半导体工艺与技术范例6篇

前言:中文期刊网精心挑选了半导体工艺与技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

半导体工艺与技术

半导体工艺与技术范文1

关键词:自动化测试仪表 可靠性 人机对话

中图分类号:TP21 文献标识码:A 文章编号:1672-3791(2013)01(c)-0000-01

科学技术的飞速发展促使社会意识形态发生转变,使得人们对生活的追求更加富有人文主义特色,社会各领域对环境的要求更加严格,对产品的现代化程度要求更高,其中节能减排战略促使新型能源产业风靡全球,带动了全球半导体技术的进一步发展,比如太阳能行业逐渐成为新时期的朝阳产业,该行业中对仪器仪表提出了新的要求。作为现代化仪器仪表的制造商,间接地为现代化科技的发展创造了基础科研平台,通过提供先进的仪表,可以提高用户的生产效率,提升产品质量,监控排放,为低碳经济做出更大的贡献。

1 半导体行业对自动化仪器仪表需求分析

1.1 自动化仪器仪表现状

全球科技创新的日新月异带动了我国制造业的飞速发展,进入新世纪以来,我国半导体行业对自动化仪表的需求明显加强,无论从技术特点还是市场数量上都呈现递增趋势,从技术含量上分析,我国科研、量产中所使用的自动化仪表已经处于世界领先水平。

上世纪初,国内仪器仪表稳步发展,主要源于工业半导体行业的需求增加,从技术层面上拉动了整个行业技术水平的提升,尤其在新产品开发上取得了显著成效,比如说拥有自主知识产权的电磁流量计、智能化电动机执行系统等。

1.2 半导体行业对自动化仪器仪表的需求分析

目前,我国半导体行业使用较多的仪器仪表主要是小型检测单元,比如在集成电路、液晶显示、半导体薄膜、太阳能电池制备等领域的使用较为频繁。自动化仪器仪表的使用往往依赖于半导体设备的发展程度,现阶段该行业中使用较多的是各种薄膜沉积系统、成分检测系统等,涵盖面较广的是PECVD(plasma enhanced chemical vapor deposition)、HWCVD(Hot wire chemical vapor deposition)、MOCVD(metal organic chemical vapor deposition)系统以及相关检测设备等。半导体设备中对压力计、传感器、流量计、温度计等元器件的使用较多,尤其在半导体行业制备薄膜材料的工艺中对以上元器件的要求相对较高。

(1)压力表

由于半导体技术具有相对较高的精密性,在半导体薄膜的制备工艺中,要求对工艺参数精确控制,反应腔室内部工艺气体的压力大小,成为该行业工艺技术中的核心参数。对工艺气体压力的检测通常采用压力计以及相关的各种真空检测设备。半导体设备的正常运行必须以厂务设施作为保证,包括水、电、气等条件,其中“水”主要用于设备冷却或者恒温加热,因此需要采用压力表对水压、CDA(condensed air)等进行严格控制方可保证工艺正常运行。

(2)流量计

流量计一般应用在化学沉积系统中,对气体流量起到监测、控制作用。对于半导体工艺来说,产品制备工艺参数是决定器件性能的关键因素,其中化学气相沉积系统中反应气体的流量对最终产品质量起到直接的决定性作用,对气体流量的控制不仅要体现动态时效性,更重要的是要在量的控制上具备较高的精确度,目前国内制备MFC的技术已相对成熟,为我国半导体行业的发展奠定了基础。

(3)传感器

传感器在现代工业时代的使用极为广泛,半导体设备中对传感器的使用大多体现在设备机械传动部分。在半导体产品制造中,要实现设备的流水线运行,离不开高可靠型的传感器元件,通过传感器协调不同工序、设备不同部位的联动,进而保证整个工艺的流水线运行。

(4)温度计

随着科学技术的发展和现代工业技术的进步,测温技术也不断地改进和提高,其中金属温度计是利用两种不同金属在温度改变时膨胀程度不同的原理工作的,在半导体紧密制造中通常用来检测液体、气体的温度,测试温度偏中低水平,适合工艺流程中在线、动态、实时监测。

半导体工艺中对金属温度及的使用大多是用来检测特殊反应气体的温度,由于普通加热器很难通过热电偶检测衬底温度,通常在反应腔室特殊部门安装金属温度计监测生长基元的温度,从测量精度和实际可操作性上提高了半导体工艺的可行性。

2 自动化仪器仪表在半导体行业的发展趋势

自动化测试仪表技术未来发展趋势主要体现在高智能化、高可靠性、高精密度、优良的响应性能等方面,半导体行业仪器仪表技术主要针对具体应用特性而体现出以下几个发展方向:

2.1 人机对话智能化发展

人机对话技术是自动化仪器仪表发展的核心方向,也是未来信息化社会的主流技术,半导体行业对仪器仪表的使用目的是为了便于更好的控制工艺流程,提高对设备的可控性,如果自动化测试仪表具有强大的人机对话特性,能够快速、准确的体现设备运行状态,在半导体制造工业中无疑起到了举足轻重的作用。自动化仪表的人机对话性能是通过设备控制端和仪器之间的对话界面实现,通过人类可以识别的界面端口,读取仪表对设备状态的检测数据,从而对工艺过程起到指导作用。

2.2 集成技术的标准化发展

自动化仪表的应用直接依赖于其能否与其他设备形成对话流畅的有机整体,随着人类科学技术的不断进步,半导体行业对自动化仪表的使用需求逐渐增多,不同设备具有不同的逻辑控制系统,如何将自动化测试仪表的接口、通信、软件控制单元和半导体设备逻辑控制语言相融合成为该行业技术发展的瓶颈,如果实现测试仪表在不同半导体设备上的集成标准化,将大幅度提升自动化测试技术的进步。

2.3 可靠性技术的提高

自动化仪表在工业生产中起到“中枢神经”的作用,对其可靠性不容忽视,尤其对于大型复杂的工业系统中,自动化仪器的可靠性关系到整个企业、乃至行业的发展命脉。对于半导体企业检测与过程控制仪表,大部分安装在工艺管道、工序过渡段,甚至多数环境存在有毒、易燃、易爆等特种气体,这些特殊环境对自动化仪表的维护增加了很多困难。因此,在使用特种气体的半导体行业中对自动化检测仪表的可靠性具有较高的要求,尽可能降低其维修频率,为工业安全生产提供必要保证。

3 结语

当今世界已经进入信息时代,自动化技术成为推动科学技术和国民经济高速发展的关键因素,其中自动化测试仪表作为科研、工业化生产的基础硬件设施而不断发展成熟,在半导体行业中的应用逐渐广泛深入。随着行业科研水平的提高,对自动化仪器仪表有了更好的要求,可靠性、集成技术、智能对话特性成为自动化测试技术发展的首要任务,对自动化测试技术以及测试仪表的使用起到举足轻重的作用。

参考文献

半导体工艺与技术范文2

关键词:半导体 LED 灯具 散热

1 散热机构的设计与半导体灯具寿命息息相关

对于半导体灯具设计,散热机构设计是设计中的重要一环,散热机构设计能减少材料从而节约成本、提高LED灯珠的可靠性与寿命,长时间工作使用会比较容易造成每个器件性能降低,半导体灯具急速光衰,并造成安全事故,严重影响用户体验。

2 半导体灯具的散热器制造工艺现状

传统的半导体灯具仅仅将LED灯珠嵌设在铝材质制造而成的散热体内,利用铝材质良好的散热性能,将LED灯珠产生的热量散发出去,进而降低LED灯珠工作时升高的温度。尤其是对于大功率LED灯珠矩阵都会通过配置大型散热体来解决散热问题,然而问题随之而来:一方面,半导体灯具的总功率不断上升,为增加散热面积其对应的散热体也越做越大,е铝诵矶喽钔獬杀究销,灯具的重量也无法接受;另一方面,由于LED灯珠在使用时还需安装于专用光学灯罩内,有时候甚至是安置于一个相对密封的罩体中,由于密封的罩体内热量无法与外界空气形成对流,只能通过简单的辐射和大热阻的空气进行很少的热量传递。因此,现有LED灯珠即使使用散热面积较大的散热体,甚至散热体上加置散热风扇,也无法将LED灯珠发出的热量迅速带走,最终导致热量囤积于散热体上,使散热效果大打折扣,从而影响LED灯珠的使用寿命。目前市面上的半导体光源灯具散热器造型各异,散热器的制作工艺大都是采用铝材压铸成型工艺和挤压型材切割工艺制造,导热系数低、散热器重量较大、耗材多、后加工复杂、生产效率低、生产成本高。

2.1 铝合金压铸工艺

铝合金压铸工艺和塑料注塑工艺原理接近,都是将原材料加温成液态后填充到模具型腔形成产品,铝合金压铸的材料有ADC12、A380、A360、YL113,常用的材料是ADC12,相对于其他材料,它更加容易成型,优异的后加工和机械性能。

优点:(1)一体化压铸成型,整体性强;(2)外观可设计弧面,有利于工业造型。

缺点:(1)导热系数低(约为96 W/M・K);(2)表面处理受限制。

2.2 铝挤出成型工艺

铝挤出成型工艺目前在大功率路灯、隧道灯领域相对广泛,近年来室内较少用。常用的材料为AL6063,相对于压铸ADC12材料,它具有很好的导热系数(一般为200 W/M・K)。

优点:(1)导热系数高;(2)容易做表面处理。

缺点:单向挤压型材,外观结构受到限制。

2.3 散热鳍片拼接扣工艺

散热鳍片常用的是五金冲压加工得到,容易实现自动化生产,使用的材料有导热铝合金。

优点:(1)散热面积多,需配合风扇形成空气流效果才能更好;(2)重量轻便。

缺点:成本较高。

2.4 热管结合散热鳍片工艺

热管结合散热鳍片相对来看成本较高,同时对外观和尺寸有一定要求。这将导致市面上一些小型公司放弃使用该项技术。

优点:(1)LED灯珠工作时发出的热能快速传导到散热器散热鳍片;(2)重量轻便。

缺点:(1)工艺相对复杂;(2)成本较高。

2.5 导热塑料注塑成型工艺

导热塑料分为两大类:导热导电塑料和导热绝缘塑料。半导体灯具散热器常用的是导热绝缘塑料。导热绝缘塑料主要成分包括基体材料和填料。基体材料包括PPS、PA6/PA66、PPA、PEEK等,填充材料包括AIN、SIC、AL203、石墨、纤维状高导热碳粉等。

优点:(1)一次成型,光泽度高;(2)绝缘性能优异,宜采用各种不同的电源方案。

缺点:(1)导热系数低;(2)重量相对金属较轻。

2.6 塑包铝结构工艺

市面上现有的塑包铝结构分为两种:(1)导热塑料和铝件是独立分开的2个组件,通常这种做法易成型加工,不需要先把铝块放置注塑模型腔内成型加工得到一体,而是后续通过机械固定结构将独立分开的2个组件固定形成一个整体。(2)导热塑料和铝件是一体注塑成型加工得到的。

优点:表面为导热塑料,绝缘性能好,安全。

缺点:成型工艺复杂。

3 半导体灯具散热

热量的3种传递方式有辐射、对流和传导。一般而言,LED灯珠工作时会产生光和热,散热器通常就是要把LED灯珠工作时产生的热散发出去,从能量层面来看,热并非能量,其实只是传递能量的形式,当外界能量冲击分子,能量就会由高能分子传递到低能分子,从微观层面来看,能力的传递就是热。通常,LED灯珠通过机械结构固定在散热器表面,LED灯珠与散热器的接触良好是决定LED灯珠工作时产生的热量传导到散热器的关键因素,半导体散热器的散热结构还需充分运用空气对流换气,通过传导与对流,使LED灯珠工作时产生的热量散发到空气中。

4 设计优化散热机构

4.1 半导体灯具散热设计方法的选择

散热机构设计通常使用EFD、ANSYS软件仿真,通常流体的固定边界与黏性对流体的阻力所产生的影响,使得流体中的流体元素会小部分受沿程阻力的干扰,另一方面,半导体灯具通常需要增加风扇来加速空气流动,由于风扇的增加会导致半导体灯具机构设计的复杂性,从另一角度来看,也会大大降低半导体灯具的可靠性。因此,半导体灯具的散热器采用被动式自然散热的方式,散热器的外观轮廓依据半导体灯具结构来定,因而直接利用半导体灯具外观从而设计成整体式散热器,针对散热器接触面平整度、基板厚度、散热片状条形状、散热片数量、散热片厚度、散热片与散热片的空气流动、散热片与空气接触的面积等,按照散热器相关设计准则进行优化设计,最后进行打样测试和分析定论。

4.2 被动式散热器设计

参照图1和图2,半导体灯具的散热机构包括基板1和灯体2,基板1经过旋压工艺拉伸出灯体2,再将灯体2上多余部分剪除使灯体2成圆筒状,基板1经过五金冲压扭曲后局部向上隆起形成带拉开片4的散热叶片3并形成通气孔5,基板1上第一围圆形排布设计有14条,第二围圆形排布有36条向散热器外部冲压扭曲的散热叶片3,拉开片4增加了基板1与散热叶片3的接触面积并且垂直分布,结合热量向上散发的特性,从而加快散热速度,提高整体性能。

5 结语

目前,半导体灯具得到广泛应用,其具有体积小、重量轻、使用寿命长和节能效果极佳等优点,但是半导体灯具跟半导体一样普遍存在发热量大、热量不易散发的问题,热量的积累容易导致半导体光源寿命减少、发光效率降低。上述优化后的被动式散热器设计具有制作工艺简单、易一次性成型加工、扭曲过程中较少废料、材料利用率高、生产成本低等优点。

参考文献

[1]游志.大功率LED散热鳍片扩撒热阻研究[J].电子工业专用设备,2010,39(9):37-40.

半导体工艺与技术范文3

英文名称:Chinese Journal of Semiconductors

主管单位:中国科学院

主办单位:中国科学院半导体研究所;中国电子学会

出版周期:月刊

出版地址:北京市

种:双语

本:大16开

国际刊号:0253-4177

国内刊号:11-1870/TN

邮发代号:2-184

发行范围:

创刊时间:2010

期刊收录:

CA 化学文摘(美)(2009)

SA 科学文摘(英)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

中科双效期刊

联系方式

半导体工艺与技术范文4

静电。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于锗(Ge)的集成电路)和罗伯特-诺伊思(基于硅(Si)的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。

集成电路是20世纪50年代后期到60年展起来的一种新型半导体器件。它是经过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的半导体、电阻、电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内的电子器件。其封装外壳有圆壳式、扁平式或双列直插式等多种形式。集成电路技术包括芯片制造技术与设计技术,主要体现在加工设备,加工工艺,封装测试,批量生产及设计创新的能力上。

(来源:文章屋网 )

半导体工艺与技术范文5

Liu Bo; Li Ce; Hou Haifeng

(Shenzhen SI Semiconductors Co.,Ltd.,Shenzhen 518029,China)

摘要: 扩散技术在工业制作的各个方面有重大的作用,在电子技术上的应用以晶体管最为显著。本文就简要介绍如何应用三重扩散工艺生产大功率晶体管,并对目前生产工艺中的一些不足之处进行改进,以更好的提高大功率晶体管的质量。

Abstract: The diffusion technology plays a major role in various aspects of industrial production. Its application in electronic technology, the most significant is the production of transistor. In this paper, how to produce high power transistor applying the triple diffusion process was briefly introduced, and some of the shortcomings in current production process for were improved in order to better improve the quality of high power transistor.

关键词: 三重扩散工艺 晶体管 高温扩散 杂质浓度

Key words: triple diffusion process;transistor;high temperature diffusion;impurities concentration

中图分类号:TH16文献标识码:A文章编号:1006-4311(2011)27-0042-01

0引言

扩散是分子运动(又称分子扩散)或涡旋运动(即涡动或湍流扩散)所造成的某一保守属性或所含物质向四周的扩展和蔓延,直至微粒子(也包括原子和分子)在气相、液相、固相或三者之间,由高浓度向低浓度方向迁移,直到混合均匀的物理运动现象。

1扩散工艺在电子产品中的作用原理、应用范围

在电子晶体学中,扩散是指物质内质点运动的基本方式,当所处温度高于绝对零度时,任何物系内的质点都在作热运动。当物质内有梯度(化学位、浓度、应力梯度、密度等)存在时,由于热运动而导致质点定向迁移的现象就是所谓的扩散。因此,扩散是一种传质过程,宏观上表现出物质的定向迁移。

在一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的PN结叫同质结,由禁带宽度不同的两种半导体材料(如GaAl/GaAs、InGaAsP/InP等)制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等,三重扩散工艺生产大功率晶体管,已是国内较通用的工艺。

2大功率晶体管的应用范围和制作流程及其不足之处

大功率晶体管一般被称为功率器件,其实质就是有效地控制功率电子器件合理工作,通过功率电子器件为负载提供大功率的输出。功率器件通常工作于高电压、大电流的条件下,普遍具备耐压高、工作电流大、自身耗散功率大等特点。大功率晶体管开关速度快,具有自动关断能力,不需要强迫换流电路等优点,在目前,它主要应用在电子设备的扫描电路中。由于它工作发热量大所以常安装在金属散热器上,且金属散热器的面积要足够大,若无法满足此条件,大功率晶体管会达不到技术文档规定的技术性能,影响它所作用的电子设备的正常运行、作用。

三重扩散工艺是在轻掺杂的硅片衬底经过较长时间的高温扩散,在硅片的两边扩散很深的重掺杂层(一般几十微米到100多微米),然后进行单面减薄和抛光,会形成N+-N-或N+-P-的衬底。它是一种制备高压功率器件常用的衬底制备工艺,具有工艺简单,制备容易等诸多优点,采用三重扩散工艺制作的大功率晶体管有抗烧毁能力强,二次击穿耐量高,温度稳定性好,抗热疲劳能力强等特点。

晶体管PN结中,在硅集成电路制作工艺,主要是掺化学元素中的Ⅲ族和Ⅴ族杂质。掺入Ⅲ族元素形成P区;掺入Ⅴ族元素形成N区。其中集成电路的衬底通常都是硅片。常温下杂质在硅内扩散速度很慢,尽管多数集成电路要求的杂质扩散只有零点几到1微米或2微米的深度,但对多数所需掺入杂质(如硅中的Ⅲ族、Ⅴ族元素)来说,扩散温度仍然要求在1000摄氏度上下或者更高,这样掺杂过程才能在较短时间内完成。

扩散的大致基本步骤都是:清洗(cleaning)――扩散(diffusing),其中,对于N型杂质的扩散一般选用常规液态源磷扩散,使用POCl3作为扩散源。对于P型杂质的扩散则有液态源扩散、固态扩散、SiO2乳胶源扩散以及纸源扩散等多种方法。其中的固态扩散又有两种常用方法:一是把杂质源和硅片一起封入一个抽出空气、形成一定真空的石英管中加热,使杂质元素扩散到硅中去:另一种是把所需杂质源淀积在硅片上,然后把这种硅片置于高温下进行扩散。

但是,这样扩散中背衬的制作,需经近百小时持续的高温扩散,由于生产周期相对较长、所需温度较高,因此会引起高阻层的缺陷增加,少子寿命降低,形成的结为缓变结,同时,材科的成品率较低,而且长时间热扩散所引起的二次缺陷,还会对大电流特性等带来不利影响,以上这些都不利于大功率晶体管的制备。

3三重扩散工艺的注意事项及改进方法

扩散的速度和均匀度与杂质密度、温度和扩散时间有密切的关系,因此需高度注意对这三点的控制。其中,对于固体杂质,扩散浓度一方面决定于源的情况,当源足量时则由温度决定,因为杂质的固溶度决定了杂质在半导体表面的浓度。扩散深度■(若制成PN结表示为结深xj),则是取决于扩散系数D和扩散时间t。因为D=D0e-E/kT,又由于一定杂质在特定固体中激活能E和D0是一定的,所以D与T是指数的上升关系。因此,为了精确控制扩散深度,精确的控制温度(<±0.5℃)十分重要,同时还须严格控制扩散用的时间。一个圆片内的扩散均匀性,在很大程度上取决于表面的严格处理程度;而片与片以及批与批间的均一性,除去恒温度区稳定,气流形式合适和源稳定外,还要求保持扩散环境的洁净。

对大功率晶体管而言,B主扩和P主扩的结身相对较浅,掺杂浓度较低,因此相对较容易,但是重掺杂的衬底扩散的效果则会较差,通常都是表面浓度上不去,影响其性能。并且在高温扩散中稍厚的深度会造成杂质分布的均匀性差,PN结结面不平整,影响了晶体管的伏安特性;同时高浓度的杂质扩散,也增加了管身体内的缺陷(主要是位错和杂质沉淀),破坏了器件的击穿特性。而离子注入法具有所需温度低、不受杂质固溶态限制、易于精确控制等优点,与扩散所需的高温、难控制温度等缺点相互补,因此可以尝试将其与三重扩散技术相联合使用。离子注入的方法是在真空中、低温下,把杂质离子加速(对Si,电压≥105V),使获得很大动能的杂质离子可以直接的进入到半导体中,但与此同时它也会在半导体中产生一些晶格缺陷,因此在离子注入后需用低温进行退火或激光退火来消除这些缺陷。离子注入的杂质浓度最高处不是在表面,它的浓度分布一般会呈现为高斯分布,最高浓度是在表面以内的一定深度处。它与三重扩散的耗时间、高温条件控制难等互补,若能将这两种生产工艺完美结合,定能大大增加产品的质量与生产速度。

三重扩散工艺使用多年了,已经大范围的推广和普及,但是它的高温、长时的一些严格限制生产效率的问题还没能完好解决,因此,我们需在实际生产中总结经验,并关注相关科技的最新动态,把科技与生产结合,找出更好的改进方法。

参考文献:

半导体工艺与技术范文6

摘要:

评估了使用深反应离子刻蚀工艺来进行晶圆的切割,用于替代传统的刀片机械切割方式。结果表明,使用深反应离子刻蚀工艺,晶圆划片道内的硅通过等离子化学反应生成气态副产物被去除,从而避免了芯片侧面的机械损伤。切割后整个晶圆没有出现颗粒沾污,芯片边缘没有崩角以及开裂等损伤。该工艺还可以适用于更窄的划片道切割要求。

关键词:

深反应离子刻蚀;刀片机械切割;崩角;开裂

1引言

半导体行业一直使用刀片机械切割晶圆的方式,将芯片分离成单独的颗粒,这是目前业界的主流工艺。刀片切割过程中会产生碎屑,芯片侧壁受机械损伤会出现崩角以及开裂,影响到芯片的有效区域,造成电性能失效。硅的裂纹会出现延伸或传播,影响芯片的可靠性以及使用寿命。伴随着半导体工业的发展,晶圆划片道宽度越来越窄。通常划片道宽度在60μm以下时,刀片机械切割将出现工艺瓶颈,主要受限于刀片本身宽度。腐蚀技术分为干法腐蚀和湿法腐蚀。腐蚀具有各向同性腐蚀与各向异性腐蚀之分,还有选择性腐蚀与非选择性腐蚀之分。湿法腐蚀工艺技术是化合物半导体器件制作中一种重要的工艺技术;它是在具有高选择比掩蔽膜的保护下对介质膜或半导体材料进行腐蚀而得到所需图案的一种技术。湿法腐蚀是一种化学腐蚀方法,主要针对InP、GaAs基化合物半导体材料及SiO2的腐蚀。从图1可以看出,湿法腐蚀各向同性,其腐蚀偏差较大,腐蚀图形不可控,无法满足半导体芯片切割的要求。在湿法腐蚀中,抗蚀剂与衬底交界面有腐蚀剂渗入的问题。为了抑制腐蚀液的渗入,显影后需要烙烘进行坚膜,由此常常引起抗蚀剂图形的变形,不利于微细加工[1]。干法刻蚀是在真空状态下通入一定量的反应气体,在射频电场作用下辉光放电,形成等离子体。等离子体中含有离子、电子及游离基等,可与被刻蚀晶圆表面的原子发生化学反应,形成挥发性物质,达到刻蚀样品表层的目的。同时,高能离子在一定的工作压力下,射向样品表面,进行物理轰击和刻蚀,使得反应离子刻蚀具有很好的各向异性,从而得到所需要的器件外形结构[2]。从图2可以看出,干法刻蚀由于各向异性,腐蚀偏差小,腐蚀图形可控,精度高,公害少,工艺清洁度高,对环境污染小。因此,在半导体制造中,干法刻蚀越来越成为用来去除表面材料的主要刻蚀方法。干法刻蚀的各向异性可以实现细微图形的加工,满足越来越小的尺寸要求,已取代湿法刻蚀成为最主要的刻蚀方式[3]。目前干法刻蚀技术有离子刻蚀、等离子刻蚀、反应离子刻蚀、深度反应离子刻蚀几种类型,这几种刻蚀方法适用于不同的被刻蚀材料。其中,深反应离子刻蚀主要应用在去除硅的场合,在刻蚀SiO2时,DRIE的刻蚀速度更快。其刻蚀剖面各向异性,即刻蚀只在垂直于晶圆表面的方向进行,只有很少的横向刻蚀,可以获得90°±1°垂直度的侧壁,用于创建深沟或高纵深比结构。其刻蚀的各向异性可以实现细小图形的转换,满足较小尺寸的要求。深反应离子刻蚀因其具有较高的刻蚀速率、良好的方向性和选择性而在各种各样的硅基微系统制造中得到大量的应用,不但广泛地应用在微电子领域,而且是集成光学器件及微光机电器件加工的重要手段[4,7]。

2深度反应离子刻蚀的基本原理

深度反应离子刻蚀也叫高密度等离子刻蚀或感应耦合等离子刻蚀,是一种采用化学反应和物理离子轰击去除晶圆表面材料的技术[5]。它将等离子的产生和自偏压的产生分别用两个独立的射频电源进行,有效避免了反应离子刻蚀中射频功率和等离子密度之间的矛盾。为实现刻蚀基进入高深宽比图形并使刻蚀生产物从高深宽比图形中出来,必须降低刻蚀系统的工作压力,以增加气体分子和离子的平均自由程。为避免因此导致的离子浓度变低而影响刻蚀速率,使用电感耦合等离子体产生高密度等离子[6]。图3是电感耦合等离子刻蚀设备工艺腔简图。上电极由一个13.56MHz的射频电源通过匹配器接入线圈用于电离气体产生高密度等离子体,下电极由一个400kHz/13.56MHz的射频电源通过匹配器接入静电吸盘,在腔内产生自偏压。深度反应离子刻蚀采用刻蚀和钝化交替进行的博世工艺以实现对侧壁的保护,形成近90°的垂直侧壁[7~8]。原理如下。通入C4F8气体电离,并发生聚合反应在沟槽侧壁以及底部沉积形成钝化层,由于自由基是中性,不受暗区电场的加速,没有方向性,所以沉积的Polymer在沟槽底部以及侧壁都是均匀的。参见图4。通入SF6气体电离,产生SxFy离子和F的活性自由基,SxFy离子在暗区电场作用下加速轰击沟槽底部与侧壁的钝化层,于是钝化层被刻蚀。参见图5。由于暗区电场的加速作用,离子在垂直方向比在水平方向的轰击占优,沟槽底部钝化层比侧壁钝化层先一步被刻蚀清除,这时F的活性自由基与沟槽底部露出的硅反应产生SiF4气体被泵抽走(如图7),实现对沟槽底部的刻蚀,直至侧壁钝化层也被刻蚀完毕再开始新的循环。从图6看出,由于暗区电场的作用,沟槽侧壁是最后被刻蚀完成的,故对侧壁起到了很好的保护作用,因此,纵向刻蚀距离大于横向刻蚀距离。相关化学反应的方程式如下:(1)各向同性Polymer沉积C4F8CFn(2)各向异性硅刻蚀+各向异性轰击SF6+eSF5++F(游离基)+2eF+SiSiF4(g)对于晶圆的切割来说,各向异性刻蚀的刻蚀速率快,能形成高纵深比的结构和精确的三维结构,没有负效应,能通过合理改变工艺参数满足特定应用的显微结构要求,使得深度反应离子刻蚀成为一个商业上可行的技术[9]。

3试验准备

晶圆在使用深度反应离子刻蚀工艺进行划片的工艺流程见图8~13。硅刻蚀使用深反应离子刻蚀工艺将硅刻穿,完成芯片的切割。把晶圆背面贴上划片膜,释放玻璃片,从而便于后续的编带,见图13。刻蚀后的晶圆如图14所示。干法刻蚀设备为SPPMUC21刻蚀机。该设备为ICP高密度等离子刻蚀机,刻蚀深度片内/片间均匀性误差≤5%,刻蚀角度90±1°。

4样品检验

4.1测量设备

测量设备为奥林巴斯光学显微镜和日立扫描电镜。

4.2检验结果

(1)等离子刻蚀后晶圆表面没有任何碎屑、沾污开裂等问题,见图15。

(2)等离子刻蚀后晶圆划片道内没有任何残留以及沾污,刻蚀前光刻开口22±1μm,刻蚀后划片道开口满足22±3μm。见图16。

(3)等离子刻蚀后取芯片做SEM,观察芯片侧壁,没有崩角或者开裂。见图17。

(4)样品良品率大于98%。

5结论

通过大量实验,确定深反应离子刻蚀能用于硅片的切割;切割效果可以满足规范要求。通过优化工艺流程、刻蚀速率和划片槽开口大小,可以获得理想的切割剖面,以确保深度反应离子切割是可以接受的。

参考文献:

[1]孙静,康琳,等.反应离子刻蚀与离子刻蚀方法的研究与比较[J].低温物理学报,2006,28(3).

[2]苟君,吴志明,太惠玲,袁凯.氮化硅的反应离子刻蚀研究[J].电子器件,2009,32(5).

[3]苟君,吴志明,太惠玲,袁凯.氮化硅的反应离子刻蚀研究[J].电子器件,2009,32(5).

[4]葛益娴,王鸣,戎华.硅的反应离子刻蚀王艺参数研究[J].南京师范大学学报(工程技术版),2006,6(3).

[5]苟君,吴志明,太惠玲,袁凯.氮化硅的反应离子刻蚀研究[J].电子器件,2009,32(5).