集成电路的设计要求范例6篇

前言:中文期刊网精心挑选了集成电路的设计要求范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

集成电路的设计要求

集成电路的设计要求范文1

关键词:集成电路设计;本科教学;改革探索

作者简介:殷树娟(1981-),女,江苏宿迁人,北京信息科技大学物理与电子科学系,讲师;齐臣杰(1958-),男,河南扶沟人,北京信息科技大学物理与电子科学系,教授。(北京 100192)

基金项目:本文系北京市教委科技发展计划面上项目(项目编号:KM201110772018)、北京信息科技大学教改项目(项目编号:2010JG40)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)04-0064-02

1958年,美国德州仪器公司展示了全球第一块集成电路板,这标志着世界从此进入到了集成电路的时代。在近50年的时间里,集成电路已经广泛应用于工业、军事、通讯和遥控等各个领域。集成电路具有体积小、重量轻、寿命长和可靠性高等优点,同时成本也相对低廉,便于进行大规模生产。自改革开放以来,我国集成电路发展迅猛,21世纪第1个10年,我国集成电路产量的年均增长率超过25%,集成电路销售额的年均增长率则达到23%。我国集成电路产业规模已经由2001年不足世界集成电路产业总规模的2%提高到2010年的近9%。我国成为过去10年世界集成电路产业发展最快的地区之一。伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加,正是在这种压力驱动下,政府从“十五”计划开始大力发展我国的集成电路设计产业。

在20世纪末21世纪初,国内集成电路设计相关课程都是在研究生阶段开设,本科阶段很少涉及。不仅是因为其难度相对本科生较难接受,而且集成电路设计人员的需求在我国还未进入爆发期。我国的集成电路发展总体滞后国外先进国家的发展水平。进入21世纪后,我国的集成电路发展迅速,集成电路设计需求剧增。[1]为了适应社会发展的需要,同时也为更好地推进我国集成电路设计的发展,国家开始加大力度推广集成电路设计相关课程的本科教学工作。经过十年多的发展,集成电路设计的本科教学取得了较大的成果,较好地推进了集成电路设计行业的发展,但凸显出的问题也日益明显。本文将以已有的集成电路设计本科教学经验为基础,结合对相关院校集成电路设计本科教学的调研,详细分析集成电路设计的本科教学现状,并以此为基础探索集成电路设计本科教学的改革。

一、集成电路设计本科教学存在的主要问题

在政府的大力扶持下,自“十五”计划开始,国内的集成电路设计本科教学开始走向正轨。从最初的少数几个重点高校到后来众多相关院校纷纷设置了集成电路设计本科专业并开设了相关的教学内容。近几年本科学历的集成电路设计人员数量逐渐增加,经历本科教学后的本科生无论是选择就业还是选择继续深造,都对国内集成电路设计人员紧缺的现状起到了一定的缓解作用。但从企业和相关院校的反馈来看,目前国内集成电路设计方向的本科教学仍然存在很多问题,教学质量有待进一步提高,教学手段需做相应调整,教学内容应更多地适应现阶段产业界发展需求。其主要存在以下几方面问题。

首先,课程设置及课程内容不合理,导致学生学习热情降低。现阶段,对于集成电路设计,国内的多数院校在本科阶段主要开设有如下课程:“固体物理”、“晶体管理”、“模拟集成电路设计”和“数字集成电路设计”(各校命名方式可能有所不同)等。固体物理和晶体管原理是方向基础课程,理论性较强,公式推导较多,同时对学生的数学基础要求比较高。一方面,复杂的理论分析和繁琐的公式推导严重降低了本科生的学习兴趣,尤其是对于很多总体水平相对较差的学生。而另外一方面,较强的数学基础要求又进一步打击学生的学习积极性。另外,还有一些高等院校在设置课程教学时间上也存在很多问题。例如:有些高等院校将“固体物理”课程和“半导体器件物理”课程放在同一个学期进行教学,对于学生来说,没有固体物理的基础就直接进入“晶体管原理”课程的学习会让学生很长一段时间都难以进入状态,将极大打击学生的学习兴趣,从而直接导致学生厌学甚至放弃相关方向的学习。而这两门课是集成电路设计的专业基础课,集成电路设计的重点课程“模拟集成电路设计”和“数字集成电路设计”课程的学习需要这两门课的相关知识作为基础,如果前面的基础没有打好,很难想象学生如何进行后续相关专业知识的的学习,从而直接导致学业的荒废。

其次,学生实验教学量较少,学生动手能力差。随着IC产业的发展,集成电路设计技术中电子设计自动化(Electronic design automatic,EDA)无论是在工业界还是学术界都已经成为必备的基础手段,一系列的设计方法学的研究成果在其中得以体现并在产品设计过程中发挥作用。因此,作为集成电路设计方向的本科生,无论是选择就业还是选择继续深造,熟悉并掌握一些常用的集成电路设计EDA工具是必备的本领,也是促进工作和学习的重要方式。为了推进EDA工具的使用,很多EDA公司有专门的大学计划,高校购买相关软件的价格相对便宜得多。国家在推进IC产业发展方面也投入了大量的资金,现在也有很多高等院校已经具备购买相关集成电路设计软件的条件,但学生的实际使用情况却喜忧参半。有些高校在培养学生动手能力方面确实下足功夫,学生有公用机房可以自由上机,只要有兴趣学生可以利用课余时间摸索各种EDA软件的使用,这对他们以后的工作和学习奠定了很好的基础。但仍然还有很多高校难以实现软件使用的最大化,购买的软件主要供学生实验课上使用,平时学生很少使用,实验课上学到的一点知识大都是教师填鸭式灌输进去的,学生没有经过自己的摸索,毕业后实验课上学到的知识已经忘得差不多了,在后续的工作或学习中再用到相关工具时还得从头再来学习。动手能力差在学生择业时成为一个很大的不足。[2]

再者,理工分科紊乱,属性不一致。集成电路设计方向从专业内容及专业性质上分应该属于工科性质,但很多高校在专业划分时却将该专业划归理科专业。这就使得很多学生在就业时遇到问题。很多招聘单位一看是理科就片面认为是偏理论的内容,从而让很多学生错失了进一步就业的好机会。而这样的结果直接导致后面报考该专业的学生越来越少,最后只能靠调剂维持正常教学。其实,很多高校即使是理科性质的集成电路设计方向学习的课程和内容,与工科性质的集成电路设计方向是基本一致的,只是定位属性不一致,结果却大相径庭。

二、改革措施

鉴于目前国内集成电路设计方向的本科教学现状,可以从以下几个方面改进,从而更好地推进集成电路设计的本科教学。

1.增加实验教学量

现阶段的集成电路本科教学中实验教学量太少,以“模拟集成电路设计”课程为例,多媒体教学量40个学时但实验教学仅8个学时。相对于40个学时的理论学习内容,8个学时的实验教学远远不能满足学生学以致用或将理论融入实践的需求。40个学时的理论课囊括了单级预算放大器、全差分运算放大器、多级级联运算放大器、基准电压源电流源电路、开关电路等多种电路结构,而8个学时的实验课除去1至2学时的工具学习,留给学生电路设计的课时量太少。

在本科阶段就教会学生使用各种常用EDA软件,对于增加学生的就业及继续深造机会是非常必要的。一方面,现在社会的竞争是非常激烈的,很少有单位愿意招收入职后还要花比较长的时间专门充电的新员工,能够一入职就工作那是最好不过的。另一方面,实验对于学生来说比纯理论的学习更容易接受,而且实验过程除了可以增加学生的动手操作能力,同样会深化学生对已有理论知识的理解。因此,在实践教学工作中,增加本科教学的实验教学量可以有效促进教学和增进学生学习兴趣。

2.降低理论课难度尤其是复杂的公式推导

“教师的任务是授之以渔,而不是授之以鱼”,这句话对于集成电路设计专业老师来说恰如其分。对于相同的电路结构,任何一个电路参数的变化都可能会导致电路性能发生翻天覆地的变化。在国际国内,每年都会有数百个新电路结构专利产生,而这些电路的设计人员多是研究生或以上学历人员,几乎没有一个新的电路结构是由本科生提出的。

对于本科生来说,他们只是刚刚涉足集成电路设计产业,学习的内容是最基础的集成电路相关理论知识、电路结构及特点。在创新方面对他们没有过多的要求,因此他们不需要非常深刻地理解电路的各种公式尤其是复杂的公式及公式推导,其学习重点应该是掌握基础的电路结构、电路分析基本方法等,而不是纠结于电路各性能参数的推导。例如,对于集成电路设计专业的本科必修课程――“固体物理”和“晶体管原理”,冗长的公式及繁琐的推导极大地削弱了学生的学习兴趣,同时对于专业知识的理解也没有太多的益处。[3]另外,从专业需要方面出发,对于集成电路设计者来说更多的是需要学生掌握各种半导体器件的基本工作原理及特性,而并非是具体的公式。因此,减少理论教学中繁琐的公式推导,转而侧重于基本原理及特性的物理意义的介绍,对于学生来说更加容易接受,也有益于之后“模拟集成电路”、“数字集成电路”的教学。

3.增加就业相关基础知识含量

从集成电路设计专业进入本科教学后的近十年间本科生就业情况看,集成电路设计专业的本科生毕业后直接从事集成电路设计方向相关工作的非常少,多数选择继续深造或改行另谋生路。这方面的原因除了因为本科生在基本知识储备方面还不能达到集成电路设计人员的要求外,更主要的原因是随着国家对集成电路的大力扶持,现在开设集成电路设计相关专业的高等院校越来越多,很多都是具有研究生办学能力的高校,也就是说有更多的更高层次的集成电路设计人才在竞争相对原本就不是很多的集成电路设计岗位。

另外一方面,集成电路的版图、集成电路的工艺以及集成电路的测试等方面也都是与集成电路设计相关的工作,而且这些岗位相对于集成电路设计岗位来说对电路设计知识的要求要低很多。而从事集成电路版图、集成电路工艺或集成电路测试相关工作若干年的知识积累将极大地有利于其由相关岗位跳槽至集成电路设计的相关岗位。因此,从长期的发展目标考虑,集成电路设计专业本科毕业生从事版图、工艺、测试相关方向的工作可能更有竞争力,也更为符合本科生知识储备及长期发展的需求。这就对集成电路设计的本科教学内容提出了更多的要求。为了能更好地贴近学生就业,在集成电路设计的本科教学内容方面,教师应该更多地侧重于基本的电路版图知识、硅片工艺流程、芯片测试等相关内容的教学。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济和社会信息化的重要基础。大力推进集成电路产业的发展,必须强化集成电路设计在国内的本科教学质量和水平,而国内的集成电路设计本科教学还处在孕育发展的崭新阶段,它是适应现代IC产业发展及本科就业形势的,但目前还存在很多问题亟待解决。本文从已有的教学经验及调研情况做了一些分析,但这远没有涉及集成电路设计专业本科教学的方方面面。不过,可以预测,在国家大力扶持下,在相关教师及学生的共同努力下,我国的集成电路设计本科教学定会逐步走向成熟,更加完善。

参考文献:

[1]王为庆.高职高专《Protel电路设计》教学改革思路探索[J].考试周刊,2011,(23).

集成电路的设计要求范文2

关键词:IP技术 模拟集成电路 流程

中图分类号:TP3 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

1 模拟集成电路设计的意义

当前以信息技术为代表的高新技术突飞猛进。以信息产业发展水平为主要特征的综合国力竞争日趋激烈,集成电路(IC,Integrated circuit)作为当今信息时代的核心技术产品,其在国民经济建设、国防建设以及人类日常生活的重要性已经不言

而喻。

集成电路技术的发展经历了若干发展阶段。20世纪50年代末发展起来的属小规模集成电路(SSI),集成度仅100个元件;60年展的是中规模集成电路(MSI),集成度为1000个元件;70年代又发展了大规模集成电路,集成度大于1000个元件;70年代末进一步发展了超大规模集成电路(LSI),集成度在105个元件;80年代更进一步发展了特大规模集成电路,集成度比VLSI又提高了一个数量级,达到106个元件以上。这些飞跃主要集中在数字领域。

(1)自然界信号的处理:自然界的产生的信号,至少在宏观上是模拟量。高品质麦克风接收乐队声音时输出电压幅值从几微伏变化到几百微伏。视频照相机中的光电池的电流低达每毫秒几个电子。地震仪传感器产生的输出电压的范围从地球微小振动时的几微伏到强烈地震时的几百毫伏。由于所有这些信号都必须在数字领域进行多方面的处理,所以我们看到,每个这样的系统都要包含一个模一数转换器(AD,C)。

(2)数字通信:由于不同系统产生的二进制数据往往要传输很长的距离。一个高速的二进制数据流在通过一个很长的电缆后,信号会衰减和失真,为了改善通信质量,系统可以输入多电平信号,而不是二进制信号。现代通信系统中广泛采用多电平信号,这样,在发射器中需要数一模转换器(DAC)把组合的二进制数据转换为多电平信号,而在接收器中需要使用模一数转换器(ADC)以确定所传输的电平。

(3)磁盘驱动电子学计算机硬盘中的数据采用磁性原理以二进制形式存储。然而,当数据被磁头读取并转换为电信号时,为了进一步的处理,信号需要被放大、滤波和数字化。

(4)无线接收器:射频接收器的天线接收到的信号,其幅度只有几微伏,而中心频率达到几GHz。此外,信号伴随很大的干扰,因此接收器在放大低电平信号时必须具有极小噪声、工作在高频并能抑制大的有害分量。这些都对模拟设计有很大的挑战性。

(5)传感器:机械的、电的和光学的传感器在我们的生活中起着重要的作用。例如,视频照相机装有一个光敏二极管阵列,以将像点转换为电流;超声系统使用声音传感器产生一个与超声波形幅度成一定比例的电压。放大、滤波和A/D转换在这些应用中都是基本的功能。

(6)微处理器和存储器:大量模拟电路设计专家参与了现代的微处理器和存储器的设计。许多涉及到大规模芯片内部或不同芯片之间的数据和时钟的分布和时序的问题要求将高速信号作为模拟波形处理。而且芯片上信号间和电源间互连中的非理想性以及封装寄生参数要求对模拟电路设计有一个完整的理解。半导体存储器广泛使用的高速/读出放大器0也不可避免地要涉及到许多模拟技术。因此人们经常说高速数字电路设计实际上是模拟电路的

设计。

2 模拟集成电路设计流程概念

在集成电路工艺发展和市场需求的推动下,系统芯片SOC和IP技术越来越成为IC业界广泛关注的焦点。随着集成技术的不断发展和集成度的迅速提高,集成电路芯片的设计工作越来越复杂,因而急需在设计方法和设计工具这两方面有一个大的变革,这就是人们经常谈论的设计革命。各种计算机辅助工具及设计方法学的诞生正是为了适应这样的要求。

一方面,面市时间的压力和新的工艺技术的发展允许更高的集成度,使得设计向更高的抽象层次发展,只有这样才能解决设计复杂度越来越高的问题。数字集成电路的发展证明了这一点:它很快的从基于单元的设计发展到基于模块、IP和IP复用的

设计。

另一方面,工艺尺寸的缩短使得设计向相反的方向发展:由于物理效应对电路的影响越来越大,这就要求在设计中考虑更低层次的细节问题。器件数目的增多、信号完整性、电子迁移和功耗分析等问题的出现使得设计日益复杂。

3 模拟集成电路设计流程

3.1 模拟集成电路设计系统环境

集成电路的设计由于必须通过计算机辅助完成整个过程,所以对软件和硬件配置都有较高的要求。

(1)模拟集成电路设计EDA工具种类及其举例

设计资料库―Cadence Design Framework11

电路编辑软件―Text editor/Schematic editor

电路模拟软件―Spectre,HSPICE,Nanosim

版图编辑软件―Cadence virtuoso,Laker

物理验证软件―Diva,Dracula,Calibre,Hercules

(2)系统环境

工作站环境;Unix-Based作业系统;由于EDA软件的运行和数据的保存需要稳定的计算机环境,所以集成电路的设计通常采用Unix-Based的作业系统,如图1所示的工作站系统。现在的集成电路设计都是团队协作完成的,甚至工程师们在不同的地点进行远程协作设计。EDA软件、工作站系统的资源合理配置和数据库的有效管理将是集成电路设计得以完成的重要保障。

3.2 模拟集成电路设计流程概述

根据处理信号类型的不同,集成电路一般可以分为数字电路、模拟电路和数模混合集成电路,它们的设计方法和设计流程是不同的,在这部分和以后的章节中我们将着重讲述模拟集成电路的设计方法和流程。模拟集成电路设计是一种创造性的过程,它通过电路来实现设计目标,与电路分析刚好相反。电路的分析是一个由电路作为起点去发现其特性的过程。电路的综合或者设计则是从一套期望的性能参数开始去寻找一个令人满意的电路,对于一个设计问题,解决方案可能不是唯一的,这样就给予了设计者去创造的机会。

模拟集成电路设计包括若干个阶段,设计模拟集成电路一般的过程。

(l)系统规格定义;(2)电路设计;(3)电路模拟;(4)版图实现;(5)物理验证;(6)参数提取后仿真;(7)可靠性分析;(8)芯片制造;(9)测试。

除了制造阶段外,设计师应对其余各阶段负责。设计流程从一个设计构思开始,明确设计要求和进行综合设计。为了确认设计的正确性,设计师要应用模拟方法评估电路的性能。

这时可能要根据模拟结果对电路作进一步改进,反复进行综合和模拟。一旦电路性能的模拟结果能满足设计要求就进行另一个主要设计工作―电路的几何描述(版图设计)。版图完成并经过物理验证后需要将布局、布线形成的寄生效应考虑进去再次进行计算机模拟。如果模拟结果也满足设计要求就可以进行制造了。

3.3 模拟集成电路设计流程分述

(1)系统规格定义

这个阶段系统工程师把整个系统和其子系统看成是一个个只有输入输出关系的/黑盒子,不仅要对其中每一个进行功能定义,而且还要提出时序、功耗、面积、信噪比等性能参数的范围要求。

(2)电路设计

根据设计要求,首先要选择合适的工艺制程;然后合理的构架系统,例如并行的还是串行的,差分的还是单端的;依照架构来决定元件的组合,例如,电流镜类型还是补偿类型;根据交、直流参数决定晶体管工作偏置点和晶体管大小;依环境估计负载形态和负载值。由于模拟集成电路的复杂性和变化的多样性,目前还没有EDA厂商能够提供完全解决模拟集成电路设计自动化的工具,此环节基本上通过手工计算来完成的。

(3)电路模拟

设计工程师必须确认设计是正确的,为此要基于晶体管模型,借助EDA工具进行电路性能的评估,分析。在这个阶段要依据电路仿真结果来修改晶体管参数;依制程参数的变异来确定电路工作的区间和限制;验证环境因素的变化对电路性能的影响;最后还要通过仿真结果指导下一步的版图实现,例如,版图对称性要求,电源线的宽度。

(4)版图实现

电路的设计及模拟决定电路的组成及相关参数,但并不能直接送往晶圆代工厂进行制作。设计工程师需提供集成电路的物理几何描述称为版图。这个环节就是要把设计的电路转换为图形描述格式。模拟集成电路通常是以全定制方法进行手工的版图设计。在设计过程中需要考虑设计规则、匹配性、噪声、串扰、寄生效应、防门锁等对电路性能和可制造性的影响。虽然现在出现了许多高级的全定制辅助设计方法,仍然无法保证手工设计对版图布局和各种效应的考虑全面性。

(5)物理验证

版图的设计是否满足晶圆代工厂的制造可靠性需求?从电路转换到版图是否引入了新的错误?物理验证阶段将通过设计规则检查(DRC,Design Rule Cheek)和版图网表与电路原理图的比对(VLS,Layout Versus schematic)解决上述的两类验证问题。几何规则检查用于保证版图在工艺上的可实现性。它以给定的设计规则为标准,对最小线宽、最小图形间距、孔尺寸、栅和源漏区的最小交叠面积等工艺限制进行检查。版图网表与电路原理图的比对用来保证版图的设计与其电路设计的匹配。VLS工具从版图中提取包含电气连接属性和尺寸大小的电路网表,然后与原理图得到的网表进行比较,检查两者是否一致。

参考文献

集成电路的设计要求范文3

在非微电子专业如计算机、通信、信号处理、自动化、机械等专业开设集成电路设计技术相关课程,一方面,这些专业的学生有电子电路基础知识,又有自己本专业的知识,可以从本专业的系统角度来理解和设计集成电路芯片,非常适合进行各种应用的集成电路芯片设计阶段的工作,这些专业也是目前芯片设计需求最旺盛的领域;另一方面,对于这些专业学生的应用特点,不宜也不可能开设微电子专业的所有课程,也不宜将集成电路设计阶段的许多技术(如低功耗设计、可测性设计等)开设为单独课程,而是要将相应课程整合,开设一到二门集成电路设计的综合课程,使学生既能够掌握集成电路设计基本技术流程,也能够了解集成电路设计方面更深层的技术和发展趋势。因此,在课程的具体设置上,应该把握以下原则。理论讲授与实践操作并重集成电路设计技术是一门实践性非常强的课程。随着电子信息技术的飞速发展,采用EDA工具进行电路辅助设计,已经成为集成电路芯片主流的设计方法。因此,在理解电路和芯片设计的基本原理和流程的基础上,了解和掌握相关设计工具,是掌握集成电路设计技术的重要环节。技能培训与前瞻理论皆有在课程的内容设置中,既要有使学生掌握集成电路芯片设计能力和技术的讲授和实践,又有对集成电路芯片设计新技术和更高层技术的介绍。这样通过本门课程的学习,一方面,学员掌握了一项实实在在有用的技术;另一方面,学员了解了该项技术的更深和更新的知识,有利于在硕、博士阶段或者在工作岗位上,对集成电路芯片设计技术的继续研究和学习。基础理论和技术流程隔离由于是针对非微电子专业开设的课程,因此在课程讲授中不涉及电路设计的一些原理性知识,如半导体物理及器件、集成电路的工艺原理等,而是将主要精力放在集成电路芯片的设计与实现技术上,这样非微电子专业的学生能够很容易入门,提高其学习兴趣和热情。

2非微电子专业集成电路设计课程实践

根据以上原则,信息工程大学根据具体实际,在计算机、通信、信号处理、密码等相关专业开设集成电路芯片设计技术课程,根据近两年的教学情况来看,取得良好的效果。该课程的主要特点如下。优化的理论授课内容1)集成电路芯片设计概论:介绍IC设计的基本概念、IC设计的关键技术、IC技术的发展和趋势等内容。使学员对IC设计技术有一个大概而全面的了解,了解IC设计技术的发展历程及基本情况,理解IC设计技术的基本概念;了解IC设计发展趋势和新技术,包括软硬件协同设计技术、IC低功耗设计技术、IC可重用设计技术等。2)IC产业链及设计流程:介绍集成电路产业的历史变革、目前形成的“四业分工”,以及数字IC设计流程等内容。使学员了解集成电路产业的变革和分工,了解设计、制造、封装、测试等环节的一些基本情况,了解数字IC的整个设计流程,包括代码编写与仿真、逻辑综合与布局布线、时序验证与物理验证及芯片面积优化、时钟树综合、扫描链插入等内容。3)RTL硬件描述语言基础:主要讲授Verilog硬件描述语言的基本语法、描述方式、设计方法等内容。使学员能够初步掌握使用硬件描述语言进行数字逻辑电路设计的基本语法,了解大型电路芯片的基本设计规则和设计方法,并通过设计实践学习和巩固硬件电路代码编写和调试能力。4)系统集成设计基础:主要讲授更高层次的集成电路芯片如片上系统(SoC)、片上网络(NoC)的基本概念和集成设计方法。使学员初步了解大规模系统级芯片架构设计的基础方法及主要片内嵌入式处理器核。

丰富的实践操作内容1)Verilog代码设计实践:学习通过课下编码、上机调试等方式,初步掌握使用Verilog硬件描述语言进行基本数字逻辑电路设计的能力,并通过给定的IP核或代码模块的集成,掌握大型芯片电路的集成设计能力。2)IC前端设计基础实践:依托Synopsys公司数字集成电路前端设计平台DesignCompiler,使学员通过上机演练,初步掌握使用DesignCompiler进行集成电路前端设计的流程和方法,主要包括RTL综合、时序约束、时序优化、可测性设计等内容。3)IC后端设计基础实践:依托Synopsys公司数字集成电路后端设计平台ICCompiler,使学员通过上机演练,初步掌握使用ICCompiler进行集成电路后端设计的流程和方法,主要包括后端设计准备、版图规划与电源规划、物理综合与全局优化、时钟树综合、布线操作、物理验证与最终优化等内容。灵活的考核评价机制1)IC设计基本知识笔试:通过闭卷考试的方式,考查学员队IC设计的一些基本知识,如基本概念、基本设计流程、简单的代码编写等。2)IC设计上机实践操作:通过上机操作的形式,给定一个具体并相对简单的芯片设计代码,要求学员使用Synopsys公司数字集成电路设计前后端平台,完成整个芯片的前后端设计和验证流程。3)IC设计相关领域报告:通过撰写报告的形式,要求学员查阅IC设计领域的相关技术文献,包括该领域的前沿研究技术、设计流程中相关技术点的深入研究、集成电路设计领域的发展历程和趋势等,撰写相应的专题报告。

3结语

集成电路的设计要求范文4

关键词:同步数字集成电路 设计 时钟偏移

中图分类号:TN431 文献标识码:A 文章编号:1007-9416(2012)07-0229-01

面对当前21世纪科学技术的迅速发展,在同步数字集成电路的设计中,时钟偏移的影响力也越来越受到设计人员的关注。受时钟偏移的影响,导致在长时间的应用中,时钟频率出现的越来越高,也由此增加了时钟偏移在同步数字集成电路中的重要性。一般而言,任何一个系统中若出现过多的流水线级数,则会导致时钟偏移的可能性增加,并由此影响数字集成电路的同步进行。在解决这一问题的过程中,本文从同步数字集成电路、时钟偏移、时钟偏移分析等三个方面出发,对这一问题的完善做如下简要分析:

1、同步数字集成电路

在当前数字集成电路设计中,最常用的方法为同步方法,这一方法除了能最大限度的发挥出集成电路的优势外,还具备高度的可靠性。但在实际应用中,所谓的同步,具体是指该电路系统在实际影响中,其所包含的触发器都能在一个公共时钟的控制下进行运行。结合同步电路的整体运行结构,其内部构造主要由组合电路、时序电路及时钟分配网络等三个方面构成。这三者之间有着相辅相成、缺一不可的关系。集成电路在很大程度上与组成电路之间存在着较大的差别,组合电路能够随时输出稳定状态,而集成电路则不行。此外,在整个集成电路中,时钟偏移的出现,在扰乱整个时序单元的同时,还会使整个集成电路的内部处于混乱状态,甚至在情况严重时会出现瘫痪,这些,都需要设计人员进行考虑,并对其进行完善。换而言之,在整个同步数字集成电路的实际运行中,要想从根本上保证电路的运行秩序,其核心在于保证各个时序单元的时钟信号处于正确状态,只有这样才能得到正确的逻辑值,从而确保整个电路功能的正确发挥。

2、时钟偏移

在整个同步数字集成电路设计中,若使用边沿触发式触发器的同步系统,则必须要求所有的触发器都在同一时刻对时钟出发沿进行接收,并以此来确保集成系统的正常运行。若单纯的从理论角度出发,电路中的触发器所使用的都是同一个时钟信号,但其中一个触发器接收到的时钟信号要比另外一个的时间晚很多。换而言之,即同一信号在发出后,到达的时间不同,这就是所谓的时钟偏移。但在实际应用中,若出现最大传递延时的状况,则能从很大程度上反应出信号出现了变化,且最慢的接收器也会在一定时间内响应这种变化。而正是这种延时状况,在很大程度上确定了电力的最大允许速度,即人们常说的最大传递延时。与之不同的是,最小传递延时在实际应用中,能够在很大程度上表示输入时间的变化,一旦输出时间出现了变化,则其中传递的时间都会受到影响。但与最大传递延时相比,这种延时所造成的影响要小的多,因而在一定程度上更适合应用到时钟偏移的研究中。

3、时钟偏移分析

科研人员在整个同步数字集成电路的设计研究中,受时钟信号的影响,在考虑整个电路时序单元的同时,还需要电路设计的各个环节考虑进去。从现有的集成电路设计方案能够得出,在引起时钟偏移的众多原因中,导线长度及负载的不均衡是引起时钟偏移的主要因素;再加上串扰(即一根信号线的能量串入到另一根信号线中)因素的影响,都会在很大程度上引起时钟偏移的现象。在大型 PCBO或ASICO专用集成电路设计中,通常难以找到可能引起时钟偏移的所有原因。所以,大多数ASIC制造商都要求设计者提供额外的建立和保持时间容限,但在这些应用中,其时间容限往往存在与系统内部的延迟部位,这些部位都会因时间延迟而引起相应的后果。面对当前集成电路研究步伐的加快,时钟偏移的大小与极性都会对整个集成电路的稳定性及功能性造成影响,与此同时,任意两个相对的时序在运行中,其相邻的寄存器都会受自身极性的影响,出现颤抖,这些都会影响时钟的正常运行,并由此导致时钟不确定因素的出现,而这些,都需要科研人员对整个时序进行相应的分析,确保集成电路的顺利运行。

4、结语

综上所述,在当前同步数字集成电路设计的研究中,时钟偏移作为最常见的问题之一,在影响整个集成电路正常运行的同时,还会对系统的性能造成影响。在完善这一问题的过程中,设计人员只有在了解时钟偏移产生的机理上,才能采取相应的措施来缓解这一现象。这就需要设计人员能够结合着我国集成电路发展的基础,不断学习国外集成电路的研究技术,将其运用到我国的实际发展中,在推动集成电路发展的同时,还能为其今后的发展奠定坚实的基础。

参考文献

[1]殷瑞祥,郭镕,陈敏.同步数字集成电路设计中的时钟树分析[J].华南理工大学学报(自然科学版),2011,(06).

集成电路的设计要求范文5

集成电路是当今信息技术产业高速发展的基础和源动力,已经高度渗透与融合到国民经济和社会发展的每个领域,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一[1],美国更将其视为未来20年从根本上改造制造业的四大技术领域之首。我国拥有全球最大、增长最快的集成电路市场,2013年规模达9166亿元,占全球市场份额的50%左右。近年来,国家大力发展集成电路,在上海浦东等地建立了集成电路产业基地,对于集成电路设计、制造、封装、测试等方面的专门技术人才需求巨大。为了适应产业需求,推进我国集成电路发展,许多高校开设了电子科学与技术专业,以培养集成电路方向的专业人才。集成电路版图设计是电路设计与集成电路工艺之间必不可少的环节。据相关统计,在从事集成电路设计工作的电子科学与技术专业的应届毕业生中,由于具有更多的电路知识储备,研究生的从业比例比本科生高出很多。而以集成电路版图为代表包括集成电路测试以及工艺等与集成电路设计相关的工作,相对而言对电路设计知识的要求低很多。因而集成电路版图设计岗位对本科生而言更具竞争力。在版图设计岗位工作若干年知识和经验的积累也将有利于从事集成电路设计工作。因此,版图设计工程师的培养也成为了上海电力学院电子科学与技术专业本科人才培养的重要方向和办学特色。本文根据上海电力学院电子科学与技术专业建设的目标,结合本校人才培养和专业建设目标,就集成电路版图设计理论和实验教学环节进行了探索和实践。

一、优化理论教学方法,丰富教学手段,突出课程特点

集成电路版图作为一门电子科学与技术专业重要的专业课程,教学内容与电子技术(模拟电路和数字电路)、半导体器件、集成电路设计基础等先修课程中的电路理论、器件基础和工艺原理等理论知识紧密联系,同时版图设计具有很强的实践特点。因此,必须从本专业学生的实际特点和整个专业课程布局出发,注重课程与其他课程承前启后,有机融合,摸索出一套实用有效的教学方法。在理论授课过程中从集成电路的设计流程入手,在CMOS集成电路和双极集成电路基本工艺进行概述的基础上,从版图基本单元到电路再到芯片循序渐进地讲授集成电路版图结构、设计原理和方法,做到与上游知识点的融会贯通。

集成电路的规模已发展到片上系统(SOC)阶段,教科书的更新速度远远落后于集成电路技术的发展速度。集成电路工艺线宽达到了纳米量级,对于集成电路版图设计在当前工艺条件下出现的新问题和新规则,通过查阅最新的文献资料,向学生介绍版图设计前沿技术与发展趋势,开拓学生视野,提升学习热情。在课堂教学中尽量减少冗长的公式和繁复的理论推导,将理论讲解和工程实践相结合,通过工程案例使学生了解版图设计是科学、技术和经验的有机结合。比如,在有关天线效应的教学过程中针对一款采用中芯国际(SMIC)0.18um 1p6m工艺的雷达信号处理SOC 芯片,结合跳线法和反偏二极管的天线效应消除方法,详细阐述版图设计中完全修正天线规则违例的关键步骤,极大地激发了学生的学习兴趣,收到了较好的教学效果。

集成电路版图起着承接电路设计和芯片实现的重要作用。通过版图设计,可以将立体的电路转化为二维的平面几何图形,再通过工艺加工转化为基于半导体硅材料的立体结构[2]。集成电路版图设计是集成电路流程中的重要环节,与集成电路工艺密切相关。为了让学生获得直观、准确和清楚的认识,制作了形象生动、图文并茂的多媒体教学课件,将集成电路典型的设计流程、双极和CMOS集成电路工艺流程、芯片内部结构、版图的层次等内容以图片、Flash动画、视频等形式进行展示。

版图包含了集成电路尺寸、各层拓扑定义等器件相关的物理信息数据[3]。掩膜上的图形决定着芯片上器件或连接物理层的尺寸。因此版图上的几何图形尺寸与芯片上物理层的尺寸直接相关。而集成电路制造厂家根据版图数据来制造掩膜,对于同种工艺各个foundry厂商所提供的版图设计规则各不相同[4]。教学实践中注意将先进的典型芯片版图设计实例引入课堂,例如举出台湾积体电路制造公司(TSMC)的45nm CMOS工艺的数模转换器的芯片版图实例,让学生从当今业界实际制造芯片的角度学习和掌握版图设计的规则,同时切实感受到模拟版图和数字版图设计的艺术。

二、利用业界主流EDA工具,构建基于完整版图设计流程的实验体系

集成电路版图设计实验采用了Cadence公司的EDA工具进行版图设计。Cadence的EDA产品涵盖了电子设计的整个流程,包括系统级设计、功能验证、集成电路(IC)综合及布局布线、物理验证、PCB设计和硬件仿真建模模拟、混合信号及射频IC设计、全定制IC设计等。全球知名半导体与电子系统公司如AMD、NEC、三星、飞利浦均将Cadence软件作为其全球设计的标准。将业界主流的EDA设计软件引入实验教学环节,有利于学生毕业后很快适应岗位,尽快进入角色。

专业实验室配备了多台高性能Sun服务器、工作站以及60台供学生实验用的PC机。服务器中安装的Cadence 工具主要包括:Verilog HDL的仿真工具Verilog-X、电路图设计工具Composer、电路模拟工具Analog Artist、版图设计工具Virtuoso Layout Editing、版图验证工具Dracula 和Diva、自动布局布线工具Preview和Silicon Ensemble。

Cadence软件是按照库(Library)、单元(Cell)、和视图(View)的层次实现对文件的管理。库、单元和视图三者之间的关系为库文件是一组单元的集合,包含着各个单元的不同视图。库文件包括技术库和设计库两种,设计库是针对用户设立,不同的用户可以有不同的设计库。而技术库是针对工艺设立,不同特征尺寸的工艺、不同的芯片制造商的技术库不同。为了让学生在掌握主流EDA工具使用的同时对版图设计流程有准确、深入的理解,安排针对无锡上华公司0.6um两层多晶硅两层金属(Double Poly Double Metal)混合信号CMOS工艺的一系列实验让学生掌握包括从电路图的建立、版图建立与编辑、电学规则检查(ERC),设计规则检查(DRC)、到电路图-版图一致性检查(LVS)的完整的版图设计流程[5]。通过完整的基于设计流程的版图实验使学生能较好地掌握电路设计工具Composer、版图设计工具Virtuoso Layout Editor以及版图验证工具Dracula和Diva的使用,同时对版图设计的关键步骤形成清晰的认识。

以下以CMOS与非门为例,介绍基于一个完整的数字版图设计流程的教学实例。

在CMOS与非门的版图设计中,首先要求学生建立设计库和技术库,在技术库中加载CSMC 0.6um的工艺的技术文件,将设计库与技术库进行关联。然后在设计库中用Composer中建立相应的电路原理图(schematic),进行ERC检查。再根据电路原理图用Virtuoso Layout Editor工具绘制对应的版图(layout)。版图绘制步骤依次为MOS晶体管的有源区、多晶硅栅极、MOS管源区和漏区的接触孔、P+注入、N阱、N阱接触、N+注入、衬底接触、金属连线、电源线、地线、输入及输出。基本的版图绘制完成之后,将输入、输出端口以及电源线和地线的名称标注于版图的适当位置处,再在Dracula工具中利用几何设计规则文件进行DRC验证。然后利用GDS版图数据与电路图网表进行版图与原理图一致性检查(LVS),修改其中的错误并按最小面积优化版图,最后版图全部通过检查,设计完成。图1和图2分别给出了CMOS与非门的原理图和版图。

集成电路的设计要求范文6

【关键词】集成电路 理论教学 改革探索

【基金项目】湖南省自然科学基金项目(14JJ6040);湖南工程学院博士启动基金。

【中图分类号】G642.3 【文献标识码】A 【文章编号】2095-3089(2015)08-0255-01

随着科学技术的不断进步,电子产品向着智能化、小型化和低功耗发展。集成电路技术的不断进步,推动着计算机等电子产品的不断更新换代,同时也推动着整个信息产业的发展[1]。因此,对集成电路相关人才的需求也日益增加。目前国内不仅仅985、211等重点院校开设了集成电路相关课程,一些普通本科院校也开设了相关课程。课程的教学内容由单纯的器件物理转变为包含模拟集成电路、数字集成电路、集成电路工艺、集成电路封装与测试等[2]。随着本科毕业生就业压力的不断增加,培养应用型、创新型以及可发展型的本科人才显得日益重要。然而,从目前我国各普通院校对集成电路的课程设置来看,存在着重传统轻前沿、不因校施教、不因材施教等问题,进而导致学生对集成电路敬而远之,退避三舍,学习积极性不高,继而导致学生的可发展性不好,不能适应企业的要求。

本文结合湖南工程学院电气信息学院电子科学与技术专业的实际,详细阐述了本校当前“集成电路原理与应用”课程理论教学中存在的问题,介绍了该课程的教学改革措施,旨在提高本校及各兄弟院校电子科学与技术专业学生的专业兴趣,培养学生的创新意识。

1.“集成电路原理与应用”课程理论教学存在的主要问题

1.1理论性强,课时较少

对于集成电路来说,在讲解之前,学生应该已经学习了以下课程,如:“固体物理”、“半导体物理”、“晶体管原理”等。但是,由于这些课程的理论性较强,公式较多,要求学生的数学功底要好。这对于数学不是很好的学生来说,就直接导致了其学习兴趣降低。由于目前嵌入式就业前景比较好,在我们学校,电子科学与技术专业的学生更喜欢嵌入式方面的相关课程。而集成电路相关企业更喜欢研究生或者实验条件更好的985、211高校的毕业生,使得我校集成电路方向的本科毕业生找到相关的较好工作比较困难。因此,目前我校电子科学与技术专业的发展方向定位为嵌入式,这就导致一些跟集成电路相关的课程,如“微电子工艺”、“晶体管原理”、“半导体物理”等课程都取消掉了,而仅仅保留了“模拟电子技术”和“数字电子技术”这两门基础课程。这对于集成电路课程的讲授更增加了难度。“集成电路原理与应用”课程只有56课时,理论课46课时,实验课10课时。只讲授教材上的内容,没有基础知识的积累,就像空中架房,没有根基。在教材的基础上额外再讲授基础知识的话,课时又远远不够。这就导致老师讲不透,学生听不懂,效果很不好。

1.2重传统知识,轻科技前沿

利用经典案例来进行课程教学是夯实集成电路基础的有效手段。但是对于集成电路来说,由于其更新换代的速度非常快,故在进行教学时,除了采用经典案例来夯实基础外,还需紧扣产业的发展前沿。只有这样才能保证人才培养不过时,学校培养的学生与社会需求不脱节。但目前在授课内容上还只是注重传统知识的讲授,对于集成电路的发展动态和科技前沿则很少涉及。

1.3不因校施教,因材施教

教材作为教师教和学生学的主要凭借,是教师搞好教书育人的具体依据,是学生获得知识的重要工具。然而,我校目前“集成电路原理与应用”课程采用的教材还没有选定。如:2012年采用叶以正、来逢昌编写,清华大学出版社出版的《集成电路设计》;2013年采用毕查德・拉扎维编写,西安交通大学出版社出版的《模拟CMOS集成电路设计》;2014年采用余宁梅、杨媛、潘银松编著,科学出版社出版的《半导体集成电路》。教材一直不固定的原因是还没有找到适合我校电子科学与技术专业学生实际情况的教材,这就导致教师不能因校施教、因材施教。

2.“集成电路原理与应用”课程理论教学改革

2.1选优选新课程内容,夯实基础

由于我校电子科学与技术专业的学生,没有开设“半导体物理”、“晶体管原理”、“微电子工艺”等相关基础课程,因此理想的、适用于我校学生实际的教材应该包括半导体器件原理、模拟集成电路设计、双极型数字集成电路设计、CMOS数字集成电路设计、集成电路的设计方法、集成电路的制作工艺、集成电路的版图设计等内容,如表1所示。因此,在教学实践中,本着“基础、够用”的原则,采取选优选新的思路,尽量选择适合我校专业实际的教材。目前,使用笔者编写的适合于我校学生实际的理论教学讲义,理顺了理论教学,实现了因校施教,因材施教。

表1 “集成电路原理与应用”课程教学内容

2.2提取科技前沿作为教学内容,激发专业兴趣

为了提高学生的专业兴趣,让他们了解“集成电路原理与应用”课程的价值所在,在授课的过程中穿插介绍集成电路设计的前沿动态。如:从IEEE国际固体电路会议的论文集中提取模块、电路、仿真、工艺等最新的内容,并将这些内容按照门类进行分类和总结,穿插至传统的理论知识讲授中,让学生及时了解当前集成电路设计的核心问题。这样不但可以激发学生的好奇心和学习兴趣,还可以提高学生的创新能力。

2.3开展双语教学互动,提高综合能力

目前,我国的集成电路产业相对于国外来说,还存在着相当的差距。要开展双语教学的原因有三:一是集成电路课程的一些基本专业术语都是由英文翻译过来的;二是集成电路的研究前沿都是以英文发表在期刊上的;三是世界上主流的EDA软件供应商都集中在欧美国家,软件的操作语言与使用说明书都是英文的。因此,集成电路课程对学生的英语能力要求很高,在课堂上适当开展双语教学互动,无论是对于学生继续深造,还是就业都是非常必要的。

3.结语

集成电路自二十世纪五十年代被提出以来,经历了小规模、中规模、大规模、超大规模、甚大规模,目前已经进入到了片上系统阶段。虽然集成电路的发展日新月异,但目前集成电路相关人才的学校培养与社会需求存在很大的差距。因此,对集成电路相关课程的教学改革刻不容缓。基于此,本文从“集成电路原理与应用”课程理论教学出发,详细阐述了“集成电路原理与应用”课程教学所存在的主要问题,并有针对性的提出了该课程教学内容和教学方法的改革措施,这对培养应用型、创新型的集成电路相关专业的本科毕业生具有积极的指导意义。

参考文献: