行作业而不是生成共价键来活化底物。这类催化剂主要为利用手性模板进行活化和氢键活化底物等等。

1.含有硫脲结构的手性催化剂

Pictet-Spengler 反应,在具有生物活性的四氢咔啉类衍生物的合成中,Lee 等用含硫脲结构的手性催化剂,催化 2-取代的吲哚乙胺与醛反应的不对称 Pictet-Spen-gler 反应,当催化剂硫脲氮上含有大位阻取代基时,效果比较好,ee 高达 95%,可能是大位阻限制了反应进行的取向,从而得到该构型的产物。

2.手性膦酸催化剂

手性磷酸是中等强度酸催化,其能够将一些酸用来催化进行不对称反应,其典型案例有:Friedel-Crafts 反应,手性膦酸可以催化多种类型的不对称 Friedel-Crafts 反应。在一种3-吲哚甘氨酸衍生物的合成中,康强等经过对手性膦酸催化剂的筛选及反应条件优化,发现高位阻的手性膦酸催化剂催化可以获得产物的 ee 达到了 87%。

3.不对称相转移催化

在手性小分子催化剂中,手性相转移催化剂是比较重要的,其也是利用与底物分子结合得到手性离子对的非共价键,进而来催化不对称反应。不对称相转移催化是比较重要的有机合成方法。当前主要的手性相转移催化剂有C2类手性相转移催化剂(Maruoka等设计合成)与金鸡纳碱衍生的手性相转移催化剂,其占有不对称有机合成中催化剂使用的重要地位,文章也是主要做该方面的研究工作。

本课题组同时将新合成的手性相转移催化剂利用于甘氨酸叔丁酯衍生物的不对称烷基化反应,利用新合成的催化剂对甘氨酸叔丁酯衍生物的不对称烷基化反应进行了初步探索,ee 中等到高等。

四、总结

目前小分子催化剂逐渐增多,使得化学反应和有机合成发生了质的变化。不过我们也应了解到其不对称小分子催化反应的缺点与不足也是比较多的,诸如催化剂利用率不高、催化反应应用范围不大等等,因此还需要我们的进一步努力和研究,研发出更多类型的高效多官能团的手性小分子催化剂,使得我们在药物合成中更多看到不对称小分子催化的身影。

参考文献

[1]Song,H.L.Chiral phosphine-squaramides as enantioselective catalysts forthe intramolecular Morita-Baylis-Hillman reaction. Chemical Communications . 2011

[2] 周元清.手性双噁唑啉配体在不对称合成中的应用[J]. 广州化学. 2009(02):32-34.

[3] 程传玲,郝二军,李伟,徐桂清,王慧芳. 脯氨酸衍生物有机小分子催化剂的研究进展[J]. 精细石油化工. 2011(05):13-17.