集成电路的用途范例6篇

前言:中文期刊网精心挑选了集成电路的用途范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

集成电路的用途

集成电路的用途范文1

关键词:高强混凝土 优越性 公路施工 方法

        0 引言

        建国以来的50年是我国进行大规模经济建设的50年。全国从南到北,从内地到边疆,到处都在进行着规模宏大的基本建设。大规模的建设和巨大的工程量,促进和推动了作为最大宗基本建设材料的混凝土及其相关技术的飞速发展。 

        从技术角度来看,我国目前的水平也较高,我国的工程技术人员已经掌握了高度达382.5m一泵到顶的技术,一次连续浇筑超过2万m3的超大体积混凝土技术,迈入世界先进的行列;至于正在施工的三峡混凝土工程,混凝土总量超过2500万m3,其工程量之大,混凝土要求之严,施工难度之高,均堪称世界之最。

        1 高强度高性能混凝土概念

        对于高强混凝土,各国没有准确的定义,同时各国的区分标准也不尽相同。长期以来,我国现场浇筑混凝土强度等级大量低于C30,预制混凝土构件普遍低于C40;同时混凝土结构设计规范中的计算公式大部分是根据较低强度混凝土构件的试验数据得出,对于强度较高的C50或更高等级的混凝土明显不适用;另外从混凝土的制作技术来看,C50及更高等级的混凝土在施工时需要严格的质量管理制度和较高的施工水平。考虑到我国目前的施工水平和质量管理制度现状,以C50作为划分高强混凝土的指标,强度等级达到或超过C50的混凝土为高强混凝土。高性能混凝土概念的提出至今也只有10多年的时间,它是伴随着高强混凝土而问世的。

        高性能混凝土不仅满足工业化预拌生产和机械化泵送施工、具有足够的强度,而且是一种耐久性优异的混凝土。与传统的混凝土相比,高性能混凝土在配合比上的特点是低用水量、较低的水泥用量,并以化学外加剂与粉煤灰作为水泥、砂石之外的基本组成成分。这些使硬化混凝土内部的孔隙少,具有致密的微观和细观结构,抗渗性能优良,因此高性能混凝土的耐久性很好。高性能混凝土在硬化过程中体积稳定、水化热低、温升小,冷却时的温度收缩小,干燥收缩也小,所以硬化后不易产生宏观和微观裂缝。我国钢筋混凝土结构规范组1978年的一项调查表明,在一般环境下有40%工业民用建筑结构的混凝土已碳化到钢筋表面,而在较潮湿的环境下90%构件已经锈蚀。

        因此在混凝土的耐久性问题受到普遍重视的今天,高性能混凝土无疑是解决结构耐久性最有效和最经济的途径。

        2 高强混凝土有三大优越性

        2.1 在一般情况下,混凝土强度等级从C30提高到C60,对受压构件可节省混凝土30-40%;受弯构件可节省混凝土10-20%。

集成电路的用途范文2

【关键词】引线框架材料;集成电路;研究

0.前言

在集成电路中,就是依靠进线框架连接外部元件与芯片,其作用至关重要。主要起到支撑及固定芯片,保护内部元件,把IC组装成为一个整体;同时将芯片和外部电路连接起来传递信号,有效进行导电导热。因此,集成电路与各个组装程序必然依据框架才能成为一种整体。鉴于引线框架材料在集成电路中的重要,许多相关人士将研究集成电路用引线框架材料成为了热点话题。在这种形势下,本文对集成电路用引线框架材料研究具有实际价值。

1.集成电路用引线框架概述

随着电力技术快速发展,信息产品正朝着轻量化、高速化、薄型化、小型化以及智能化等方向发展,而作为封装材料也得到长足发展,尤其是半导体的集成电路封装更是突飞猛进。

如今,引线框架的封装密度及引线密度是越来越高,同时封装引线的脚数也快速增多,让引线的节距逐年降低,如今已近达到了0.1mm,同时超薄型成为了热门,从过去的0.25mm降至到0.05-0.08mm,而引线的框架也朝着轻、短、薄、多引线、高精细度以及小节距方向发展。

集成电路用引线框架的性能:

①具备较高强度与硬度;因为引线框架逐步小型,但是其内部容纳的电路依然是那么多,而且容纳的东西应该是越来越多,这就为其材料提出了较高强度及硬度要求。

②良好的导热性;随着集成电路逐渐变小,功能足部增大,随着工作效率提高必然产生热量越多,必然要具备加好导热性。

③较好的导电性;要消除电感及电容造成的影响,材料就必然要求较好导电性,才能降低框架上的阻抗,也有效散热。

除了具备如上一些功能特性之外,引线框架还要具备良好的冷热加工性能,较好的微细加工和刻蚀性能及较好的钎焊性能等。一般而言,较为理想引线框架材料的强度不能够低于600MPa,其硬度HV不能小于130,而其电导率不能小于80%。

2.研究引线框架材料进展

随着集成电路朝着小型化及高集成化以及安装方式变化等等方向上发展,为引线框架材料特性及质量要求是逐渐增强,必然要投入更多人力物力来开发与研究新材料。自从上世纪60年代集成电路研发成功以来,相关人士就在不断的开发优质集成材料,电子封装材料及各类引线框架也不断产生,针对引线框架材料较多的是高铜合金及铁镍合金开发比较成功,本文就是以这两种材料作为例子进行阐述。

2.1铁镍合金

铁镍合金中主要代表物质是KOVAR合金以及42合金两种。而KOVAR合金在传统使用上属于较为优良的引线框架材料,集成电路刚刚出现之时是引线框架中使用较多的材料。该合金的优点就是具有高强度、高抗拉强度,其中抗拉强度能够达到530MPa,能够确保电路的可靠性,但是有一个较大缺点就是导电导热的性能不大好,当时按照当时集成电路需求来看还是能够满足。到了1987年世界上出现了能源危机,导致钴价猛涨,自然也就加快了KOVAR合金的价格增长,这样就大大降低了使用量,价值一些高性能新型材料研发成功,KOVAR合金慢慢退出了。

随着KOVAR合金退出相继出现了一大批新型材料,其中有位突出的是Fe-Ni42合金。这种合金的机械强度及热膨胀系数与KOVAR合金较为相近,相比之下就是导热导电的性能略差,但是因不含有Co元素导致其价格相对较低,因此这种材料一出世就快速发展起来,其使用普及度突飞猛进,到了上世纪80年代就占据引线框架材料的40%以上,一直到更为新型材料的出现才开始降低。这种材料是铁磁性恒弹性的合金,其优点是强度较高、可靠性好,不足之处是导热导弹、价格上相比较差。

2.2铜基材料

铜合金材料一问世,就以较高导电导热以及价格低廉等诸多特点成为了引线框架中使用比较普遍材料。伴随着集成电路逐渐退出陶瓷封装,塑性封装成为了主流,而与塑性封装较为匹配之铜基合金作为引线框架使用更是突飞猛进。铜基引线按照材料的性能划分,大致可以划分为高导电型、高强度型、高强中导型及中强中导型等;如果按照合金成分可以分为铜铁系列、铜铬系列等,相比之下使用较为广泛为铜铁磷系列,其典型的材料为C194合金与KFC合金。但是铜导电率及导热率稍低于银,在生产之中怎样才能满足需要性能就尤为关键了。当时在使用中主要有Cu-Fe(P)系列、Cu-Ni-Si系列、Cu-Cr系列等,从使用中发现较高时效温度计过程使用时间都易导致Cr与Cu3Zr的粒子聚集长大,产生出过时效,对合金的高温性能与焊接性能有严重损害,因此相关研究者就在努力探索新型材料出现。

3.引线框架新材料的开发

在引线框架中使用铜及合金成为了人们的共识,但是相对而言还存在一些问题,引发人们朝着新成分体系及新制备工艺上发展。在这种形势下,研发出了一些新型材料。

3.1铜合金中加入稀土元素

为了改善铜合金之综合性能,就在其中加入了微量的稀土元素,改善了铜合金的耐腐蚀性能、热塑性能及导电性能等,加入稀土元素还能够净化铜合金里的杂质,细化铜合金里的晶粒。但是在加入稀土元素时要控制用量范围及最佳值,因为一旦超过了临界值,稀土元素作用就变化了,就会影响到铜合金各种性能。目前,加入了稀土元素的铜合金使用较为广泛。

3.2新型制备工艺

事实上,不同制备工艺能够得到不同性能合金,比如合金的时效、强化方式之前有没有做变形处理,时间、时效温度等选定都直接关系着合金最终的性能。因此制作时就依据制备合金工艺基础上,根据需要的性能做具体要求,就能够满足不同的需求。同时,加入了不同的成分比微量元素,对合金的性能影响较大。例如:在合金中加入Zn元素就能够加大提升钎焊性,加入了Mg元素能够改善材料抗疲劳及高温性能等。因此,这一系列使用极大的改善了引线框架材料的需求。

4.结论

如今,集成电路是各个国家科学技术发展之重要代表,能够体现出国家信息科技水平与能力。而且随着集成电路的用途扩大,对引线框架材料需求日渐增大。从发展现状可看出来,铜合金因具备良好导热导电等综合性能,成为了目前的主打材料。但是研发集成电路用引线框架材料,必将备受相关研究者重视。

【参考文献】

[1]向文永.集成电路用引线框架材料的研究现状与趋势[J].材料导报,2006(3):3-6.

[2]陆磊.高强高导电铜合金耐腐性研究[J].材料工程,2010(4):98-102.

集成电路的用途范文3

正在快速发展中的印刷电子技术显然已经形成为一个新兴的产业,逐步引发了一场电子技术的革命。印刷电子技术的推进应用与材料科技、电子科技以及制造科技紧密相关,从而近些年电子电气和化学材料领域的相关国际知名公司如西门子(Siemens)、因特尔(Intel)、摩托罗拉(Motorola)、东芝(Toshiba)、索尼(Sony)、飞利浦(Phillips)、三星(Samsung),乐金(LG)、惠普(HP)、通用(GE)、霍尼威尔(Honeywell)及巴斯夫(BASF)、杜邦(DuPont)、拜尔(Bayer)、默克(Merck)等纷纷拆巨资开展印刷电子技术方面的研究。欧盟早在第5、第6、第7框架计划下已持续投入了数十亿欧元进行了研发,美国、日本、韩国等工业发达国家也是如此。相关企业技术研发都致力于通过研究开发、集成制造不同功能的低成本印刷电子产品,来满足日常生活的各种用途。一些知名咨询公司如英国IDTechEx、德国PolyIC、美国NanoMarkets分析认为未来20年新兴的印刷电子产业可以达到3000亿美元,市场规模将会逐步比硅电子产业还要大。印刷电子技术不仅会影响电子业、封装业、硅芯片业和显示业,而且对印刷电路板(PCB)和传统印刷业等产业结构调整、升级都会造成巨大的影响。

二、印刷电子与传统制造电子的比较

目前传统的微电子集成电路技术发展已经十分成熟,这是一种以半导体单晶硅为衬底材料的微电子集成电路技术,硅基集成电路制造工艺包括薄膜沉积、高温烧结、光刻、腐蚀、封装等,这种传统制造电子所采用的蚀刻制备方法称为“减法生产”。传统集成电路制造技术的优点在于精度高、性能好,缺点则是成本高,而且蚀刻环节产生大量重金属废液,造成环境污染。另外,电子制造工艺中的高温烧结环节对衬底材料有一定要求,柔性衬底材料,比如塑料薄膜、纸张、纤维等上面很难实现电子的制造。然而,印刷电子技术是将具有导电、介电或半导体性能的电子材料配成可以流畅印刷的功能油墨,按照所需电子线路设计印刷图案,通过印刷的方式将这些特殊油墨印刷到衬底材料上。通过印刷方法将功能油墨层层叠加制备,完成对集成电路的各组成部件的制造,这种用印刷的方式制造集成电路的方式是一种“加成法”。

印刷加成制造技术工艺简单,成本低,可实现大面积、大批量生产;免于蚀刻处理,没有原材料浪费,环保无污染。虽然目前在产品精度和性能上还无法与传统制作技术抗衡,但它对衬底材料没有耐高温、硬度等要求,因而应用范围更广。很显然,印刷电子制造技术独特的优势与长处,可以补齐传统电子制造技术中的“短板”,但它也有自身存在的缺陷与局限,并非所有的电子器件和产品都能通过印刷的方式进行制造。因此,可以预测印刷电子技术并不能完全取代传统的电子制造技术。随着先进功能材料研究研发和工艺技术上的不断发展,印刷电子技术在产品精度等方面的性能已有很大的突破和提升。虽然,现在印刷电子与传统的电子制造技术相比稍显稚嫩,但是,印刷电子技术由于在“大面积、低成本、柔性化、环保”诸多方面的优势,在以后的发展中探索、找准适合自身的应用与市场化发展空间将会获得巨大的发展潜力。

三、印刷电子技术特点

印刷电子的制备工艺不单单是将印刷技术简单的在电子制造中的重复,因此,在实际应用印刷电子技术进行电子制造过程中不要把印刷电子与传统印刷完全等同对待。传统印刷品如书刊、杂志、报纸的功能是用来看的,至于包装印刷品其功能往往是用于运输、保护、展示或者其他,而印刷电子产品,根据其实际用途主要在于做导体、半导体、绝缘体方面,无疑要求具备突出的电学方面功能。除了认识到产品形态与功能方面的区分,印刷电子与传统印刷在制造工艺上也不能等尔视之。首先,从印刷材料的角度来看,印刷电子油墨与传统印刷油墨显然不是为了类似的需求进行制备的。

目前,油墨要求在传统印刷中大多强调流变性与印刷方式的匹配,分散性与印刷效果的完美再现等方面,在印刷电子的应用中,印刷材料还要与电子产品所需要的导电性能、透明度等相适应。例如,目前为了实现电子产品的高精度、高分辨率,现有的材料已经很难满足其要求,使得用到的原材料必须纳米化。这也使得把近几年来研究较多的纳米材料应用技术与操作简单、成本低廉的印刷电子技术联系起来成为可能。毫不夸张地说,印刷电子材料的发展决定着印刷电子的发展,材料研发的问题目前国内诸多科研院所都在进行相关研究研发工作。例如,中科院化学所喷墨打印制备金属纳米颗粒导电透明膜的研究、中科院苏州纳米所柔性大面积印刷透明导电膜技术、北京印刷学院纳米银制备技术等。因此,印刷电子产业化工作与全面的了解、研究印刷电子材料是紧密相连的。传统印刷设备不能简单的直接用于印刷电子领域,要经过适当的改造。在产品的印前和印后处理等环节,印刷电子也会有一些不同于传统印刷的要求。

四、印刷电子制备工艺

随着印刷电子制备工艺的不断发展,根据不同的印刷电子需求丝网印刷、凹版印刷、凸版印刷、胶版印刷、喷墨印刷等几大印刷方式结合自身工艺特点在印刷电子技术领域都实现了应用。目前在印刷电子领域的应用最为广泛的是丝网印刷电子技术,丝网印刷电子具有以下优点:(1)设备制备成本低,制版操作比较简单;(2)对基材和油墨的适应性较强,不同基材或者不同的表面均可以印刷,油墨无论是亲油型还是亲水型只要可从网孔中漏印下来均可实现印刷;(3)印刷至基材表面得到薄膜的膜厚较厚,可达到几十微米,远远厚于其他印刷方式,这可在一定程度上提升电子器件的电学性能。另外,凹版印刷、凸版印刷、胶版印刷等传统印刷工艺技术分别因其高速、含挥发性溶剂、接触印刷、高精度等方面的突出优势也在印刷电子领域获得了应用。目前,喷墨打印技术的推广以及其优越的非接触印刷工艺特点,在印刷电子领域具有巨大的应用价值。喷墨打印技术可以实现非接触多点打印,制备多功能印刷电子,在电子产品制造、科学研究研发等方面实现了诸多应用。

五、总结

集成电路的用途范文4

1、作为有机原料和溶剂有着广泛用途。作为化工原料,可生产丙酮、过氧化氢、甲基异丁基酮、二异丁基酮、异丙胺、异丙醚、异丙醇醚、异丙基氯化物,以及脂肪酸异丙酯和氯代脂肪酸异丙酯等。在精细化工方面,可用于生产硝酸异丙酯,黄原酸异丙酯、亚磷酸三异丙酯、三异丙醇铝以及医药和农药等。作为溶剂,可用于生产涂料、油墨、萃取剂、气溶胶剂等。还可用作防冻剂、清洁剂、调和汽油的添加剂、颜料生产的分散剂、印染工业的固定剂、玻璃和透明塑料的防雾剂等。用作胶黏剂的稀释剂,还用于防冻剂、脱水剂等。

2、测定钡、钙、铜、镁、镍、钾、钠、锶、亚硝酸、钴等的试剂。色谱分析标准物。作为化工原料,可生产丙酮、过氧化氢、甲基异丁基酮、二异丁基酮、异丙胺、异丙醚、异丙醇醚、异丙基氯化物,以及脂肪酸异丙酯和氯代脂肪酸异丙酯等。在精细化工方面,可用于生产硝酸异丙酯,黄原酸异丙酯、亚磷酸三异丙酯、三异丙醇铝以及医药和农药等。作为溶剂,可用于生产涂料、油墨、萃取剂、气溶胶剂等。还可用作防冻剂、清洁剂、调和汽油的添加剂、颜料生产的分散剂、印染工业的固定剂、玻璃和透明塑料的防雾剂等。

3、用作油井水基压裂液的消泡剂,空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。

4、异丙醇作为清洗去油剂,MOS级主要用于分立器件及中、大规模集成电路,BV-Ⅲ级主要用于超大规模集成电路工艺。

5、用于电子工业,可用作清洗去油剂。

6、用作胶黏剂的稀释剂,棉籽油的萃取剂,硝基纤维素、橡胶、涂料、虫胶、生物碱、油脂等的溶剂。还用于防冻剂、脱水剂、防腐剂、防雾剂、医药、农药、香料、化妆品及有机合成等。

集成电路的用途范文5

关键词:AXIe ;PCIe;同步数据传输;高速图形传输

DOI: 10.3969/j.issn.1005-5517.2013.10.005

E-Beam(电子束)微影技术(Lithography)是下一世代无光罩(maskless)半导体制程。通过无光罩微影技术可使微影制程突破目前20奈米或更小制程的限制。E-Beam 微影系统需要使用极高带宽的数据传输系统,将大量集成电路图案数据,从数据服务器先通过数据传输系统解压缩后,再通过数千条光纤并行传输至 E-Beam 机台,且通道对通道间的时钟偏移(skew)不得大于 2ns。基于高通道高密度及高数据传输带宽的需求,凌华科技采用AXIe平台架构来建置E-Beam 数据传输系统。

E-Beam 无光罩式微影技术可突破传统光罩式微影技术的限制。概念上就像一台超高速的打印机。不同于打印机喷出墨水,E-Beam机台的电子枪投射出数千组平行电子束,打印至覆盖有光阻剂的晶圆表面,超过8,000组电子束会通过 MEMS 数组来控制个别电子束的开关,而每个电子束开关的控制命令,则是通过个别的高速光纤输出通道来做控制,因此会需要超过8,000个光纤输出通道。为避免控制命令不同步造成电路图案失真及错误,系统整体需求为所有光纤通道间数据的时钟偏移不能超过 2ns。

可符合经济效益的产出标准为每小时 10片以上,换句话说每6分钟要完成一片晶圆。每一个集成电路光罩档案的数据量可高达 2.5TB,所以另一个挑战是如何实时的将大量数据通过图形传输系统,再通过8,000组以上光纤通道平行输出到E-Beam机台。此数据经系统处理后,可用于控制E-Beam 系统上的电子束控制数组。为满足这些需求,凌华科技采用基于AXIe系统的FPGA架构解决方案进行数据处理及储存。

AXIe的优点

E-Beam 系统的硬件设计可确保通道间的时钟偏移最大不超过 2ns。自外部同步信号产生器开始,低偏移扇形输出缓冲器(fan-out bufer)即用于外部同步信号产生器之中,做为将工作频率及同步信号分配到各机箱切换模块的用途。另外,切换模块除提供PCIe总线自动切换功能外,也负责切换 STRIG、SYNC及相关频率信号,将这些同步信号分配到各插槽上的数据传输模块。在数据传输模块方面,除特别注意各频率及数据信号在PCB上布线都须使用相等路径长度外,在电路输出部分也都采用低偏移缓冲器。最后处理过的数据会由Avago 平行光纤发射器 (AFB-810BHZ-TX) 输出。综合考虑 FPGA 内部绕线及制程、光纤、连接器及 PCB 路径等因素后,计算所得的总体通道间时钟偏移可小于 1ns 以下。

除了跨 10 个机箱下严格的通道间歪斜的要求之外,系统还要求能够实时传输大量数据到光纤输出通道。各图形传输模块配备四组高性能的FPGA;一颗负责PCIe驱动接口,另外三颗各负责 24 个光纤通道的驱动接口,即单一数据传输模块可提供 72个光纤输出通道。

集成电路图案数据先自 RAID 磁盘阵列读出后加载主板刀锋服务器的内存,再经由PCIe 总线做直接内存存取(DMA, direct memory access)传输到个别的数据传输模块。数据传输模块上的 PCIe FPGA 接收 DMA 数据并存入模块上的闪存,然后再传输到各图形传输 FPGA 对应的 DDR3 内存储存。图形传输 FPGA 内建有客户自定的解压缩算法,解压缩后的数据会通过光学发射器做同步数据输出。示意图请参见图 5。

其中DDR3 内存切割为两个区块,以便实现「乒乓(ping-pong)技术,也就是可让大量数据同时间进出内存以优化读/写带宽。各光纤输出通道的图形档案大小可达 300MB,换句话说,一个插满12张数据传输模块的机箱总共会需约260GB的档案大小。

集成电路的用途范文6

关键词:电子信息;专业课程;模拟电子技术

1 模拟电子技术基础课程的特点

模拟电子技术基础,又称为电子技术基础模拟部分,与数字电子技术一起统称为电子技术基础。是面向电子信息学科的专业基础必修课。该课程的特点包括:重要性,模拟电子技术是现代化重中之重的技术;非线性,电子放大器是一种非线性元件,需要用非线性分析方法(图解法、微变等效近似等);工程性,在足够精确的情况下,为了计算方便,常用近似来化简;微观性,深入到原子电子级分析问题;实践性很强,动手性很强,需要很好的实践,不实践学不好;复杂性,易受多种因素影响,如温度,随机性,光照等等影响,参数宜变,参数分散等增加了该课程内容的复杂程度;基础性,是后续电子类课程的基础,也是电子信息类专业考研的课程之一;主干性,是电子信息类本科专业的主干专业课程。本课核心是电子放大器,该课程主要就是讲放大。

模拟电子技术基础课程的基本概念、基本分析方法已经渗透到了各行各业各个领域。包括广播通信:发射机、接收机、扩音、录音、程控交换机、电话、手机等;互联网络:路由器、ATM交换机、收发器、调制解调器等;工业领域:钢铁、石油化工、机加工、数控机床等;交通方面:飞机、火车、轮船、汽车等;军事领域:雷达、电子导航等;航空航天领域:卫星定位、监测;医学领域:γ刀、CT、B超、微创手术等;消费类电子领域:家电(空调、冰箱、电视、音响、摄像机、照相机、电子表)、电子玩具、各类报警器、保安系统等。电子技术的发展,推动计算机技术的发展,使之“无孔不入”,应用广泛。

模拟电子技术基础课程的学习使学生牢固掌握模拟电子电路系统的分析能力和集成电路的创新设计能力,掌握模拟电子信号和系统的基本原理及基本分析方法,深入理解模拟电子电路系统的各个组成部分的基本原理,掌握应用所学典型模拟电子系统解决信号分析问题的方法,掌握集成电路的设计原理和实现方法。为学生进一步学习有关信息、通信方面的课程和今后的科研工作打下良好的理论基础。

2 模拟电子技术基础课程的先修课程

模拟电子技术基础课程的先修课程有《高等数学》、《大学物理》和《电路分析基础》,其中最重要的也是衔接最紧密的一门课程就是――《电路分析基础》。简单来说可以将电路分析基础和模拟电子技术基础归为同一类专业课程,从内容上看,《电路分析基础》主要让学生掌握电子电路分析的基本能力,而《模拟电子技术基础》课程则是学习对模拟信号的处理分析,从模拟电子系统的各个组成部分出发,分别学习各种典型的模拟电子电路,给学生建立起模拟系统的基本构架,为后续深入学习信号与系统的分析能力打好基础。

模拟电子技术基础课程在《电路分析基础》学习的基础上,分别从微观和宏观探讨模拟电子电路系统的各个方面。微观深入到电子原子级,讨论半导体材料的神奇,进而分析二极管、三极管和场效应管在微观领域,内部载流子运动的情况,从而让学生深入体会半导体器件的奇妙之处。宏观上从集成电路出发,理解集成电路的奥妙,小到微观电子原子级,大到模拟系统及大型集成电路的设计。学习模拟电子技术基础课程之后,学生有了系统的概念,信号处理的概念,在此基础上再进行数字电子技术的学习,学生更能理解和接受,电路分析基础和模拟电子技术基础两门课虽然内容不同,各有侧重点,但很多分析方法、理论公式都环环相扣,所以可以进行对比学习,提高学习效率。

3 模拟电子技术基础课程设置知识要求

模拟电子技术基础课程是电子信息专业本科生的专业基础主干必修课程,它具有自身的体系,是理论性、实践性都很强的课程,是学习很多后续专业课的基础。为今后深入学习电子技术在专业中的应用(例如在《信号与系统》、《数字信号处理》、《通信与系统》、《通信原理》、《嵌入式系统理论及实践》等后续专业课程中的应用)打好基础,为学生建立系统分析的概念,培养学生自主分析问题和解决问题的能力,帮助学生成功的从中学阶段对电压电流的具体求解,过渡到本科阶段自主进行信号与系统的分析能力的培养。

4 模拟电子技术基础课程设置能力要求

模拟电子技术基础课程设置能力要求以理论基础和实践操作相结合,既保证严谨的理论体系,又结合工程实践的特点。通过模拟电子技术基础课程的学习,应能具备模拟电子电路的系统分析能力、大型集成电路系统的分析计算能力、简单的集成电路设计能力,以及电子技术系统相关专业知识的自学能力。

5 模拟电子技术基础课程达成目标要求

通过模拟电子技术基础课程的学习,掌握模拟电子系统的各个部分,包括电子电路系统与信号、半导体二极管及其基本电路、半导体三极管及放大电路基础、场效应管放大电路及其应用、功率放大电路、集成电路的组成原则、集成电路运算放大器、反馈放大电路、信号的运算与处理电路、信号产生电路、直流稳压电源等典型模拟电子电路系统的分析计算能力及基本集成电路系统的设计能力,培养学生分析问题和解决问题的自主学习能力;学会用所学的典型模拟电子电路系统自主创新设计完整的模拟集成电路系统,辅助实现模拟电子电路系统的各种基本功能;能借助实际电子电路实验箱和软件模拟仿真,实现不同类型模拟电路系统的功能,通过实验环节操作训练具备处理实际工作问题的相关专业技能,理论与实践相结合,更好的理解模拟电子技术这门学科的专业知识,为后续专业课程打好基础。

6 教学方法建议

和众多电子信息类专业基础课一样,模拟电子技术基础课程以理论讲授与实践操作相结合,理论部分也是以教师讲授为主,课程内容繁多,有时候为了在有限的学时内完成全部的课程内容讲授,很多教师会全程进行讲授,学生被动的接受知识,犹如过眼云烟,没有足够的消化理解相关知识点的时间,真正理解领会的知识点非常有限,不懂的内容还需要教师花更多的时间来反复讲解,其实这样的教学模式,教师辛苦不说,教学效果还会极差。理论部分的讲授应该着重抓课前预习及课后复习,上课前十分钟用来对前一次课的内容及要求预习的内容做提问,以这种方式督促学生进行课前预习和课后复习,对知识点进行巩固。

综上所述,《模拟电子技术基础》这门课程对电子信息类专业的本科生非常重要,另外电子信息类本科专业基础课程还有很多,不仅仅是模拟电子技术基础,每门不同的专业课程都有其特点和用途,学生只要从宏观的角度,理解其中的关联性和衔接性,教师也可适当让学生了解每门课程设置的知识要求、课程设置的能力要求,以及课程的达成目标要求等,只为每一位学生能学好每一门专业课,真正具备电子信息的相关专业技能。

参考文献

[1]童诗白,华成英.模拟电子技术基础(第四版)[M].高等教育出版社.