前言:中文期刊网精心挑选了集成电路应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
集成电路应用范文1
关键词 数字集成电路 CMOS数字集成电路 逻辑功能 内部设计 注意事项
中图分类号:TN79 文献标识码:A
1关于数字集成电路逻辑功能及其内部设计的分析
日常生活中的数字集成电路产品是非常多的,通过对其电路结构的分析,可以分为TTL系列及其MOS系列。TTL数字集成电路进行了电子及其空穴载流子的导电,我们称之为双极性电路。MOS数字集成电路进行了载流子导电电路的应用,其中的电子导电部分,我们称之为NMOS 电路,将那种空穴导电电路称之为PMOS电路。PMOS电路及其NMOS的组合电路,我们称之为CMOS电路。
相对于TTL数字集成电路,CMOS数字集成电路具备良好的应用优势,其工作电源的电压范围比较宽,并且其静态功耗水平比较低,其抗干扰能力比较强,具备较高的输入阻抗,并且其应用成本比较低。介于这些优势,CMOS数字集成电路得到了广泛的应用。在日常生活中,数字集成电路的品种是非常多的,包括门电路、计数器、触发器、编译码器、存储器等。
我们可以将数字逻辑电路分为时序逻辑电路及其组合逻辑电路。在组合逻辑电路的分析中,任意时刻的输出取决于其当时的输入,这跟电路的工作状态没有关系。比较常见的组合逻辑电路有编码器、译码器及其数据选择器。在时序逻辑电路中,任意时刻的输出取决于该时刻的输入,与电路的原先状态存在联系。时序逻辑电路具备记忆的功能,其内部含有存储单元电路,比较常见的时序逻辑电路有移位寄存器、计数器等。
实际上,不同组合的逻辑电路及其时序逻辑电路是非常多的,其应用比较广泛,并且有很多标准化、系列化的集成电路产品,我们把这些产品称之为通用集成电路。我们把那些专门用途设计制作的集成电路称之为专用集成电路。
数字电路是由组合逻辑及其寄存器构成的,组合逻辑是由基本门组成的函数,其输出与当前的输入存在关系。比如组合逻辑的逻辑计算。时序电路包含基本门,也包括一系列的存储元件,进行过去信息的保存。时序电路的稳态输出与当前的输入有关,跟过去的输入状态也有关。时序电路在进行逻辑运算的同时,也会进行处理结果的存储,从而方便下一次的运算。
从功能上来说,数字集成电路分为数据通路及其控制逻辑部分。这些部分都由一系列的时序逻辑电路构成,都是同步的时序电路,时序电路被多个触发器及其寄存器分为若干的节点。这些触发器在时钟控制下会进行同样节拍的工作,从而进行设计的简化。
2 CM0S系列集成电路的一般特性与方式
(1)CMOS系统集成电路是数字集成电路的主流模式。其集成电路的工作电源电压范围是3~18V,74HC系列是2~6V,党电源电压VDD=5V时,其CMOS电路的静态功耗分别为:中规模集成电路类是25~100%eW,缓冲器及其触发器类是5~20%eW,门电路类是2.5~5%eW,其输入阻抗非常高,CMOS电路几乎没有驱动电路功率的消耗。
该电路也具备良好的抗干扰能力,其电源电压的允许范围比较大,其输出高低电平的摆幅也比较大,其抗干扰能力非常强,其噪音容限值也非常的大,其电源电压越高,其噪声容限值非常的大,CMOS电路电源的利用系数非常的高。
CMOS数字集成电路也具备良好的扇出能力,在进行低频工作时,其输出端可以进行50个数量以上的CMOS器件的驱动,其也具备良好的抗辐射能力。CMOS管是一种多数载流子受控导电器件,针对载流子浓度,射线辐射的影响不大。CMOS电路特别适合于进行航天、卫星等条件下的工作。CMOS集成电路的功耗水平比较低,其内部发热量比较小,集成度非常的高,电路自身是一种互补对称结构,环境温度的不断变化,其参数会进行相互补偿,因此,能够保证良好的温度稳定性。
(2)相对于TTL集成电路,CMOS集成电路的制造工艺更加的简单,其进行硅片面积的占用也比较小,比较适合于进行大规模及其超大规模集成电路的制造及其应用。在CMOS电路的应用过程中,不能进行多余输入端的悬空,否则就可能导致静电感应的较高电压的产生,从而导致器件的损坏情况,这些多余的输入端需要进行YSS的接入,或者实现与其它输入端进行并联,这需要针对实际情况做好相关的决定。
CMOS电路输入阻抗水平是比较高的,容易受到静电感应发生击穿情况,为了满足实际工作的要求,我们需要做好静电屏蔽工作。在CMOS电路焊接过程中,需要做好焊接时间的控制,保证焊接工具的良好应用,进行焊接温度的良好控制。
3结语
在数字集成电路的设计过程中,很多标准通用单元得到积累,比如选择器、比较器、乘法器、加法器等,这些单元电路的形状规则更加方便集成,这说明数字电路在集成电路中得到更好的发展及其应用,这是数字集成电路应用体系的主要工作模式。
参考文献
[1] 黄越.数字集成电路自动测试生成算法研究[D].江南大学,2012.
集成电路应用范文2
1医疗健康领域的需求现状
在医疗健康领域,关注的热点正在渐渐从最基本的疾病产业向保健产业转变。这二者都是以健康服务为最终目的,但是前者主要是有针对性的“对症下药”,而后者则更倾向于为一般消费者提供更全面的保健解决方案。
美国著名经济学家保罗・皮尔泽(Paul Zane Pilzer)曾是花旗银行最年轻的副总裁并出任布什、克林顿两任总统的经济顾问,在他的《财富第五波》一书中指出:二十一世纪人类面临严重饮食失衡,却人人希望更健康、抗老化,预防胜于治疗,从而开启保健产业的兆亿商机。这是继第四波网络革命后的明星产业,相比疾病产业的被动性,保健事业是主动积极的产业。
世界卫生组织(WHO)在2008年10月公开的一份档案中提到:人口老龄化助长癌症和心脏病病例上升;心血管疾病是全世界主要的死亡原因,听力丧失、视力问题和精神障碍是最常见的残疾原因。
庞大的老龄化群体和慢性疾病患者等群体的现状(换言之,是社会需求和市场需求的现状)使得疾病产业、保健产业中亟需发展应用新的技术和产品。
2.1 世界人口老龄化,对医疗护理产品提出了更高的要求。
随着医疗水平的提高,世界平均人口寿命增加,世界和中国都面临着人口结构老龄化的问题。如根据联合国经济社会部的研究数据(如图 1),到2050年世界60岁以上的老年人将达20亿,约占世界总人口的1/3,其中有79%生活在发展中国家;而中国国家人口发展战略研究报告也指出,我国在2007年老龄人口为1.43亿,占人口比重的11%,但是在2040年左右,这个数字将达到4.3亿,占全国人口的30%。这些数字意味着届时每4个人中将有1~2名老年人,同时也表明针对老年人护理的配套设施将会有很大需求。
近几年来,中国社会老龄化趋势日益明显,也引起了各有关方面的关注。“人口老龄化将伴随21世纪始终”。我国现在虽然还处于劳动力黄金时期,但60岁以上人口超过14%,65岁以上人口超过10%,按照国际社会标准,已经跨进了老龄化社会的门槛。老龄化问题将从多方面给中国社会带来巨大压力和挑战,同时也会带来新的机遇,其中最大的机遇就是老年人群消费所带来的“银发产业”发展。
我国老龄化的趋势及特点如下:
(1)老龄化速度快于全国总人口增长速度;
(2)我国老龄化速度快于世界老龄化速度;
(3)我国老龄化速度快于经济发展速度,呈现了“未富先老”的特征;
(4)经济发达地区率先进入老龄化;
(5)老年人生活质量有所提高;
在目前我国经济发展水平尚处于世界中下水平时,老龄化程度却己进入了发达国家的行列。老龄化的加速对经济社会都将产生巨大的压力。
老人占全球人口的比例越来越高,这助长了与年龄有关的慢性病增加,在发展中国家尤其如此。在世界各地,护理人员、卫生系统乃至整个社会均需作好准备,应付老人持续增长的需求。
1.2疾病特别是慢性病的威胁和困扰日益扩大化,以及家用保健产品需求的加强,对医疗保健产品的便携程度提出了更高的要求。
随着社会的发展和人们生活水平的提高,对一些多发性的慢性疾病、残疾障碍、以及神经功能失调疾病的治疗需求越来越迫切。
心血管疾病是全世界主要的死亡原因,主要是心脏和血管疾病,可造成心脏病和中风。通过健康饮食、经常性身体活动和避免使用烟草,可预防80%以上的心脏病和中风,而为了进一步减少威胁,这些病往往还需要长期的、经常性的检查和治疗。
最常见的残疾原因中如听力丧失、视力问题和精神障碍等,其中许多障碍是容易通过电刺激设备进行辅助治疗的(例如听力丧失和白内障)。这些疾患的总体罹患率较高,需要改善获得治疗的机会和方法,改善患者的生活质量,使人们过上有意义的生活。
另外,神经功能失调是一大类神经系统疾病,高发病率而且重症的帕金森病等运动障碍疾病、癫痫、顽固性疼痛等,导致病人明显残障,造成巨大的经济和社会负担。传统上,神经功能失调疾病的治疗有药物方法和外科手术毁损方法。但是长期服用药物副作用多且难以避免,而由于脑和神经的复杂性和人类认识的局限性,不可逆的手术毁损具有不可预知的恶性后果。
进入21世纪后,随着生活质量的提高,人们健康意识也普遍增强。特别是在医院内“一次性治愈”目标很难实现的阶段下,新的产业应运而生:除了医院的医生诊断,可家用的医疗及保健电子设备的需求明显,如疾病预防和协助诊断、慢性病的长期监测及治疗、特别是老年人护理等。另外,包括慢性疾病的监测和控制、治疗在内,医疗保健需要同时实现在临床上的诊断准确性和日常家用的普及性,以及建立以预防和早期诊断为导向的健康观念。比如对于盲人、癫痫症、糖尿病等患者,传统医疗护理手段所带来的长期的临床生活是社会和病人都无法承担的,而离开了医院又会造成生活质量的下降。于是医疗电子终端产品的普遍发展趋势将主要是便携式、穿戴式,某些特殊方面还向植入式发展,以实现“随时随地”的动态、连续的检测和初步诊断。可以预见在不远的将来,这些便携、可穿戴或植入式的医疗及保健电子设备将给人类的生活提供极大便利,产生重大的影响。
1.3 世界医用市场需求的迅猛发展,将成为半导体市场的重要推动力。
在世界范围内,医疗电子市场连续25年增长,很有可能成为未来(半导体市场的)主要驱动。全球医疗保健费用每年5万亿美元,而中国的医疗保健则消耗了GDP的5%,平均每年增加38%。特别是从全球医用半导体行业的收入来看,医用半导体行业的几个主要的部分预计在未来的5年内年均复合增长率(CAGR)在10%附近。
而另一份来自Databeans (Sept. 2008)的数据则预计在未来5年医用集成电路市场的年增长率将高达14%,甚至高于消费类集成电路(11%)和计算机集成电路(9%)的增长。可以看出,在21世纪医用集成电路的重大革新将会像上世纪80年代的电子计算机、90年代的移动通信一样,成为影响全球半导体市场的主要推动力。
世界范围内的医疗电子市场同时会带动我国的医疗电子产业。比如现阶段我国的“银发产业”刚刚起步,根据中国国家老龄委提供的数据,目前中国老年人用品市场的需求量为4000亿元,到2010年将达到10万亿元,而现阶段全国为老年人提供的产品不足10%,离市场需求差距巨大。而且随着中国经济社会的持续发展,各方面因素将为“银发产业”蓬勃发展提供更加强大的动力。在推动经济增长的同时,老年人生活质量能够提高、身心健康得到保障,借助产业发展也可以缓解老龄化问题给社会带来的压力。
2我国医疗电子产业面临的机遇
医疗电子产业的涵盖领域非常广,包括超声波成像、计算机断层扫描等应用电子设备,以及电子血压计、血糖仪等消费类终端产品都属于医疗电子领域。在我国的电子信息产业中,医疗电子产业是很重要的一环,是最贴近民生的电子信息产业细分行业之一。随着2009年4月份《电子信息产业调整和振兴规划》的出台以及国家新医改方案的公布,尤其是8500亿元医改的投入,我国医疗电子产业无疑面临着广阔的发展空间,这对我国的医疗电子产业将带来积极的影响。而且政策别还强调了要加强在医疗电子产业领域自主创新能力的建设,这无疑为我国医疗电子产业带来了很好的发展机遇。另外,医疗设备行业的高速增长也将刺激医疗电子市场的需求:据预测,当前我国医疗电子市场规模为250多亿元,同比增速在16%以上,超过了全球市场的增长率。
为了更好的应对这个难得的发展机遇,要在如下两个方面有所建树:一方面是在医疗信息系统领域。这一领域迫切需要提高远程医疗水平,以及其所依赖的信息传输和管理技术。另一方面是在医疗电子领域。这两个方面的要求,需要在技术上关注网络标准与便携技术的走势:第一是网络互联操作标准。几年前一些著名国际企业包括思科、IBM、英特尔、三星电子等就成立了“持续健康联盟”产业组织,以进行标准选择、互用性指南的编写等工作。ADI亚太区医疗事业部也认识到“为了适应医疗体系的网络化建设,从长远发展来看互联的数据平台变得非常重要”。第二是便携医疗产品与技术。随着人们健康意识、健康需求及相应支付能力的不断提高,以预防为主和早诊治的指导思想,以及医疗电子随着集成电路技术的发展不断涌现出小型化、集成化、网络化、数字化、智能化的趋势,这些都将成为便携医疗电子快速增长的催化剂。在便携医疗产品中,电子血压计、便携血糖仪、电子助听器等便携式设备占到家用便携医疗产品市场的90%,而便携式多参数监护仪、便携式超声诊断仪、便携式胎儿监测仪、便携式心电图仪位居我国医用便携设备市场前列。此外,基层医疗机构所需的低成本、高可靠性、操作简单的X光机、超声诊断仪、核磁共振设备和计算机断层扫描设备的市场容量也将大幅提升。而这些产品所涉及的智能化、小型化、低功耗、高分辨率的技术都备受关注。
3集成电路技术应用的概要介绍
集成电路技术在医疗电子领域内的应用非常广阔且多样化,大致可分为下述四种不同的应用类型:
(1)医学影像――这一类型包括超声波、计算机化的X射线断层扫描(CT)、核磁共振成像(MRI)、X射线、正电子发射断层显像等;
(2)医疗仪器――主要是实验室配套电子设备、透析机、分析仪器、外科手术设备、牙科设备等;
(3)消费型医疗设备――偏重于患者(可家用,非临床)使用的终端设备,包括数字体温计、血糖计、血压计、胰岛素泵、心率计、辅助听力(数字助听)等;
(4)诊断、患者监护与治疗设备――协助医生判断的(主要是临床使用)相应设备,都包括心电图、脑电图、血氧计、血压计、温度计、呼吸计、除颤器、植入设备等;
这四种类型基本涵盖了医疗电子领域的各种应用。其中后两类,特别是消费型医疗设备尤其需要通过先进的集成电路技术来达到智能化、小型化、低功耗、高分辨率等目标。
小型化、低功耗:通过这些便携、可穿戴、或是植入式的设备,才可以实现人体相关体征信号的动态采集和连续监测,在必要时还可以达到24x7的工作要求;
智能化、低成本:可医院用、家庭用、其他非医院环境用,并通过网络接入等技术实现远程医疗,从而更合理地配置医疗资源,提供更高水平的医疗服务,同时减缓医院就诊压力。还可普及供大范围内的人群使用:如病人用来治疗、健康人用来预防,或老年人用于辅助护理、年轻人用于锻炼健身,可提供早诊治的信息,对人体最小干预(无创/微创),等等。
世界上集成电路领域最权威的会议――国际固态电路会议(ISSCC)的技术专题委员会,围绕以上四种类型的医疗电子应用中日益凸显的关键技术问题,在2009年预测了在未来医疗电子应用领域中集成电路技术的研究热点:
(1)人工辅助听觉、视觉、无线肌肉刺激、神经刺激:这类研究重点在于需要对人体安全无危害,包括和人体组织的电极接触界面、泄漏电流检测、过热断电等。同时还对系统的可靠性、外壳包装、集成度和工作寿命等方面有要求;
(2)传感量:生物分子检测(如DNA等),神经感知、集成核磁共振等;
(3)超小型:遥控或远程诊断;
(4)自适应控制:场景分析、管理方法等;
(5)无线测量技术中的瓶颈:数据流压缩、拓宽频道等;
(6)带有马达和姿态控制的智能内窥镜胶囊;
(7)pH值的测量阵列(离子敏感的场效应管,ISFET);
(8)其他系统级需求。
在这些预测的研究热点中,既有针对某一种具体应用提出了更进一步的功能研究(如用于肠胃内窥镜中的马达和姿态控制),也有对从应用中提炼出的共性关键技术(如对于无线通信技术方面的瓶颈分析),还有对于生物医疗与集成电路的交叉学科发展趋势(如需要更完善的知识结构和传感技术完成生物分析检测等)。
从技术实现的角度来看,上述医疗应用中有关的信息工程在医疗电子领域面临的根本性问题可分为四个主要方面:
(1)数据采集:电子电路需要通过传感器来感知物理世界。在实际世界中的各种物理量需要首先转换成为电信号,之后才能够由集成电路进行处理。采用适合类型的传感器对适合的物理量进行采集,以及对传感器的接口进行完善的交互控制就显得尤为重要;
(2)数据处理:将外界物理量信息提取成电信号后,还需要做初步的信号调理和采样、变换、滤波等预处理操作,并将原始数据进行存储或是根据一定的算法做分析计算;
(3)数据传输:经过处理的数据还需要进行传递,通过由集总的控制设备进行数据融合后才能够判断。可分为基带通信和射频通信,前者大部分是电信号有线连接或是通过人体组织等导电介质,后者主要是用无线电磁波通过空气等介质;
(4)能量供应:对于一般的医疗电子设备而言,体积微型化和延长工作寿命是矛盾的,因为电源的体积往往与其可提供的能量大小成比例。这样就需要在进行低功耗、低能耗设计研究的同时,开发出新的能量供应方式如能量恢复、光电池效应、压电效应等,保证医疗设备(特别是便携式、植入式)的续航能力。
接下来以几个具体的研究课题项目为基础,针对不同的应用例做更深入的分析,来介绍一下目前国内在如下两个研究方向上取得的一些进展:
1)对较为基本的物理量如温度、脉搏等,待处理的数据量比较少,硬件系统的工作流程也非常类似,可以考虑采用一种具有共性的硬件结构进行实现。同时这些有共性的硬件系统还可以通过一种通信协议组成网络,实现人体区域的传感器网络。
2)在另一些特殊的应用中如人工辅助的听觉、视觉,以及智能内窥镜胶囊等,由于原始数据是语音和图像,过程中会涉及到傅里叶变换、数据压缩等更为复杂的算法,数据运算量相对于简单的生命体征信号要大得多,成为制约低功耗的瓶颈之一。
4实例
4.1 用于体征监测的传感器网络
无线人体区域传感器网络(Wireless Body Area Sensor Networks, WBASN)是一种能够满足前述应用要求的“通用”解决方案。它是进行人体生命要素信息采集与控制的小区域传感器网络,一般主要用于特定人群/人体的长时间健康状况监测、身体健康指标分析等。最典型的应用例为糖尿病患者、癫痫症患者、神经紊乱或衰弱患者,以及慢性心脏病患者等。通过这种网络内的可定制监测,人们可以根据实际需要对身体的一个或多个相关数据指标做连续采集监测,并通过良好人机交互界面进行控制。
1)WBASN的结构
WBASN通常由近人体区域的传感子节点和基站主节点组成。近人体区域包括体表测量、体内测量、探针测量和体检测量等。完成这些测量的传感子节点中包括前端的传感器件/能量转换器件,目标是由对有关健康状况的数据进行测量、处理和交换。基站主节点随时接受区域中每个传感节点的数据,并控制和调配这些传感节点的采集状态、休眠方案等,需要有能力做较大量的数据处理、累计、判断及交换。所测量的数据信息也都是与人体密切相关的,如心电、心率、血压、心音、肺音、血氧、呼吸、温度、加速度等。不同种类的数据采集需要不同的传感器件(能量转化器件,简称换能器),如单导电极、热敏电阻、惠斯通电桥、电流式传感器和3轴加速度计等。所有传感子节点的数据信息通过基站主节点进行统一的融合处理和分析判断,实现WBASN的基本功能。
图 3示出了简要的WBASN结构示意图。整个网络的基本功能是由传感子节点(位于体表或体内的粘附或植入式装置)完成的,如采集血压、温度等信息。这些信息由主节点(体外的便携装置,如PDA等)统一接收后进行数据融合,完成初步判断和处理,还可以给出信息的实时反馈、超限数据的安全警告等。另外,主节点还可以作为“网关”接入到因特网、GPRS等广域网络中,将本地的数据上传到远程服务器供医生远程诊断,实现远程医疗等。如果主节点初步判断后认为需要完成进一步的操作,会再次采集相关信息、给出警告信息或进行干预操作――给药、电刺激等,以实现慢性病护理或及时诊治。虽然这一网络的研究目前还处于实验室为主的原型验证,但是在一些应用中还是会或多或少的发现WBASN的影子:如前不久的“神七”宇航服中就实现了压力、心率、呼吸等传感器,采集的数据统一上传到宇航员之外的接收设备上,然后再发回地面指挥中心进行分析。
2)WBASN的子节点系统结构框图
一个典型的子节点系统结构框图如图 4,包括了传感器和电刺激驱动模块、模数转换器、微控制器MCU、数据流的预处理(协处理)单元、存储器和射频(RF)收发机,其中MCU与传感器模块之间还可以实现可配置的多标准数据接口、电源可视情况采用电池或无线供能方式等等。各模块连接后即可实现相应功能的子节点系统。若将图 4所示的结构进行高集成度的电路实现,就是片上系统(SoC)平台芯片。一种较为简单的平台芯片实现中不含有传感器模块和RF收发机(但包含对应的接口),通过外接(1)不同类型、不同功能的传感器件前端和(2)相同类型的射频收发芯片后,就可以完成相应种类数据信息的采集,进行一些预处理,然后与主节点建立通信并传输数据、接收配置等。还有一种集成度较高的SoC平台芯片中会带有片上RF模块,这样每个子节点系统就只需外接一个传感器芯片即可完成采集、组网等功能。SoC平台的作用是在功能异构的WBASN各个子节点应用中作为一个基础的“通用的”平台。
3)WBASN的子节点系统的设计重点
上述分析表明WBASN的近人体子节点系统的整体设计实现中,应该以超低功耗和高度集成的(SoC)设计为重点。于是就要综合系统的各方面需求,整合设计并实现出核心的数字微控制单元和电源管理单元,以便在达到功能上的灵活性、完备性的同时,实现系统的极低功耗。这些数字系统设计中的关键技术包括几个方面:(1)在各个功能相异的节点休眠间隔不等的情况下进行接入;(2)医疗用途的紧急情况下“给药”或“电刺激”的实时控制实现;(3)星型网络中单跳的组网方式对指令集的优化;(4)无线方式的节点功能更替;(5)兼容多标准的传感器器件接口;(6)电路级的低功耗技术如门控、多电压、异步电路设计等。在我们的研究中,综合考虑了上述方面进行了设计优化。这样还会带来很多其他的好处,如设计成本低、系统扩充性好、针对WBASN应用开发的软件/硬件效率高,等等。
下面针对上述子节点系统设计的几个关键技术进行具体说明:
第一,在低功耗方面,通过对具体实例的分析发现,“工作状态”和“空闲状态”的功耗一般相差20倍甚至更多,所以工作状态下的低功耗优化是首要任务。目前的绝大多数SoC实现方案基本上都是采用各种措施将工作时低功耗达到更低的指标。但是对于WBASN的具体应用而言,子节点通常都会处于非常低的工作占空比,也就是说在整个子节点寿命内的绝大多数时间里,子节点是在空闲状态的。如体温测量可以每1分钟测量一次,每次测量只需要几个毫秒;心率测量也只需要每100毫秒测量几个毫秒,等等。这样,子节点的总能量消耗往往更多浪费在空闲时的状态上。所以对于WBASN的优化需要从工作时功耗和休眠时功耗协同考虑完成,目标是提高电池的能量使用效率。
第二,子节点的实时控制。在许多研究中广泛采用了实时性操作系统(如TinyOS),其实只保证了子节点在工作状态下处理器处理各个任务的实时性。还需要子节点保证网络行为的“实时性”:如用于闭环施放药物的子节点系统,在接到主节点发来的“给药”指令之后应该以最短的反应时间给出操作。这就与低功耗的指标相矛盾:为了更快的反应速度,应该在空闲时采用“侦听”方案或者休眠间隔很短的方案――这样同时增大了空闲时功耗;反之,为了避免该给药子节点的电池能量大都浪费在空闲时状态,应该采用空闲时休眠的方案,并且该加大休眠间隔――这样在主节点开始发送唤醒要求(大多数这种时候都是紧急情况)之后还要等到子节点的下次定时唤醒才能够给出响应,最坏情况下的反应速度为子节点的定时唤醒周期。所以目前这一问题的解决方案就是空闲休眠间隔、侦听时间的折中选取。以具体数据进行分析:在“国内外研究动态”中的ADICOL项目中,胰岛素施放操作的闭环控制是每3分钟定时唤醒工作一次,以保证最坏情况下的给药控制延迟不超过3分钟。而保守情况下(按每天需施放胰岛素10次估计推算)都至少有97%的唤醒是不需要做给药的,这样就浪费了子节点大量的电池能量,降低了有效用能量的使用效率。
第三是功能的灵活性。由于每个子节点系统的RF模块和通讯协议都没有差别,所以通常的设计都主要考虑传感器接口模块的灵活可配置等等。很多现有的传感器件或芯片接口大致分为两种:模拟量(需要SoC提供ADC进行转换)和数字量(传感器自带ADC,仅需要满足相应时序)。已有的相关研究大多是基于这两类接口进行展开的。但是在不同功能的子节点系统内,除了传感器件前端需要采集的物理量类型和接口不一样之外,其软件程序在操作顺序、运算复杂度、处理方法等方面都有区别,SoC本身的软件部分就需要根据具体子节点的功能进行调整。如果在每个子节点设备封装前预先写好软件算法,还需要专门的“烧写”设备。我们的研究中采用一种可由主节点远程配置子节点软件的协议,就可以在满足“软件灵活性”要求的同时不引入其他设备。
4)总结
如前述,WBASN的优化重点在于子节点系统, 而子节点系统的核心是SoC平台。为了保证子节点SoC平台的超低功耗、高集成度、灵活性、高效率、可靠性等,需要SoC平台中的数字系统有完善的功能和异常处理能力、优化的结构、良好的可靠性和能量管理等。
系统内各个传感器设备(或称网络内“近人体节点”)的主要指标可以归结为:系统集成度,小型化/微型化,低功耗电路设计,无线遥感链路和信号处理算法等。除此之外,其他一些指标如服务质量、安全性、多传感器数据融合和诊断支持等也都是世界上相关领域内各研究组正在研究的课题。
4.2 带有植入式处理器的电刺激器
电刺激治疗方法是当今临床和日常的物理康复最常用的、重要的治疗手段之一,在心脏起搏器、人工听觉、人工视觉、脑电刺激等许多领域中有着非常重要的作用。该方法通过将一定量的电流通过特制电极施加到人体组织,实现促进恢复正常的神经传导和调节功能等治疗作用,不仅可起到镇痛、消肿、消炎、脱敏、缓解肌肉痉挛等功效,有时甚至还可以修复、替代某些受损的人体组织和器官。一般的电脉冲刺激时采用无极性微分型指数波形,由电荷相等的正负脉冲波构成,负指数脉冲起神经纤维去极化作用,正脉冲起电荷平衡的作用,可避免组织损伤。集成电路技术,特别是植入式的处理器控制应用在电刺激器中,可以完成复杂的信号处理,同时极大的保证操作的可靠性和无侵害性。
心脏起搏器是最早的医用电刺激仪器之一,它发放电脉冲,通过与心内膜相接触的电极导线,刺激心脏使之激动收缩,以模拟心脏的冲动发生和传导等电生理功能,起到治疗由于某些心律失常所致的心脏功能障碍。心脏起搏器的结构包括脉冲发生器(pulse generator)和电极-导线(lead)两大系统。脉冲发生器由电池、释放与调节电脉冲的电路和外壳构成。脉冲发生器控制起搏节律,犹如整个系统的“大脑”。现在的脉冲发生器是非常小的,一种典型的尺寸为5cm x 5cm x 6mm,重量在30克左右。
在正常的听觉系统中,声音的机械震动通过外耳和中耳之后,会在耳蜗的各处与基底膜发生共振。基底膜的振动带动毛细胞纤毛的振动,产生毛细胞的感受器电位,进而产生听神经的动作电位发放。脑的中枢听觉系统能够根据听神经中不同神经纤维的发放情况判断基底膜的振动情况,进而推断声音的频率成分。在一些患有感觉神经性耳聋的病人内,毛细胞由于多种因素如遗传、疾病等而遭到损伤或者数量减少,无法正常地驱动听神经。而人工耳蜗的基本工作原理就是绕过毛细胞这一环节,直接对听神经进行电刺激。于是这种电刺激的效果就好像是听神经被声音通过正常的基底膜和毛细胞驱动一样。
人工耳蜗只是一种听觉假体,并不能“治愈”耳聋或其他听觉障碍。人工耳蜗的工作是基于耳蜗的不同部分与不同声音频率之间一种规则的对应关系(频率拓扑性质)。一般需要使用更加复杂的处理方法以避免造成组织、电极损伤等一些不良影响。
视觉假体技术也属于功能电刺激的一种。大多数盲人的视觉通路中往往只有一部分发生病变,而其余部分神经组织的结构和功能尚完好。于是就能够对视觉通路的完好部位施加特定的人工电刺激,来兴奋神经细胞以模拟自然光刺激的效果,使盲人产生视觉感受。
视觉假体的工作原理与人工耳蜗相似。视觉假体系统包括一个位于病人体外的视频采集设备(如小型摄像机),视频处理模块,电刺激编码模块和植入到视觉通路特定部位的多电极阵列。由视频采集设备采集到的实时视频图像经过处理,转化为驱动多电极阵列的信号。多电极阵列对视觉神经组织施加一定幅度、波形和频率的电流刺激,兴奋视觉神经元,从而使病人产生视觉感受。
人工视觉刺激器主要包括视网膜刺激器、视皮层刺激器和视神经刺激器。其中视网膜刺激器发展最快。视网膜刺激器是在视网膜下或视网膜表面植入不同微电极,使外界光线转换成电流,通过微电极刺激并激活视网膜神经细胞及其网络,而产生光感。这种装置可使失明或接近失明的眼重新获得部分有用视力。其优点是可以产生较准确的视觉感知,而且所需电流强度较小,玻璃体有利于热量的散发,以及可直接观察到植入刺激器及植入后的反应。至今已有较多实验表明视网膜前或膜下芯片植入方法可行,有较好的生物相容性及长期稳定性,达到预期效果。
目前全世界范围内已经接受植入的病人较之佩戴人工耳蜗的病人要少得多。而且目前美国食品药品监督局(FDA)也尚未批准任何类型的视觉假体的临床应用。
下面以人工听觉的具体系统为例,详细介绍一下带有植入式处理器的电刺激器:
带植入式处理器的双模人工耳蜗系统
人工耳蜗就是通过电刺激末梢神经系统的方式来修复听觉的一种医疗电子装置。它把外部的声音转换为听神经需要的电刺激,将这种刺激通过植入电极刺激听觉神经,帮助传感性耳聋患者恢复(人工制造出)听觉。它是迄今为止治疗极重度耳聋唯一有效的方法,也是唯一被商品化的感官神经修复技术。目前各种人工耳蜗产品在设计上细节不尽相同,但它们的基本硬件构成和工作原理却是一样的。
1)人工耳蜗的硬件构成
人工耳蜗的基本硬件构成如图 6所示,主要分为体外和体内两个部分,其工作原理和流程如下:
(1)体外的麦克风首先把采集到的机械声音信号转换成模拟电信号;
(2)模拟电信号经过模数转换器转换成数字电信号;
(3)数字信号处理器(DSP)对数字声音信号进行分析并决定如何驱动埋植于耳蜗内的电极去刺激听神经,形成刺激指令序列;
(4)刺激指令序列经过调制后以无线电波的方式发送给体内部分;
(5)体内的解调器从无线电波中获取体内电路工作所需的能量,并对刺激指令序列进行解析;
(6)体内的刺激器对解调出来的指令序列进行译码,然后根据指令要求在电极上产生相应的电流,刺激听神经产生听觉。
2)新型全植入系统的应用
在当前植入式电池不足以支撑数字式全植入人工耳蜗系统,而模拟式全植入系统又存在着诸多缺陷的情况下,新型全植入系统的设计思路除了继续降低数字系统本身的功耗外,还可以在结构上进行调整,降低系统对电池的使用量。基于这些考虑,我们提出了带植入式处理器的可双模工作的新型人工耳蜗系统,如图 7所示。
该系统在体内集成了一套完整的语音信号采集、处理电路,以及与体外的无线接口,同时配有植入式电池。所谓“双模”,是指该系统既可以工作在不带任何外部辅助装置的体内单机模式下,如图 7(b)所示,也可以工作于体外语音信号采集电路与体内处理电路协同的联机模式下,如图 7(c)所示。从技术可行性的角度上讲,联机模式下的系统在当前的电路技术条件下是可以实现的,而单机模式则受制于电池容量和安全性等非电路因素。
这种系统的意义在于,通过两种模式的交替使用可以很大程度上减少对植入式电池的使用量。而且该系统包含了一个完整的全植入数字式子系统,对该系统的研究可以涵盖下一代全植入式系统的关键技术难点。也就是说,该系统的很多关键技术将可以直接应用到下一代全植入系统当中。实际上,在植入式电池的容量和安全方面的性能提升到一定程度之后,这个系统可以自然而然地转换成一个全植入式系统。
3)植入式数字信号处理器的低功耗设计
在双模系统中,最大的技术难题就在于植入式数字信号处理器(DSP)的设计(图 8),因为它几乎是整个系统里功耗最大的部件。传统人工耳蜗中的DSP 处在体外,对功耗的要求还可以宽松一些,毕竟体外的电池可以随便更换。而在新系统中,无论是哪一种工作模式,对DSP 的功耗要求都是非常苛刻的。在体内单机模式下,DSP 的功耗直接影响着植入式电池的寿命,而植入式电池又不可以随便更换,所以这种情况下DSP 功耗的重要性自不待言。在联机模式下,由于无线能量传输效率低下,DSP 的功耗将会被严重放大,这比DSP 在体外时的情况要恶化很多。
实际的设计和测试结果表明,基于开放源代码硬件的专用指令集处理器(OSH-ASIP)设计方法有助于提高效率并降低成本,同时可以有助于去除通用处理器中存在的冗余,从而提高处理器的执行效率、降低功耗。通过综合运用指令集简化、等待模式、循环暂存、存储器切割、操作数隔离和时钟门控等多种低功耗设计技术,在0.18μm CMOS 工艺下设计实现的一款人工耳蜗专用的低功耗DSP实际测量结果为:在10MHz 的时钟频率下执行连续交织采样(CIS)算法的功耗小于2mW,低功耗效果显著。
4)总结
就当前的技术水平来讲,数字式全植入的人工耳蜗系统仍然因为能量供应不足(功耗大而电池容量小)的缘故无法实现。但是除了功耗外并没有其他理由可以阻碍数字系统的进一步发展,况且相比于模拟系统中那些固有的缺陷,功耗实际上是一个会随着微电子设计和制造水平的提高而逐步得到解决的问题。因此,从长远看数字式全植入系统才是人工耳蜗系统最优的选择方案。
4.3 智能内窥镜胶囊
传统医用内窥镜(如胃镜和肠镜)需要使用光纤或电缆插入人体体腔内拍摄病征图像以供医生诊断,这些连接线会给病人带来很大不适,而且诊断存在盲区,并可能会有消化道伤损等并发症。智能内窥镜胶囊的出现给消化道疾病的诊断带来了便利,克服了上述缺点。如图 9所示,病人在吞服了胶囊内镜以后,胶囊依靠消化道的蠕动在其中缓慢移动。移动的过程中会采集人体内消化道的图像并以无线的方式发送至体外记录仪,并可以上传至基站以供医生诊断病情。胶囊内镜不会给病人带来不适,在检测时病人也可活动,而且它可以完成全消化道的检测,扫除了传统内窥镜存在的盲区。
1)智能内窥镜胶囊的发展历史
智能内窥镜胶囊(消化道胶囊内镜)的概念最早于2000年由以色列科学家提出并实现,之后Given Imaging公司生产出第一款商用的胶囊内镜产品Pillcam。最近的几年里各国的工业界和学术界相继开始对这种产品的研发,一些新产品和新技术陆续面世:日本的奥林巴斯公司推出的EndoCapsule产品在日本也开始商用;日本NORIKA Syaka RF lab正在研发用无线供能,代替电池供电的技术,以及控制胶囊内镜姿态的控制技术;韩国研究机构推出了以人体作为导体来直接传输信息的技术,用以代替射频收发机,目前也已成功地利用到胶囊内镜产品中。在可预见的将来还将出现集诊断、活检、给药及消化道行走等各种功能于一体的产品。
2)胶囊内镜的结构
完整的口服式智能内窥镜胶囊系统由胶囊内镜、体外便携式记录仪和工作站三部分构成。胶囊内镜是整个系统最为重要的部分,也是设计难度最高的部分,在集成电路设计时尤其要注意功耗等问题。外壳内的电路系统主要由五个部分组成,如图 10所示,包括一个商用CMOS图像传感器、白色发光LED、一个商用射频收发机芯片及天线、一块用于控制和数据处理的专用集成电路和两节钮扣电池。
商用的CMOS图像传感器位于整个胶囊的一端,负责采集消化道中的彩色图像数据。支持多种图像分辨率,最高速率可达30fps。高亮度的白光LED均匀地排布在图像传感器镜头座外的环形PCB上,在采集图像时提供照明光线。高性能、低功耗的商用射频收发机位于胶囊的另一端,保证胶囊系统的无线通信。射频收发机工作在433MHz的ISM频段,采用FSK的调制方式,有效码率最高可达500kbps。两颗1.5V的钮扣电池串联后为整个电路系统提供所需的能量。它们位于胶囊的中部,在图像传感器和射频收发机之间。用于控制和数据处理的专用集成电路位于图像传感器与电池之间,它将系统各部分的功能组合起来,形成完整的电路系统。
专用集成电路是胶囊内镜的控制核心(图 11),它由数字基带、电源管理单元和无线唤醒子系统三部分组成。其中数字基带部分主要实现通信控制和图像压缩两大功能。电源管理单元可将电池电压转换为系统各个部分所需的电源电压。无线唤醒子系统可以对密封在胶囊中的电路系统进行开启、关闭、复位和配置操作,提高了系统可靠性,也便利了产品的组装和生产过程。
3)胶囊内镜的低功耗实现
在胶囊内镜的电路系统中,射频部分消耗的能量一般超过总能量的60%。为了在不增加射频电路功耗的前提下缩短有效的射频传输时间,在系统的数字基带中引入了信源编码――图像压缩。这样大大减少了射频收发机发送一帧图像的数据量,也就相应地减少了每帧图像射频部分的能量,并且有利于进一步减小系统工作的占空比,延长电池的工作时间。
引入图像压缩功能实际上是使用数字电路的能量去换取射频部分的能量,而且数字电路的低功耗技术比较容易实现,使得降低数字电路的功耗相对于降低射频电路的功耗更为容易。因此,只要对图像压缩的计算复杂度做出仔细的评估,电路系统整体能量的降低不难实现。
目前智能内窥镜胶囊系统还没有正式的产品国家标准,但一般包括如下几个重要指标:
1)工作时间:至少为8小时,因为一般胶囊内镜通过人体消化道的时间为8小时。
2)尺寸:为方便病人吞服,胶囊尺寸一般直径为10~12mm,长度为20~30mm。
3) 图像帧率和分辨率:目前产品的图像帧率一般为2fps。当然,在满足基本工作时间的条件下,图像帧率和分辨率都是越大越好。
4)总结
基于上述胶囊内镜的结构,可以对其应用需求做出细致的分析,对系统的供电方式、体积尺寸、通信方式、工作时间、可靠性等要求进行综合考虑。分析和测量结果表明,在系统级设计上采用了图像压缩、双向通信和无线唤醒等功能能够满足性能要求,而且这些技术的应用对于有类似的大数据量、高码率的植入式电子医疗集成系统也具有参考价值。
目前国内有清华大学、中科院合肥智能机械研究所、重庆大学、重庆金山科技集团等单位都在分别从事这方面的研究。
5 结语
本文从医疗健康领域的社会需求、市场需求现状入手,对我国医疗电子产业面临的机遇进行了分析,并对其中的关键技术――集成电路技术应用做了基本介绍。多方面的数据分析表明,医学微电子系统研究设计的核心发展趋势可以归结为小型化/微型化、集成化、网络化、数字化、智能化。最后还通过几个在研项目实例进一步阐释了集成电路技术在医疗健康领域的应用。
集成电路应用范文3
据统计,我国当前高速公路建设当中机电工程检测项目中扣分最多的就是:个别指标、性能偏低,外国不符合要求,个别施工不合格等。本人就多年从事相关工作的经验,结合其他先进做法,就高速公路机电工程应用出现的问题和措施进行研究分析。结果如下:
1、严把时间关。因为机电工程具备的上述特点,机电工程通常都安排在整个工程的收尾阶段,所以会面临任务重、时间短的情况。高速公路施工项目需要大量的资金投入,施工是一项很复杂的项目,每天都需要花费巨额的资金,如果工程因为各种原因出现延误工期的情况,那么不仅会浪费大量的资金,还会延误交工时期。只有确保机电工程施工过程中顺利进行,才能够保证在规定时间内圆满完成施工任务。
2、严把设备关。机电设备是机电工程的核心内容,设备的质量直接关系到工程的施工质量,在使用设备选择上要进行严格的把关,要充分考虑高速公路工程的特点和要使用设备的要求,选取最合适的机电设备。在对设备进行安装之前还要对设备进行抽查,查看设备质量知否符合工程标准,确保质量合格。如果在抽查过程中发现不合格设备,坚决不能够让其应用在高速公路建设当中,要查找不合格的原因所在,对相关责任人进行追究责任,严格控制好设备的质量。
3、严把预检关。对机电工程进行检验主要分为两个部分,第一对机电工程的总体质量进行检查,第二是对监控系统进行重点检验。所以,在安装机电设备的时候要将监控系统作为工作重点,因为监控系统安装的线路较长,施工距离远,如果一个点的线路出现问题,那么整个监控系统将无法进行公路,且对问题点的排查十分困难,需要动用大量的人力和物力。监控系统安装之后要进行预先检查,防止出现纰漏。
二、高速公路机电工程的主要施工措施和技术要求
1、施工前的准备措施。在工程施工之前要充分做好准备工作,特别是对机电设备的检测和维护工作,确保设备时刻保持最佳状态。具体的工作包括物资准备、人员准备、技术准备、现场准备等等。其中,物资准备指的是施工过程中需要使用的材料、设备等,确保施工时不因缺少物资而延误工期;人员准备指的是施工过程中需要的人力资源,具体有记录人员、搬运人员、技术人员、后勤人员等等,这些人员都是确保工程顺利进行的有力保障,尤其是技术人员是工程质量的保证;技术准备指的是工作人员要熟练掌握自己符合工序的图纸要求和设备安装要求,了解自己工作所使用的各项技术特点,并且要对图纸中不合理的地方进行及时指证,请图纸设计人员进行研究,直到各项技术确认无误为止;现场准备指的是为了确保工程顺利进行,要提前对施工现场进行清理,为施工创造良好的环境,具体包括搭建工棚、平整场地、清除垃圾障碍、接通水电等等。
2、施工当中的主要技术要求。机电工程的施工是一项很精细的项目,安装的机电设备都是一些精密仪器,如果搬运或者安装过程中出现刮碰都很容易影响设备的使用。所以,在施工之前要对各个环节进行技术较低,确保严格使用各项技术。在施工的时候,要按照施工对象的不同为进行区分对待。例如,对施工场地的要求,施工现场要对每个机电设备开展清理工作,对人资进行合理分配,使得工程能够有序进行。具体的还有施工工具的准备、穿线管的清洁度、导线的种类等等。一些技术都非常的细致,例如穿线管内穿线的总面值不能超过截面的40%,暗装箱箱盖要紧贴墙面等等。
三、总结
集成电路应用范文4
关键词:应用型本科 电路基础 教学改革 创新能力
中图分类号:TM13 文献标识码:A 文章编号:1672-3791(2017)02(b)-0174-02
S着社会经济的发展,对个人综合素质比较高的毕业生需求越来越大,在学校学习电路基础课程,学生不仅可以掌握电路基础知识与技能,个人综合素质得到提高,在学生的专业兴趣培养方面的作用也十分重要。现阶段电路基础课时被压缩但教学内容却有增无减,怎样才能提高学生的创新与实践能力,这些问题在该课程的改革中一直存在。针对课程繁杂的概念理论、抽象的内容等特点,提出在本科阶段,老师不仅仅是传授知识,重要的是让学生掌握学习方法与学习意识。老师要能打破传统的教学模式与内容,将学生综合素质的培养与电路课程的创新相结合。基于这些综合因素,此论文对该领域相关的教学方法、内容及手段等方面的改革进行了阐述。
1 制定科学合理的教学大纲,教学内容简而精
基础理论课时的缩减,必然影响到教学的内容。综合分析不同老师的教学大纲知识要点以及该课程在未来实际运用的程度,在“一定要科学合理”的基础上完善该课程的教学大纲内容,使得教学内容简而精。比如在《电路基础》课程中,将电路分析与放大的运算内容简化,并设置在电子模拟与信号系统课程中,不仅降低了电路基础课时,促使以上两门课程内容更加完善;同时精简的教学内容克服了传统教学模式中重复知识点的问题,教学过程中避免了对相关知识点的补充,使得整个教学大纲更加行之有效,对人才的培养帮助更大。将小信号非线性相关的电路分析教学内容更深入与系统化,创造了电路模拟的基础条件,降低了电子模拟技术相关的晶体管理中放大化的电路学习的难度,很大程度上提升了教学的效果。
2 结合现实生活讲理论
众所周知,理论既来源于实践又是实践的基础。在应用型本科阶段,电子信息工程与电气类等专业对工程实践能力要求很高,若想成为该专业领域内的综合型人才,工程实践意识要很强。在电路基础的实际教学过程中,一定要理论与实践活动相结合。在电路基础课程中,概念繁杂,内容又比较抽象,教学中还会引用很多工程知识点的案例,实现了教学内容与过程的形象生动,使得学生充分了解到学习电路基础知识的意义与作用,树立起工程实践的思想意识。比如,在电路的直流电阻教学中,会将人体电阻及安全用电的相关知识作为实例。对正弦稳态的电路进行讲解时,通过手机或笔记本电脑的电源器,完成正弦交流怎样转换为直流电路的教学讲解,在此试验过程中还会引用到变压器、电感、二极管及电容等部件的作用。谐振电路的教学过程中,讲解谐振现象在日常生活中多应用于手机、电视机与收音机等的电路中。讲解实际应用案例,学生对电路的应用一目了然,能够更好地掌握新知识与概念理论,奠定培养综合实践能力的坚实基础。
3 重视实践教学改革
改变传统专业实验课程设置依附于理论课体系的横向模式,超越单门课程的范围,建立实验课程之间的系统联系,在原有实验课程的基础上设立相对独立的纵向联系的课程,形成纵横交叉的网状专业实验课课程体系,实现专业实验课程之间的纵向联系和贯通;适时对实践教学内容进行精选,通过增设、改进、整合等方法调整实践项目,更新实践教学内容,跟踪科学技术新发展,设计接近工程实际、知识交叉的实验内容,使实验教学内容体现工程项目的系统性和全面性;同时,应精简部分验证性实验项目,增设综合性、设计性实验,创造条件开出一定数量的贯穿在专业课中高新技术含量高的实验项目,突出工程训练和职业素养的培养目标。学生可根据自己的学习爱好、就业意向选择这些实验项目。
改变实验教学由单一课程组和学生班级为单位的组织形式,形成交叉型的教学指导团队和兴趣型的学生学习团队。
改变按课程分配和管理实验室资源的旧模式,统合实验资源,实现实验教学以及学生创新科研活动中的平台式共享,增加学生创新能力锻炼的机会。
4 教学手段形式多样
在《电路基础》课程中,它重点强调的是电路的分析过程与方法,在过去黑板教学过程中讲解逻辑思维比较强的疑难点知识,学生在老师的引导下领会教学内容,但是这一教学过程中教学内容进度却很慢。在现代化的多媒体教学过程中,教学的信息量非常大,但不足的就是教学过程中学生没有充足的思考时间,对教学内容的掌握比较困难。所以,现阶段电路课程中,教师可以事先用仿真软件将教学内容进行仿真模拟,然后将传统的黑板教学、现代化的多媒体、软件仿真等模式相结合,通过黑板教授知识,多媒体演示实物动画,软件进行模拟仿真,将电路工作中产生的波形及结果借助仿真模拟实验形象生动地呈现在学生的面前,深化了对电路分析知识的掌握程度,极大地增加了学生浓厚的学习兴趣。
5 教学中运用虚实相互结合的方法
在教学过程中,将Multisim、Matlab等仿真软件实验应用于实际教学过程中,课堂上进行仿真的软件实验演示,对比分析仿真实验结果与理论知识,提高了学生的学习兴趣,知识更容易被理解掌握。比如非正弦的周期电流的相关电路知识的讲解过程中,对该理论知识中的分解过程很难用言语表达明白。我们可以通过对细节的定量分析等问题进行缩减,简化推导计算公式而直接得出结果,利用网络分析技术绘制该任意信号与各类谐波的波形图,学生对这些简单易懂的知识很容易就能掌握理解。
6 结语
论文通过对《电路基础》课程内容的教学特点的分析,为培养综合型的人才,提出了该课程领域的教学内容、方法及手段等方面的变革与创新。大量实践证明,该课程领域的教学改革促使学生产生了浓厚的学习兴趣,提高了工程实践的应用与创新能力。但是课程教学创新是一项范围非常广且技术要求很高的系统化的项目,它没有固定的创新模式可以借鉴,这就要求在教学方法及手段实践中不断探索与创新,实现满足社会经济发展的综合型人才的培养目标。
参考文献
[1] 刘晓芳,胡h.电路课程教学改革的探索和研究[J].大学教育,2016(4):98-99.
[2] 于桂君,于宝琦.应用型本科电路原理系列课程的改革与实践[J].辽宁科技学院学报,2015(4):61-63.
[3] 郑春龙,邵红艳.以创新实践能力培养为目标的高校实践教学体系的构建与实施[J].中国高教研究,2007(4):85-86.
[4] 田慧云,张娟.论高校实践教学教学体系的构建[J].中国电力教育,2006(4):63-66.
集成电路应用范文5
关键词:趣味性;电子制作;嵌入式
中图分类号:TN0-4;G712
何谓嵌入式,简单来说就是软件加值硬件。在各种教科书和百科中有很多关于嵌入式的具体定义,但最终的落脚点都是软硬件的关系。因为嵌入式的这种特殊特性,所以嵌入式专业的人才培养中,关于学生硬件知识具体来说就是关于电路的识别、分析、设计能力的培养变得尤为重要。现在嵌入式专业开设高校的多层次,研究生的专业或方向中能看到它的名字,科研型本科或应用型本科能看到它的身影,高职院校也有很多开设了嵌入式专业。作为高职院校嵌入式系统工程专业的一名近年来都战斗在嵌入式硬件基础教学以现在教师,根据自身的教学经验和学生的反馈在本文中主要讨论趣味性电子制作实践项目或案例在嵌入式电路基础课程中的应用。
1 一场面试引发的思考
嵌入式专业是一门新型学科,各高校开设这个专业的时间都在五年左右,一些名校开设这个专业或方向的时间可能会更久一点。笔者所在的是高等职业院校,嵌入式专业在今年迎来第二届毕业生。作为专业教师在不久前陪同学生一起参加了一次集体面试,这次面试也是我写这篇文章想和同行们一起分享心得,讨论基础课程教学方法的原因。参加面试的学生是专业课老师根据近两年来学生在课堂上的表现以及专业课成绩精心挑选的优质学生,面试的主考官也在面试当天营造了轻松的面试氛围。面试主考官和参与面试的工作人员主要倾向于对学生的综合素质、性格和与专业相关的基础知识的考察。引发思考的正式基础知识考察这一关。因为是集体面试所以当时包括我在内的几名专业课老师在一边旁听,当面试人员问道我们认为成绩不错的某些同学一些类似于二级管导通原理,三极管放大条件等非常基础的问题时学生竟然憋红了脸没有答上来,这让我这个主要讲授电路基础课程的老师陷入反思。去除电路基础课程开始在大一下学期,同学们面试时会很紧张这些因素,这么基础的问题学生答不上来还是说明在基础课程教授时我没有做到这些应该牢牢掌握的基础知识学生没有做到真正掌握,只是应付了考试,而所有教育学家和同行们都证明,要让一个人牢牢掌握住某些东西或在某学科、专业的学习过程中做到不用督促不断学习,唯一方法就是兴趣的培养。兴趣是最好的老师,枯燥的公式和定理自然无益于兴趣的培养。
2 高职院校嵌入式专业学生应该掌握哪些电路知识
嵌入式系统工程专业的人才培养是培养具备嵌入式系统的开发与设计能力、嵌入式系统测试与维护能力的嵌入式系统开发、产品测试、技术支持等方面的高素质技能型专门人才。对于高职类院校的嵌入式专业学生就行应该掌握哪些电路知识和技能每个学校的要求不尽相同,根据近几年教学经验和用人单位对于本专业学生的要求笔者认为高职嵌入式学生应该掌握的技能主要有以下几个方面:掌握基本的电路分析方法;掌握模拟电子常用元件的特性、参数识别、使用环境和经典电路;掌握常用芯片的型号、功能、引脚排列方式、应用场合、经典电路以及生产厂家;能够组装数模混合电路;能够对电路进行简单的故障排查;了解综合布线的规则和注意事项;熟练应用焊接技术;掌握一种电路原理图和PCB图绘制工具软件。以上所列出的这些没有涉及到一般电子专业中都会有的单片机课程,只是纯粹的电路基础知识,没有编程知识,所涉及的电路也不能编程控制。
3 如何将知识点穿插到趣味电子制作项目或案例中
根据技能要求确定教学要点是很多高校都在使用的教学内容设计方法。但教学内容的确立除了参照行业和企业所需技能外还应当充分了解学生。高职的学生在高考升入大学的时候一般数学和物理的成绩都不好,理科基础相对比较薄弱,所以大多数人对纯理科理论课和授课过程中的定理计算、公式推导有些畏难和抵触心理。学生的另一个特点就是上课集中注意力保持清醒的时间短,大概在15-20分钟之间,过了这段时间就有很多同学不和老师保持同步。虽然同学们有这样那样的小毛病,但大多数人渴望能在课程中学到实用的,对他们有帮助的知识。当完成老师给布置的任务时喜悦和成就感溢于言表。针对于以上的分析,高职嵌入式电路基础课程在确定教学内容的时候一定秉承增加课程实用性与趣味性的原则,争取做到每节理论内容的知识点都能穿插到电子制作案例和项目中。下面列出在电路基础课程中重要的知识点穿插到了哪些案例中,理论中的一些定理是如何在实践中的到验证的。
对于模拟电路中一些基本元器件的认识和使用可以通过小案例完成。如二极管和三极管以及电容电阻等可以根据各元件特性搭建基本放大电路;搭建基于振荡电路的变调电子门铃;搭建光控LED灯电路;搭建基于多级放大电路的触摸延时LED灯电路;搭建基于多级放大电路的3只LED循环灯电路;搭建和焊接声控LED闪烁灯电路等。对于数字电路中一些常用芯片的掌握可以通过搭建基于非门的LED闪烁电路;搭建基于非门的逻辑状态检测电路;搭建基于非门的交替闪烁信号灯电路;搭建数码管显示电路;搭建基于D触发器的模拟按钮自锁开关电路;搭建基于计数器的三闪信号灯电路等去学习和联系。除了这些小的案例外还在课程后期开展一些综合类的项目如制作呼吸灯,制作光控灯,制作趣味摇摇棒等。
4 第二课堂应如何开展,怎样引导学生利用课余时间
无论教师怎样高效的利用时刻时间,课堂时间和课时数毕竟是有限的。这样有限的学时想让学生很好的掌握必须技能有困难,所以在我所在的专业大力推行了第二课堂。第二课堂推行的范围并不是全体学生,而是班级里学习主动性和接受能力在前30%的学生,这些学生在学校提供的开放实验室里学习与实验。第二课堂的主要内容包括对于课堂上所讲知识的扩展和提升,也包括带领学生参假的各种比赛的比赛项目。第二课堂比正常课上时间更加突出学生的主体作用,教师的作用是布置尽可能细致的任务和指导答疑。目前本专业学生在第二课堂中完成的电子制作有:水箱水位自动控制器、感应式电子迎宾器、手机万能充电器、光控自动节能LED灯、红外线感应开关等。学生第二课堂之外就是课余时间,这些时间引导学生学习的方法就是让同学们参与大学生介入计划和考取专业相关认证,截至目前来看引导效果对于有主动学习欲望的同学来说较好。
5 如何将成果市场化以增加学生的动力
为了更好的激发学生的学习兴趣,将课上和第二课堂中的作品转化为产品也是不错的方法。在上一届毕业生中有一组同学实现了自己购买原器件自己焊接简易移动电源,虽然只是在寝室楼内部进行销售,但这给同学们带来的动力确实不同凡响的,也为其他同学带去了灵感。现在第二课堂中学生们正在制作七彩光控小夜灯,希望能够在电路完成后批量生产。虽然只是简单的电路,市面上也可能有类似的产品存在,但我们都不能否定,趣味性带给教学的诸多影响,我们也一直致力于枯燥课程趣味性的开发。
参考文献:
[1]刘祖明.50个趣味电子小制作[M].北京:化学工业出版社,2013.
[2]王晓鹏.面包板电子制作[M].北京:化学工业出版社,2013.
集成电路应用范文6
关键词:物联网工程;翻转课堂;教学改革
电路基础课程是应用型本科专业物联网工程的一门专业基础课,是该专业一系列后续课程的前导。目前,应用型本科学生普遍有理论基础较薄弱,不喜欢枯燥的理论,不能主动进行思考等缺点,使得教学效果收效甚微。为了解决以上问题,学校课程组进行了一些教学改革,在一定程度上提高学生学习积极性和动手探索的能力。
一、明确课程学习目标
学期初,从学生的角度出发明确课程学习的目标。学生最感兴趣的是一门课程能学会什么,如果只是记住一个公式、一个定律,到期末考试的时候突击就可以过关,那么根本就不需要平时认真听讲课、做作业,学生也就没有了持续学习的积极性。所以,本课程组成员在学期初第一节课就给以“四会”概括该课程的教学目标,即一会应用理论进行简单电路原理分析;二会使用常用仪器、仪表进行电路参数测量;三会使用焊接工具进行电子制作;四会与同学、教师一起解决问题。
二、多种教学方法的融合
笔者从事职业教育十多年,教育教学时有新法,但就某一门课程,对特定的学生究竟用什么方法最有效,要根据学及时调整,以适应学生不同学习阶段的特点。
本课程组主要采用“半翻转课堂”教学方法实施教学,“半翻转课堂”的实施过程参见图1(以“节点电位法”教学内容为例)。
<E:\ZCM\理论版\10上\TP\t6.tif>
图1 节点电位法半翻转课堂实施流程图
任何一种教学方法的实施都是以学生主动参与学习为目的,所以及时、积极的肯定学生的表现是每一种方法能够获得较好效果的保证。
三、多种实验条件的有效利用
目前,辅助教学的工具非常丰富,教师既能用动画软件制作一些电路的信号流向,也可以用仿真软件验证理论分析结果。本课程组在实际教学过程中除了教师用动画软件制作内容丰富的课件以增强课堂教学的吸引力外,在实验课时还要求学生应用multisim软件进行仿真实验,一方面学习如何应用计算机手段辅助解决专业问题,另一方面通过电路设计建立实际工作规范。
四、调动课外制作的积极性
为了调动学生课后应用理论知识解决问题的积极性,本课程组除了给学生随堂布置适量的理论练习题以外,学期初还给学生布置了与课程内容相关的课外小制作。该制作在课程结束前三周验收评分,制作过程分制作项目选择、项目申报、项目中期检查和项目作品展示四个阶段。四阶段主要帮助学生选择合理的制作项目,及时解决制作过程中学生出现的问题,督促学生进行成果汇报,引导学生课后钻研专业理论知识,训练职业技能。特别是在作品展示环节,充分肯定学生在实践过程中所取得的成绩,激励他们克服困难的决心,为后续课程教学起到了很好的启蒙作用。
表1 电路基础课程考核说明简表
[考核项目\&考核目的\&考核形式\&考核比例\&备 注\&理论知识考核\&以教学大纲为基础,对该课程的理论知识掌握情况进行考核\&理论试卷\&60%\&期末集中考核\&实践性考核\&要求学生掌握基本实验方法和简单电子电路制作方法\&实验操作;作品展示\&20%\&实验操作及时考核;作品展示在学院集中进行\&课堂表现及作业\&促进学生按时、积极参与课堂内外作业活动,提高知识总结归纳能力\&出勤、作业、相关文档等\&20%\&随堂即时考核\&]
五、科学、及时地进行考核评价,促进学生规范化发展
考核的目的是促进学生掌握课程的重要知识点。电路基础课程是传统的专业理论课程,采用理论考核方法能够反映学生理论知识掌握情况。但是,纯粹的理论考核给学生学习带来了很大心理负担,特别是应用型本科院校的学生具有理论基础较差、动手能力强的特点,所以,平衡的考核比例能够给学生在心理上带来积极的暗示,促进学生通过动手制作中的问题来理解理论知识。因此,该课程组教师在制定电路基础考核体系时主要按照表1说明实施考核。
结合以上几个方面,经过一学期的教学,无论是理论分析和实践能力,对于物联网工程专业的学生来说,都有了较大提升。随着实际情况发生变化,教学改革也应该随之而变化,在后续课程教学中,我们将不断探索、不断前进。
基金项目:重庆工程学院创新团队建设项目,项目编号:2014x