集成电路工艺原理范例6篇

前言:中文期刊网精心挑选了集成电路工艺原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

集成电路工艺原理

集成电路工艺原理范文1

关键词:集成电路工艺 教学探索

中图分类号:G642.4 文献标识码:A 文章编号:1002-7661(2015)09-0001.01

随着经济和信息技术的发展,信息技术已经渗透到了国民经济的各个领域。信息技术的基础是微电子技术,集成电路作为微电子技术的核心,是整个信息产业和信息社会最根本的技术基础,也是一个国家参与国际化政治、经济竞争的战略产业。同时我国集成电路发展水平离欧美日等发达国家有很大的差距,尤其是在自主知识产权的集成电路产品方面。要扭转这一局面,高素质的专业技术人才是关键,要改变这种状况,应从本科教育做起。《集成电路工艺》是微电子学专业重要的必修专业课,授课教师必须在充分熟悉半导体物理和半导体集成电路等课程的基础上,结合教学实际中存在的问题,优化整合教学内容,丰富教学手段,探索教学改革措施,培养学生的学习兴趣,提高《集成电路工艺》课程的教学质量。

一、教学内容

微电子科技是高速发展的产业推动型学科,微电子产品制造技术更是日新月异,随着工艺技术的不断发展,《集成电路工艺》课程的教学内容需要不断更新。微电子专业前期开设了半导体物理、半导体器件物理、电路分析基础、数字逻辑电路等电路课程,因而在《集成电路工艺》课程内容设置时将着重培养学生的制造工艺能力,减少器件设计和原理内容的比重,着重讲解制造工艺的内容。

根据教学大纲,《集成电路工艺》课程的教学内容可分五个部分:第一部分介绍硅衬底,主要单晶硅锭的拉制及硅片的制造工艺及相关理论;第二部分氧化与掺杂,介绍热氧化生长二氧化硅工艺,以及通过热扩散和离子注入与退火相结合的在硅片特定区域的定量掺杂工艺;第三部分薄膜制备,介绍化学气相淀积和物理气相淀积两类薄膜制备方法及工艺流程;第四部分介绍光刻工艺,现代光刻技术和刻蚀工艺;第五部分介绍工艺集成与封装测试工艺。课程共设置48学时,选用王蔚等人主编,电子工业出版社出版《集成电路制造技术――工艺与原理》(修订版)一书作为教学教材。在授课过程中,根据重庆邮电大学微电子专业实际情况酌情删减及增加相关知识,重点培养学生对硅芯片制造基本单项工艺的实际动手能力,激发学生对集成电路工艺的兴趣。

二、教学方法和教学手段

《集成电路工艺》这门课程本身强调实验基础,需要结合实验设备,而实验流程不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。长期以往,学习积极性必然受挫,学习效果自然大打折扣。采用有效的教学方法并结合先进的教学手段,不仅有利于培养学生获取知识的能动性,而且有利于培养学生独立发现问题、分析问题以及解决问题的能力,实现以教为中心到以学为中心的转变,突出学生在学习过程中的主动性,从而取得好的教学成果。基于《集成电路工艺》课程的特点,在教学手段上以多媒体教学为主,传统黑板板书为辅,同时在课堂上以动画、视频的形式展现半导体集成基本单项工艺和器件工艺制作过程,从而达到提高课堂教学质量的目的。

三、考核方式的改革

集成电路工艺原理范文2

 

1CDIO工程教育理念

 

CDIO工程教育模式,是由美国麻省理工学院、瑞典皇家工学院等四所大学共同创立的工程教育改革模式。是近年来国际工程教育改革的最新成果,CDIO是构思(Conceive)、设计(Design)、实施(Implement)、运作(Operate)4个英文单词的缩写,以产品从研发到运行的生命周期为载体让学生以主动的、实践的、与课程之间有机联系的方式学习掌握知识&-4。迄今已有几十所世界著名大学加入了CDIO国际组织,这些学校采用CDIO工程教育理念和教学大纲开展教学实践,取得了良好的效果。

 

2存在的问题与课程建设思想

 

微电子技术研究的中心问题是集成电路的设计与制造,将数以亿计的晶体管集成在一个芯片上。微电子技术是信息技术的基础和支柱,是21世纪发展最活跃和技术增长最快的高新科技,其产业已超过汽车工业,成为全球第一大产业。微电子工艺课程主要介绍微电子器件和集成电路制造的工艺流程,平面工艺中各种工艺技术的基本原理、方法和主要特点。其课程建设思想是使学生对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,掌握当前微电子芯片制作的工艺流程、主要设备、检测方法及其发展趋势^7]。

 

但目前该课程教学中存在较多问题,教学效果不佳,主要有如下几点:(1)教材陈旧,没有较适合的双语教材,难以适应跨国际的微电子制造工艺新技术的快速发展;(2)教学内容信息量大,在教学时间短、内容多的情况下,教师难以合理安排教学进度;(3)在课程设置上重理论轻实践,技术性和实践性的内容较少,与迅速发展的工业实际脱节;(4)教学方法单一,理论联系实际不紧密,不利于学生课堂积极性的提高与创造性的发挥“5)实践教学环境较差,由于微电子工艺设备十分昂贵,有待加强高校精密贵重仪器设备和优质实验教学资源共享平台和运行机制的建设;(6)教评形式单一,忽略了实践教学与考核,致使大多数学生只是死记硬背书本知识的学习方式来应付考试。

 

3微电子工艺的课程建设

 

3.1教材选取及教学内容改革

 

本课程教材选用经历了《芯片制造一半导体工艺制程实用教程》、《现代集成电路制造工艺原理》到目前的首选教材:国外电子与通信教材系列中,美国MichaelQiurk和JulianSerda著《半导体制造技术》韩郑生的中文翻译本。该书不仅详细介绍芯片制造中的每一关键工艺,而且介绍了支持这些工艺的设备以及每一道工艺的质量检测和故障排除;并吸收了当今最新技术资料,如用于亚0.25pm工艺的最新技术:化学机械抛光、浅槽隔离以及双大马士革等工艺;内容丰富、全面、深入浅出、直观形象、思考习题量大,并附有大量的结构示意图、设备图和SEM图片,学生很容易理解,最主要的相对前两本教材,它更加突出实际工艺,弱化了较抽象的原理。

 

教学内容上采取调整部分章节,突出教学重点,并适当增减部分教学内容。本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力,课程仅32学时,而教材分20章,600页,所以教师需要精选课堂授课内容。从衬底制备、薄膜淀积、掺杂技术到图形加工光刻技术以及布线与组装,所涉及的概念比较多,要突出重点:薄膜淀积(氧化、蒸发、溅射、MOCVD和外延等),光刻与刻蚀技术、掺杂技术,需章节调整系统整合;对非关键工艺的5~8章(介绍半导体制造中的化学药品、污染及缺陷等内容)只作为学生课后自学阅读。第2章的半导体材料特性已在“固体物理”课程中详细介绍,第3章的器件技术已在‘‘半导体物理“晶体管原理”课程中介绍,第20章装配与封装会在“集成电路封装与测试”课程中介绍,故无需重复讲解。将第9章集成电路制造工艺概况放在后面串通整过工艺讲解,即通过联系单项工艺流程,具体分析讲解典型的CMOS芯片制造工艺流程,如由n-MOS和p-MOS两个晶体管构成的CMOS反相器,这样能够加深对离子注入、化学气相淀积、光刻关键技术、集成电路的隔离技术以及VLSI的接触与互连技术等内容的理解。

 

另一方面,指导学生查阅相关资料,对教材内容作必要的补充,微电子工艺技术的发展迅速,因此需要随时跟踪微电子工艺的发展动态、技术前沿以及遇到的挑战。特征尺寸为45nm的集成电路已批量生产,高K介质/金属栅层叠结构、应变硅技术已采用。而现有的集成电路工艺教材很少能涉及到这些新技术,为了防止知识陈旧,应多关注集成电路工艺的最新进展,尤其是已经投入批量生产的工艺技术,及时将目前主流的工艺技术融入课程教学中。

 

3.2教学方法的改革

 

(1)开发多媒体工艺教学软件,利用多媒体技术,将动画、声音、图形、图像、文字、视频等进行合理的处理,利用大量二维和三维的多媒体图片、视频来展示和讲解复杂的工艺构造过程。开发图文声像并茂的微电子工艺多媒体计算机辅助教学软件,给学生以直观、清楚的认识,有助于提高教学质量。

 

(2)微电子工艺综合共享实验平台建设,集成电路的制造设备价格昂贵,环境条件要求苛刻,运转与维护费用很大,国内仅部分高校拥有集成电路工艺试验线或部分实验分析设备。按照有偿服务或互惠互利原则共享设备仪器资源,创建各院校之间和与企业之间的“微电子工艺综合共享实验平台”可极大的提高集成电路工艺及其实验课程教学效果,即解决了一些院校资金短缺问题,同时也部分补偿了大型设备的日常使用和维护费用问题。其综合共享实验平台包括金属有机化合物MOCVD沉积技术、分子束外延、RF射频磁控溅射、XPS、XRD及AFM分析测试、光刻、离子注入等涉及投资巨大的仪器设备实验项目。

 

(3)拓展实践能力的校企合作,让学生带着理论知识走进企业的真实工程环境,探索利用企业先进的工艺线资源进行工艺实验教学与参观实习6-9]。参观实习能够使学生对集成电路的生产场地,超净环境要求具有深刻的感性认识,对单晶硅制造流程、芯片制造工艺过程以及芯片的测试和封装的了解也更加系统和全面。同时利用假期安排学生去企业实习,让学生参与企业的部分生产环节,亲身感受实际工艺生产过程,增加学生对企业的了解,也利于企业选拔优秀学生。

 

(4)工艺视频与工艺实验辅助教学,由于微电子工艺内容与生产密切结合,不能单靠抽象的书本知识教学,对于学生无法了解到的一些工艺实验与设备,可通过录像教学来补充。本学院购置了清华大学微电子所的集成电路工艺设备录像与多媒体教学系统,结合国外英文原版的工艺流程视频,通过工艺视频把实际工艺流程、设备和设备操作等形象地展示在课堂。多媒体教学系统提供了氧化、扩散和离子注入三项工艺设备操作模拟,可使学生身临其境地对所学的基本工艺进行简单的模拟。同时结合课堂教学开设半导体平面工艺实验,主要包括以:氧化、光刻、扩散、蒸铝、反刻、划片、装架、烧结、封装。实验以教师讲解与学生动手相结合,既培养了学生的实际动手能力,又使学生掌握了科学分析问题的方法,激发了学生的学习兴趣,加深学生对课堂理论知识的理解。

 

3.3多元化的考核评价体系

 

对学生的考核是对其具体学习成果的度量,也是检验教学改革成效的重要手段,为了更科学合理的考核学生,我们建立了多元化的更加注重过程参与的考试评价体系,降低了期末考试在总成绩中所占比例,最大限度避免学生靠死记硬背来应付考试和学生创新思维被抑制、高分低能现象产生。这种多元化、过程性的成绩评定方法,强调知识的积累与构建过程,消除了学生重理论轻实践,考前死记硬背应付考试的弊病。总评成绩由平时成绩和期末考试成绩两部分构成。但加大平时成绩的权重,平时成绩即包括了作业与考勤,还包括综合性实验成绩、设计仿真、国外工艺视频翻译、专题小论文和专题PPT论坛团队成绩等。同时在期末考题中增加openanswerquestion型、工艺过程设计型题目110-11。

 

4结语

集成电路工艺原理范文3

在此,我们重点是讨论集成电路芯片加工过程中的一些关键手艺。

集成电路基本工艺包括基片外延生长、掩模制造、曝光技术、刻蚀、氧化、扩散、离子注入、多晶硅淀积、金属层形成。

关键词:外延、掩膜、光刻、刻蚀、氧化、扩散、离子注入、淀积、金属层

集成电路芯片加工工艺,虽然在进行IC设计时不需要直接参与集成电路的工艺流程,了解工艺的每一个细节,但了解IC制造工艺的基本原理和过程,对IC设计是大有帮助的。

集成电路基本工艺包括基片外延生长掩模制造、曝光技术、刻蚀、氧化、扩散、离子注入、多晶硅淀积、金属层形成。

下面我们分别对这些关键工艺做一些简单的介绍。

一、外延工艺

外延工艺是60年代初发展起来的一种非常重要的技术,尽管有些器件和IC可以直接做在未外延的基片上,但是未经过外延生长的基片通常不具有制作期间和电路所需的性能。外延生长的目的是用同质材料形成具有不同掺杂种类及浓度而具有不同性能的晶体层。常用的外延技术主要包括气相、液相金属有机物气相和分子束外延等。其中,气相外延层是利用硅的气态化合物或液态化合物的蒸汽在衬底表面进行化学反应生成单晶硅,即CUD单晶硅;液相外延则是由液相直接在衬底表面生长外延层的方法;金属有机物气相外延则是针对ⅢⅤ族材料,将所需要生长的ⅢⅤ族元素的源材料以气体混合物的形式进入反应器中加热的生长区,在那里进行热分解与沉淀反映,而分子束外延则是在超高真空条件下,由一种或几种原子或分子束蒸发到衬底表面形成外延层的方法。

二、掩模板的制造

掩模板可分成整版及单片版两种,整版按统一的放大率印制,因此称为1×掩模,在一次曝光中,对应着一个芯片陈列的所有电路的图形都被映射到基片的光刻胶上。单片版通常八九、实际电路放大5或10倍,故称作5×或10×掩模,其图案仅对应着基片上芯片陈列中的单元。

早期掩模制作的方法:①首先进行初缩,把版图分层画在纸上,用照相机拍照,而后缩小为原来的10%~%20的精细底片;②将初缩版装入步进重复照相机,进一步缩小,一步一幅印到铬片上,形成一个阵列。

制作掩模常用的方法还包括:图案发生器方法、x射线制版、电子束扫描法。

其中x射线、电子束扫描都可以用来制作分辨率较高的掩模版。

三、光刻技术

光刻是集成电路工艺中的一种重要加工技术,在光刻过程中用到的主要材料为光刻胶。光刻胶又称为光致抗蚀剂,有正胶、负胶之分。其中,正胶曝光前不溶而曝光后可溶,负胶曝光前可溶而曝光后不可溶。

光刻的步骤:①晶圆涂光刻胶;②曝光;③显影;④烘干

常见的光刻方法:①接触式光刻;②接近式光刻;③投影式光刻

其中,接触式光刻可得到比较高的分辨率,但容易损伤掩模版和光刻胶膜;接近式光刻,则大大减少了对掩模版的损伤,但分辨率降低;投影式光刻,减少掩模版的磨损也有效提高光刻的分辨率。

四、刻蚀技术

经过光刻后在光刻胶上得到的图形并不是器件的最终组成部分,光刻只是在光刻胶上形成临时图形,为了得到集成电路真正需要的图形,必须将光刻胶上的图形转移到硅胶上,完成这种图形转换的方法之一就是将未被光刻胶掩蔽的部分通过选择性腐蚀去掉。

常用的刻蚀方法有:湿法腐蚀、干法腐蚀。

湿法腐蚀:首先要用适当的溶液浸润刻蚀面,溶液中包含有可以分解表面薄层的反应物,其主要优点是选择性好、重复性好、生产效率高、设备简单、成本低。存在的问题有钻蚀严重、对图形的控制性较差、被分解的材料在反应区不能有效清除。

干法刻蚀:使用等离子体对薄膜线条进行刻蚀的一种新技术,按反应机理可分为等离子刻蚀、反应离子刻蚀、磁增强反应例子刻蚀和高密度等离子刻蚀等类型,是大规模和超大规模集成电路工艺中不可缺少的工艺设备。干法刻蚀具有良好的方向性。

五、氧化

在集成电路工艺中常用的制备氧化层的方法有:①干氧氧化;②水蒸气氧化;③湿氧氧化。

干氧氧化:高温下氧与硅反应生成sio2的氧化方法;

水蒸气氧化:高温下水蒸气与硅发生反应的氧化方法;

湿氧氧化:氧化首先通过盛有95%c左右去离子睡的石英瓶,将水汽带入氧化炉内,再在高温下与硅反映的氧化方法。

影响硅表面氧化速率的三个关键因素:温度、氧化剂的有效性、硅层的表面势。

六、扩散与离子注入

扩散工艺通常包括两个步骤:即在恒定表面浓度条件下的预淀积和在杂志总量不变的情况下的再分布。预淀积只是将一定数量的杂质引入硅晶片表面,而最终的结深和杂质分布则由再分布过程决定。

常见的扩散方法主要有固态源扩散和气态源扩散等。

离子注入是将具有很高能量的带点杂质离子射入半导体衬底中的掺杂技术,它的掺杂深度由注入杂质离子的能量、杂质离子的质量决定,掺杂浓度由注入杂质离子的剂量决定。高能离子射入靶后,不断与衬底中的原子以及核外电子碰撞,能量逐步损失,最后停止下来。

离子注入法于20世纪50年代开始研究,20世纪70年代进入工业应用阶段。随着VLSI超精细加工技术的发展,现已成为各种半导体掺杂和注入隔离的主流技术。在离子注入后,由于会在衬底中形成损伤,而且大部分注入的离子又不是以替位的形式位于晶格上,为了激活注入到衬底中的杂质离子,并消除半导体衬底中的损伤,需要对离子注入后的硅片进行退火。

退火,也叫热处理,作用是消除材料中的应力或改变材料中的组织结构,以达到改善机械强度或硬度的目的。

七、淀积

器件的制造需要各种材料的淀积,这些材料包括多晶硅、隔离互连层的绝缘材料和作为互连的金属层。

在厚绝缘层上生长多晶硅的一个常用方法是“化学气相淀积”(CVD),这种方法是将晶片放到一个充满某种气体的扩散炉中,通过气体的化学反应生成所需要的材料。

以上简单介绍了集成电路的基本工艺,当然,这些只是关键的几个工艺,集成电路的工艺还有很多,在这里就不一一说明了。

参考文献:

[1] 李冰,集成电路CAD与实践,电子工业出版社

[2] 王志功、陈莹梅,集成电路设计(第二版),电子工业出版社

[3] 张兴、黄如、刘晓彦,微电子学概论(第二版),北京大学出版社

集成电路工艺原理范文4

关键词:特色专业建设;复旦大学;微电子学;创新人才培养

复旦大学“微电子学与固体电子学”学科有半个多世纪的深厚积累。20世纪50年代,谢希德教授领导组建了全国第一个半导体学科,培养了我国首批微电子行业的中坚力量。60年代研制成功我国第一个锗集成电路。1984年,经国务院批准设立微电子与固体电子学学科博士点,1988年、2001年、2006年被评为国家重点学科。所在一级学科于1998年获首批一级博士学位授予权,设有独立设置的博士后流动站和长江特聘教授岗位,建有“专用集成电路与系统”国家重点实验室,1998年和2003年被列入“211”工程建设学科,2000年被定为“复旦三年行动计划”重中之重学科得到学校重点支持,2005年获“985工程”二期支持,建设“微纳电子科技创新平台”。

长期以来复旦大学微电子学教学形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。近年来,在教育部第二批高等学校特色专业建设中,我们根据国家和工业界对集成电路人才的要求,贯彻“国际接轨、应用牵引、注重质量”的教学理念,制定了复旦大学“微电子教学工作三年计划大纲”并加以实施,在高端创新人才培养方面对专业教学的特色开展了深层的挖掘和拓展。

一、课程体系的完善和课程建设

微电子技术的高速发展要求微电子专业课程体系在相对固定的框架下不断加以更新和完善。

我们设计了“复旦大学微电子学专业本科课程设置调查表”,根据对于目前工作在企业、大学和研究机构的专业人士的调查结果,制定了新的微电子学本科培养方案。主要修改包括:

(1)加强物理基础、电路理论和通信系统课程。微电子学科,特别是系统芯片集成技术,是融合物理、数学、电路理论和信息系统的综合性应用学科。因此,在原有课程基础上,增加了有关近代物理、信号与通信系统、数字信号处理等课程,使微电子学生的知识覆盖面更宽。

(2)面向研究、应用和学科交叉的需要,增加专业选修课程。如增加了电子材料薄膜测试表征方法、射频微电子学、铁电材料与器件、Perl语言、计算微电子学、实验设计及数据分析等课程,为本科生将来进一步从事研究和应用开发打下基础。

(3)强调能力和素质训练,高度重视实验教学。开设了集成电路工艺实验、集成电路器件测试实验、集成电路可测性设计分析实验及专用集成电路设计实验等从专业基础到专业的多门实验课。

在课程体系调整完善的同时,还对于微电子专业基础课和专业必修课开展了新一轮的课程建设。包括:

(1)精品课程的建设。几年来,半导体物理、集成电路工艺原理、数字集成电路设计经过建设已经获得复旦大学校级精品课程。其中半导体物理和集成电路工艺原理课程获得学校的重点资助,正在建设上海市精品课程。另有半导体器件原理和模拟集成电路设计正在复旦大学校级精品课程建设之中,有望明年获得称号。

(2)增加全英语教学和双语教学课程。为了满足微电子技术的高速发展和学生尽快吸收、学习最新知识的需求,贯彻落实教育部“为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学”的要求,在本科生专业课的教学中新增全英语教学课程3门,双语教学课程4门。该类专业课程的开设也为微电子专业的国际交流学生提供了选课机会。

(3)教材建设。为了配合课程体系的完善和补充更新专业知识,除了选用一些国际顶级高校的教材之外,还依据我们的课程体系组织编写了一系列专业教材和论著。有已经出版的《深亚微米FPGA结构与CAD设计》、《Modern Thermodynamics》、《现代热力学-基于扩展卡诺定理》,列入出版计划的《半导体器件原理》、《超大规模集成电路工艺技术》和《计算机软件技术基础》。另外根据课程体系的要求对实验用书也进行了更新。

为了传承复旦微电子学的丰富教学经验和保证教学质量,建立了完备的教学辅导制度,如课前试讲、课中听课及聘请经验丰富的退休老教师与青年教师结对子辅导等。每学期听课总量和被听课教师分别均超过所授课程和任课教师人数的50%以上。对所有听课结果进行了数据分析,并反馈给任课教师,为教师改进教学提供了有益的帮助。在保证教学内容的情况下,鼓励教师尝试新的教学手段,实现所有必修课程的电子化,建立主要必修课程的网页,完全公开提供所有课件信息,部分课件获得超过15000次的下载量。青年教师还独创了“移动课堂”的授课新方法,该方法能够完整复制课堂教学,既能高清晰展示教学课件的内容,又能把教师课上讲解的声音、动作及临时板书全部包含在内,能够使用大众化的多媒体终端进行播放,随时随地完美重现课堂讲解全过程。

通过国际合作的研究生项目及教师出国交流,复旦大学微电子学专业教师的教学水平得到进一步提升。在研究生的联合培养项目(如复旦-TU Delft硕士生项目、复旦-KTH硕士生/博士生项目等)中海外高校教师来到复旦全程教授所有课程,复旦配备青年教师跟班听课和担任课程辅导。这使得青年教师的授课理念、授课方式及授课水平都有大幅提高。同时,由于联合培养项目及其他合作项目,复旦的青年教师也被邀请参与海外高校的教学,担任对方课程的主讲,青年教师利用交流的机会,引进海外高校的一些课程用于补充复旦微电子的培养方案。这些都为集成电路专业特色的挖掘和拓展起到重要的作用。

经过几年的努力,微电子专业的教学水平普遍得到提升,在教学评估中得到各个方面的好评。

二、培养方法的改进和创新

培养适应时代要求的微电子专业创新人才也需要在培养方法上加以改进和创新。

针对微电子工程的特点,在坚持扎实的理论的基础上,强调理论联系实际,开展实践能力训练。在学校的支持下,教学实验室环境得到及时更新,几个方面的实验教学在国内形成特色。

(1)本科的集成电路工艺实验可以在学校自己的工艺线上完成芯片的清洗、氧化、扩散、光刻、蒸发、腐蚀等基本工艺制作步骤,为学生完整掌握集成电路制造的基本能力提供了很好的实际训练。

(2)在集成电路测试方面,结合自动化测试机台(安捷伦SoC93000ATE),开设了可测性设计课程,附带实验。

(3)集成电路设计课程都附带课程项目实践,培养了学生实际设计能力和素质,取得很好效果。

通过课程教学训练学生创新思维和分析问题的能力。尝试开设了部分本科生和研究生同时共同选修的研讨型课程。在课程学习的过程中,本科生不仅可以得到研究生的指导,在课堂上就某些课程内容进行探究,还可以在开展课程设计时在小组内和研究生同学共同开展小型项目研究,对于提高本科生进一步学习微电子专业的兴趣和培养他们发现问题解决问题的能力有很大的帮助。

参加科研无疑是培养学生创新能力的一个最为有效的途径。配合复旦大学的要求,微电子学专业在本科阶段,持续设置多种科研计划,给予本科生进实验室开展科研以支持。

(1)大一的“启航”学术体验计划。计划鼓励大一学生在感兴趣的领域进行探究式学习和实践,为学生打造一个培养创新意识,锻炼学术能力的资源平台。“启航”学术体验计划的所有学术实践项目均来自各个微电子专业的导师,学生通过对感兴趣的项目进行申报与自荐的形式申请加入各学术实践小组。引导学生领略学科前沿,体验研究乐趣。

(2)二、三年级曦源项目。项目建立在学生自主学习和创新思想的基础上,鼓励志同道合的同学组成研究团队,独立提出研究方向,寻找合适的指导教师。加入自己感兴趣的研究方向的团队。在开放课题列表中寻找合适的课题方向,并向该课题指导教师进行申请。还有更多的学生在大三甚至更早就进入各个研究小组,参与教授领导的各类国家级、省部级项目及来自企业、海外等的合作项目的研究。在完成的计划和项目成果之外,学生们还在收集文献资料、获取信息的能力,发现问题、独立思考的能力,运用理论知识解决实际问题的能力,设计和推导论证、分析与综合的能力,科学实验、发明创造的能力,写作和表说的能力等方面,都有不同的收获。

通过学生参加国际交流活动及外籍教师讲授课程给学生提供国际化的培养,提供层次更高、路径多元的培养方案,培养了学生的国际化眼光,开拓了学生的培养渠道。

几年来,微电子学专业学生的出国交流人数逐年增长,从2008年起,共有20位本科生赴国外多个高校交流学习。交流的项目包括双学位、长学期和暑期项目等,交流时间从3个月到2年不等,交流学校包括美国(耶鲁、UCLA等)、欧洲(伯明翰、赫尔辛基等)、日本(早稻田、庆应等)及我国港台高校。大多数同学在交流期间的学习成绩达到交流学校的优秀等级,同时积极参加交流学校教授小组的科研工作,得到了很好的评价。个别同学由于表现优异在交流结束回国后被对方教授邀请再次前去完成毕业论文;也有同学交流期间)参加国际级大师的科研小组工作,获益匪浅,直研后表现出强于一般研究生的科研能力。可以看到,国际交流不仅为同学们提供了专业知识和研究能力的不同培养模式,也为他们提供了更加广阔的视野和体验多种文化的机会,为他们今后的发展和进步打下了很好的基础。自特色专业建设以来,每学期均新开设“前沿讲座”课程,课程内容不固定,授课人为聘请的海外教师,有的来自海外高校,有的来自海外企业,课程均为全英语课程或双语教学课程。这类课程直接引进了海外高校的课程和教学方式,不仅学生受益,同时也培养了复旦微电子专业的青年教师。企业还提供与课程内容直接相关的软件,在改善教学环境的同时,还为学生参加科研提供了培训。

经过2年多特色专业项目的建设,复旦微电子学专业在巩固已有教学特色基础上,在高端创新人才培养方面进行了深层的挖掘和拓展,取得了一系列的成果。

集成电路工艺原理范文5

关键词:摩尔定律;晶体管;电子信息产业

中图分类号:TN-9 文献标志码:A 文章编号:1674-9324(2014)23-0170-02

一、引言

摩尔定律是由英特尔(Intel)创始人之一戈登・摩尔(Gordon Moore)在搜集1959年至1965年集成电路上晶体管数量的数据的基础上,于1965年4月提出的[1]。即当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。戈登・摩尔提出摩尔定律后的几年内,世界多数半导体公司按照这个定律制定了产品更新策略。1969年,摩尔和朋友建立英特尔公司并制定电子信息产业标准。此后,英特尔公司生产的大量产品都验证了摩尔定律的准确性。直到目前,全球仍有多数知名半导体制造公司一直遵循摩尔定律进行产品生产,如英特尔、高通、AMD、ST等[2]。

摩尔定律核心是不断增加的晶体管的数目,以及更强大的性能和更高的集成度,这也会带来一系列问题,如设计者需要使用各种方法来解决高温问题[3]。但这却能促进制作工艺的提升和集成电路中晶体管数目的增加。一方面,更强大的性能来源于更多晶体管数目;另一方面,制作工艺的更新也促进性能的提升。很多制造集成电路的工艺被英特尔公司使用,比如180nm,90nm,65nm,45nm,32nm等,来也将有14nm和10nm[4]。其他半导体制造公司也有各自的制作工艺,如台积电公司等。

基于以上问题和相关介绍,从1965年起,几乎所有的半导体厂商都遵循了摩尔定律。每一次进步都使得集成电路上能容纳更多的晶体管,并且带来更低廉的价格。然而,在摩尔定律提出的40年以来,也出现了一些问题,一度让人们怀疑摩尔定律是否会被终结[5-6]。但是摩尔定律一直发展到了今天,在未来几年内也会一直有效。

二、摩尔定律与晶体管数目

1.晶体管数目增加的影响。摩尔定律的经典结论是,当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月增加一倍,性能也提升一倍。不断增加的晶体管数量意味着更强大的性能,包括更多的功能和更快的运行速度。集成电路功能可以不断提升。例如,原来的8051单片机没有集成片上模数转换,而现在的单片机如集成Cortex-M3内核的STM32内部集成了模数转换模块。这些模块的增加给工程设计带来很多便利,在印刷电路板上不再需要额外的集成电路,并且可以提高传感器的精确度,在AMD的Tahiti XT中集成了4,312,711,873个三极管[7]。最近几年,提出了一个新的概念――片上系统(Soc)。片上系统的集成电路可以拥有更强大的系统功能、更低廉的价格以及更低的耗电量和更小的供电电压。同时,更多的晶体管意味着更快的运行速度。目前最大的个人CPU I7-3970X拥有22.7亿个晶体管[8],而上一代最大的个人CPU I7-990X拥有10.17亿个晶体管[9]。目前最大个人电脑的核心部件如表1所示。

2.晶体管数目对温度的影响。工程设计人员希望通过增加单位面积里晶体管的数量来提高性能,并希望通过更先进的制造工艺来控制温度。所以新型集成电路的温度并不会比之前集成电路的低。如今,设计者也可以使用其他途径来解决温度问题。多数电脑使用风扇或者水冷,甚至液氮来冷却。为了更有效率地对集成电路进行冷却,冷却技术需要不断地进行改进和提高。现今集成电路冷却业是一个大产业并且不断发展,世界上有很多专注于此的公司。

三、摩尔定律与价格

当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月增加一倍,性能也将提升一倍。因为集成电路的价格主要来源于制作工艺提升的费用,更先进的制作设备需要更先进的生产技术和工厂来支持,而集成电路原料的价格可以忽略。英特尔公司在设计集成电路之外,也建立了先进的工厂来保证制造工艺。建造工厂需要花费大量的物理与财力,所以需要通过增加产品的数量并增加工厂的工作年限来减少生产集成电路的平均费用。台积电是一个非常著名的集成电路制造代工公司,它使用了另一种方法来减少生产集成电路的平均费用。NVDIA,AMD,Qualcomm以及一些其他的集成电路设计公司都是台积电的客户。通过帮助大量的集成电路设计公司生产集成电路,台积电可以生产出大量的产品来提供建设厂房所需要的花费。第一台计算机是为了计算炮弹弹道而生产的,所以拥有足够的军费支持。而工业中费用的问题不能忽视,所以集成电路变得越来越廉价,嵌入式系统也被运用在工业控制中。因为嵌入式系统低廉的价格,除了工业控制之外,其他很多领域也在使用单集成电路微处理器。例如智能家居、智能手机、无人飞机等等。在各个领域中广泛运用的电子设备是使我们的生活能变得更智能更现代的原因之一。在摩尔提出摩尔定律的1965年,这些智能化生活都是不可想象的。

四、摩尔定律未来发展趋势

1965年提出的摩尔定律对世界来说是一个重大事件。而现在,我们将怎样评价它48年来对世界的影响?不管怎样,摩尔定律巨大的影响是不可否认的。在摩尔的眼里,摩尔定律所揭示的速度是不可能永远持续下去的[3]。一些文章认为摩尔定律将会因为漏电流和高温被终结[5]。一些其他的观点则认为导致摩尔定律终结的原因是制造商不能收回研发和建造工厂的巨大成本[6]。一个半导体工业协会出版的名为“未来技术发展蓝图”的文件指出,10nm级的工艺是关键,因为以往的机械制作工艺将不能达到其制造的所需要求[6]。关于摩尔定律的继续发展和未来影响,我们有以下看法。

第一,首先是制造工艺上的一些问题。依照目前的发展趋势,有两个方面的问题越来越明显,就是关于漏电流和高温。这些问题需要通过制造工艺的进步来解决。摩尔曾经指出漏电流将会限制摩尔定律发展,当晶体管的尺寸不断减小,漏电流的影响将使得功耗增大。如果设计者不断减小晶体管的尺寸,电流将变得越来越大并烧毁晶体管。

得益于3D晶体管技术,这个由于漏电流产生的问题暂时得到了解决,集成电路还可以工作在更低的驱动电压下。关于温度,由于更先进的制造工艺,在保持同样晶体管数量和性能下,新型号的集成电路的温度总会低于旧型号的集成电路。在奔腾4时代,英特尔不能很好地解决高温的问题。但得益于多核技术,英特尔推出了名为酷睿的产品来解决这个问题。现在,很多移动平台集成电路供应商都使用多核技术来解决高温的问题。同时,为了控制功耗在100W以下,一个叫ARM的著名集成电路公司推出了一个名为big.little的新异构计算解决方案,这个架构将功耗高、性能强的处理器,与功耗低、性能弱的处理器封装在一起。并希望借此能提高处理器的效率,产生能达到高性能但功耗低的处理器。

各种新出现的技术问题将导致发展放缓。首先在于集成电路的制造方面,比如当集成电路达到10nm数量级时,光学加工手段将会取代机械加工手段。英特尔使用疝灯产生的远紫外线来雕刻集成电路,IBM使用X光,这将可能解决工艺尺寸的问题,比如制造14nm尺寸的芯片。如果新的制造手段将被发现,将继续提高集成电路性能。再看看其他方面的限制,比如耗电问题。目前芯片性能的进步很快,但同时也会增加耗电量。这些都可能是集成电路发展的一个不可逾越的瓶颈,导致摩尔定律不再适用,电子信息产业不再迅速发展。

而对于工艺的更新速度,可以参考英特尔的策略,根据英特尔提出的“Tick-Tock”战略,在接下来的一年,将会有7nm和5nm制作工艺的集成电路推出。当“Tick”年来到,集成电路的制程将会更新;而“Tock”年到来时,集成电路的微处理器架构将会更新[9]。

第二,财务因素是每个公司发展的决定性因素。一些专家认为公司无法负担起建设新厂房所需要的大量资金。新的集成电路所带来的利润不足以让公司支付这些费用并盈利,集成电路的更新速度将会放缓。目前,英特尔正在以色列建设10nm生产工艺的工厂。在电子信息产业发展早期,硬件能力的增长跟不上软件需求发展的速度(软件设计总是需要更高性能的硬件),所以对硬件的性能提升有很大的需求,每次硬件的增长都被快速地应用在软件上。而现在软件的复杂性增长已经趋于平缓,而不是继续高速复杂化。比如新一代的Windows 8操作系统对硬件的要求甚至低于老一代操作系统Windows 7[8]。一直致力于提高芯片性能的英特尔也推出了功耗更低和超低电压CPU,由英特尔极力推广的超极本逐渐成为了未来笔记本的发展方向。另一方面因为大多数用户并不需要如此强劲的性能,而更加看重用户体验,加上购买高性能处理器的花费太高,导致技术进步的速度受到限制。比如只有少部分中国人使用昂贵的I7处理器。如果不能有效地控制成本,并且没有大量的市场需求,集成电路性能提高的速度将大大放缓。

第三,全新的制造材料将改变集成电路的发展方向。在晶体管发明以前,没有人能预料到今天电子信息产业的繁荣。也许我们能使用新的材料或者技术来改变现状。我们可以考虑使用其他的半导体元素代替硅元素制作晶体管,比如元素周期表上第三和第五族的元素。利用它们不同的属性,提高芯片的性能。但这可能仅仅是权宜之计,因为它们可能也会遇到与硅元素相同的问题。石墨烯也是一个很有希望的晶体管材料。但是它也有很多问题,比如没有足够的带隙,人们对它的了解也不足够充分。这些材料和技术目前都处于探索之中,未来也许也会有新技术出现,并带来革命性的改变。如果将来的某个发明,改变了集成电路性能提升的方式,或者产生了新的计算机技术,取代了现有的集成电路工作原理,那么摩尔定律可能将不再适用。

五、结论

由本文的研究分析可以得出,目前集成电路的发展还会遵循摩尔定律,并伴随电子信息产业的飞速发展。而若干年以后,集成电路和电子信息产业的发展速度将会放缓。此外,集成电路性能提升的方式也可能会发生改变。

目前,电子信息产业发展飞速,如同大多数工业产业一样,由刚刚兴起时的发展困难到随后的一个高速发展时期,然后又逐渐趋向平稳。在电子信息产业中,这种现象可能出现在五年后,也可能在十年或者二十年以后。但这一天一定会到来,没有人可以打破这个基本的自然规律。在未来几年内,摩尔定律还将适用,电子信息产业仍将快速蓬勃发展。在未来的某天,摩尔定律将失去它的价值,电子信息产业也将会以其他的形式和方向继续发展。

参考文献:

[1]Nam Sung Kim,Leakage current:Moore’s Law Meets Static Power[J].the IEEE Computer Society. December 2003:68-75.

[2]陶然.守望摩尔定律[J].电子产品世界,2010,(6):2-4.

[3]沈建苗.摩尔定律是否有未来[J].微电脑世界.2011,(9):12-15.

[4]Desktop 3rd Generation Intel Core Processor Family,Desktop Intel Pentium Processor Family,and Desktop Intel Celeron Processor Family[EB].http:///content/dam/www/public/us/en/documents/datasheets/3rd-gen-core-desktop-vol-2-datasheet.pdf,January 2013.

[5]齐书阳.摩尔定律会终结吗[J].电脑爱好者,2013,(8).

[6]赵佶.摩尔定律何时会失效[J].半导体信息,2012,(5):4-8.

[7]Mike Mantor. White Paper|AMD GRAPHICS CORES NEXT (GCN) ARCHITECTURE[EB].http:///cn/Documents/GCN_Architecture_whitepaper.pdf,August,28,2012.

[8]Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series on 32-nm Process[EB]. http:///content/dam/www/public/us/en/documents/datasheets/core-i7-900-ee-and-desktop-processor-series-datasheet-vol-1.pdf,February,2010.

集成电路工艺原理范文6

【关键词】半导体工艺;光刻;刻蚀;离子注入;淀积;Semiconductor process

1.生产晶圆(Wafer Ingot)

半导体材料是单晶组成。而它是由大块的具有多晶结构和未掺杂的本征材料生长得来的。把多晶块转变成一个大单晶,并给予正确的晶向和适量的N型或P型掺杂,叫做晶体生长。有两种不同的生长方法,直拉法 和区熔法。

晶体的生长原理非常简单和熟悉。假设在最终要蒸发的饱和溶液中加入一些糖晶体。糖晶体的作用是作为额外的糖分子沉积的种子。最后这个晶体能生长的非常大。晶体的生长即使在缺乏种子的情况下也会发生,但产物中会有混乱的小的晶体。通过抑制不需要的晶核区,种子的使用能生长更大,更完美的晶体。

理论上,硅晶体的生长方式和糖晶体的一致。实际上,不存在适合硅的溶剂,而且晶体必须在超过1400℃的熔融状态下生长。最终的晶体至少有一米长,十厘米的直径,如果他们要用在半导体工业上的话还必须有接近完美的晶体结构。这些要求使得工艺很有挑战性。通常生产半导体级别的硅晶体的方法是Czochralski工艺。这个工艺使用装满了半导体级别的多晶体硅的硅坩锅。电炉加热硅坩锅直到所有的硅融化。然后温度慢慢降低,一小块种子晶体被放到坩锅里。受控制的冷却使硅原子一层一层的沉积到种子晶体上。装有种子的棒缓慢的上升,所以只有生长中的晶体的低层部分和熔融的硅有接触。通过这个方法,能从融化的硅中一厘米一厘米的拉出一个大的硅晶体。

2.光刻(Photo)

光刻是一种图形复印和化学腐蚀相结合的精密表面加工技术。光刻的目的就是在二氧化硅或金属薄膜上面刻蚀出与掩膜版完全对应的几何图形从而实现选择性扩散和金属薄膜布线的目的。

光刻是集成电路制造过程中最复杂和最关键的工艺之一。光刻是加工集成电路微图形结构的关键工艺技术,通常,光刻次数越多,就意味着工艺越复杂。另—方面,光刻所能加工的线条越细,意味着工艺线水平越高。光刻工艺是完成在整个硅片上进行开窗的工作。光刻技术类似于照片的印相技术,所不同的是,相纸上有感光材料,而硅片上的感光材料--光刻胶是通过旋涂技术在工艺中后加工的。光刻掩模相当于照相底片,一定的波长的光线通过这个“底片”,在光刻胶上形成与掩模版(光罩)图形相反的感光区,然后进行显影、定影、坚膜等步骤,在光刻胶膜上有的区域被溶解掉,有的区域保留下来,形成了版图图形,为后序的掺杂、薄膜等工艺做好准备。

光刻三要素:光刻胶、掩膜版和光刻机光刻胶又叫光致抗蚀剂,它是由光敏化合物、基体树脂和有机溶剂等混合而成的胶状液体光刻胶受到特定波长光线的作用后,导致其化学结构发生变化,使光刻胶在某种特定溶液中的溶解特性改变。

根据光刻胶在曝光前后溶解特性的变化可将分为正胶和负胶。正胶:曝光前不可溶,曝光后可溶,特点是分辨率高,在超大规模集成电路工艺中,一般只采用正胶。负胶:曝光前可溶曝光后不可溶,分辨率差,适于加工线宽≥3m的线条。

光刻八个步骤一般可分为:成底膜->涂胶->前烘->对准和曝光->曝光后烘焙->显影->后烘->检查->刻蚀->去胶。

3.刻蚀(Etch)

用光刻方法制成的微图形只给出了电路的行貌并不是真正的器件结构因此需将光刻胶上的微图形转移到胶下面的各层材料上去这个工艺叫做刻蚀。刻蚀的目的和功能是把经过曝光, 显影后的光刻胶微图形中下层材料的部分去掉, 即在下层材料上重现与光刻胶相同的图形。

刻蚀方法分为湿法刻蚀和干法刻蚀。湿法刻蚀是利用液态化学试剂或溶液通过化学反应进行刻蚀的方法。干法刻蚀是用等离子体进行薄膜刻蚀的技术。它是硅片表面物理和化学两种过程平衡的结果。在半导体刻蚀工艺中,存在着两个极端:离子铣(通过高能惰性气体离子的物理轰击作用刻蚀)是一种纯物理刻蚀,可以做到各向异性刻蚀,但不能进行选择性刻蚀;而湿法刻蚀如前面所述则恰恰相反(液体腐蚀的各向同性,在向下腐蚀的同时也向侧腐蚀 )。人们对这两种极端过程进行折中,得到目前广泛应用的一些干法刻蚀技术。目前,RIE已成为VLSI工艺中应用最广泛的主流刻蚀技术。干法刻蚀优点是横向腐蚀小, 钻蚀小, 无化学废液, 分辨率高, 细线条操作,安全、简便,处理过程未引入污染,易于实现自动化。缺点:成本高, 设备复杂。

4.离子注入

离子注入是将具有很高能量的杂质离子射入半导体衬底中的掺杂技术,电离的杂质原子经静电场加速。离子注入是另一种掺杂技术,离子注入掺杂也分为两个步骤:离子注入和退火再分布。离子注入是通过高能离子束轰击硅片表面,在掺杂窗口处,杂质离子被注入硅本体,在其他部位,杂质离子被硅表面的保护层屏蔽,完成选择掺杂的过程。进入硅中的杂质离子在一定的位置形成一定的分布。

离子注入参数包括剂量和射程,剂量定义是单位面积硅片表面注入的离子数,正比于离子束电流。射程定义是离子注入过程中,离子穿入硅片的总距离,投影射程:离子穿入硅片的总距离在深度方向上的投影;平均投影射程:所有入射离子投影射程的平均值。注入机的能量越高,射程越大。离子注入机分为中低电流,大电流和高能离子注入机,离子注入机是由离子源,引出电极和质量分析器,加速管,扫描系统组成。

由于高能粒子的撞击,导致硅结构的晶格发生损伤。为恢复晶格损伤,在离子注入后要进行退火处理。退火:也叫热处理,集成电路工艺中所有的在氮气等不活泼气氛中进行的热处理过程都可以称为退火。根据注入的杂质数量不同,退火温度一般在450~950℃之间。 退火的作用第一是激活杂质,使不在晶格位置上的离子运动到晶格位置,以便具有电活性,产生自由载流子,起到激活杂质的作用;第二消除损伤。

5.淀积

淀积铝也称为金属化工艺,它是在真空设备中进行的。在硅片的表面形成一层铝膜。薄膜是在衬底上生长的薄固体物质。薄膜类型:导电薄膜;绝缘薄膜;多晶硅薄膜。薄膜的淀积方法分为物理气相淀积(PVD),化学气相淀积(CVD)。

物理气相淀积(PVD):

蒸发:通过把被蒸镀物质(如铝)加热,利用被蒸镀物质在高温下(接近物质的熔点)的饱和蒸气压,来进行薄膜沉积。将待蒸发的材料放置进坩埚、在真空系统中加热使之蒸发的过程。能量提供方法:电阻丝加热和电子束加热。

溅射:利用等离子体中的离子,对被溅镀物质电极进行轰击,使气相等离子体内具有被溅镀物质的粒子,这些粒子沉积到硅表面形成薄膜。在集成电路中应用的许多金属或合金材料都可通过蒸镀或溅镀的方法制造。溅射与蒸发相比的优点是 改善了台阶覆盖;控制合金成分;膜均匀性好;能够淀积高温熔化和难熔金属。

化学汽相淀积(Chemical Vapor Deposition):通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。CVD技术特点:具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点。CVD方法几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO2、多晶硅、非晶硅、氮化硅、金属(钨、钼)等。

以上介绍的是半导体工艺中比较重要的4个部分,当然半导体制造工艺除此之外还有很多工艺,例如:化学机械抛光(Chemical Mechanical Polish),气相外延(VPE),金属互联,等离子清洗(Plasma),晶圆粘贴(Die Bond),打线(Wire Bond),封装和测试等,再次就不一一详述。

【参考文献】