能源及动力工程范例6篇

前言:中文期刊网精心挑选了能源及动力工程范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

能源及动力工程

能源及动力工程范文1

关键词:实践教学体系;卓越工程师;多层次

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2016)44-0075-03

一、前言

近二十年来,世界发达国家的工程教育逐渐融合了技术取向和科学取向,一些大学提出了“回归工程实践”的改革理念,不断改革各自的工程教育,开始重视工程教育的实践性和创新性,以适应现代大工程的要求。迄今为止,美国实行工程教育的高校已有900多所,约占全美高校的1/3;以德国和法国为代表的欧洲也有一大批知名高校实施了工程教育模式。由于我国工程教育所处的历史阶段与西方发达国家完全不同,面临的国家使命与西方发达国家完全不同,因此我国的工程教育只能创新,走建设中国模式工程教育之路[1-3]。

为了贯彻落实《国家中长期教育改革和发展规划纲要(2010―2020年)》精神,树立全面发展和多样化的人才观念,树立主动服务国家战略要求、主动服务行业企业需求的观念,2010年教育部牵头实施了“卓越工程师教育培养计划”。该计划旨在改革和创新工程教育人才培养模式,创立高校与行业企业联合培养人才的新机制,着力提高学生服务国家和人民的社会责任感、勇于探索的创新精神和善于解决问题的实践能力。2013年,山东省开始实施“省级卓越工程师教育培养计划试点专业”建设,我校能源动力工程专业成功入选。

“卓越工程师教育”的核心与关键是培养学生的工程实践能力和创新能力。实践能力的培养主要依赖于实践教学体系,构架优良的实践教学体系是保障高质量卓越工程师人才培养的关键,而实践教学体系是否科学、合理、切合实际,将直接影响大学生工程实践与创新能力的高低。现有的实践教学体系普遍存在实践内容与工程应用结合程度不足、各实践环节相互关联较差、职业思想意识教育欠缺、合作培养企业缺乏积极性等共性问题,无法适应卓越工程师人才培养的要求[4,5],因此必须构建以培养学生工程实践能力、工程设计能力与工程创新能力为核心的能源与动力工程实践教学新体系,才能培养出具有“宽厚、复合、开放、创新”特征的高层次、高水平、高素质的应用型高级专门人才。

二、现有培养体系存在的问题

1.缺乏“实践教育是培养体系的关键组成部分”的基本理念。一方面,部分学校职能部门或教师将课程设计、毕业设计、生产实习、毕业实习作为课堂教学之外的“辅”工作,且缺乏具备丰富工程经验的双师型导师的参与,缺乏实践教学环节的总体设计,缺乏综合性、设计性实验的指导与设计。另一方面,学生对实践环节的重视程度不够,参与过程中缺乏主动性和积极性。

2.校外实践教学基地缺乏建设。校外实践教学基地本应为学生在实习、毕业设计、社会实践等环节创造工程实践环境,是工程实践教学必不可少的前提条件。校外实践教学基地一般为具有一定专业背景和影响力的大中型企业,由于缺乏相应的支持政策和经济效益刺激,企业在安排学生实习时缺乏积极性,甚至借故推脱,不愿意学生去实习,即使能够到达现场,也很难保证实习质量。

3.实践教学师资队伍缺乏建设。能源与动力工程专业是工程实践能力要求较强的专业,该专业在对卓越工程师培养的环节中对实践能力的要求更甚。实践教学应与理论教学、科学研究工作同步发展,这就要求高校教师能够既熟悉理论知识又要有丰富的工程实践、科研经历。然而,高校教师虽然具有较高的学历,但具有丰富工程实践经验的教师越来越少,同时教师数量不足,师生比大幅提高,教师负担较重,无法适应卓越工程师教育培养的需求。

三、实践教学体系构建与支持资源建设

1.构建多层次实践教学体系。

以培养学生具备优秀的工程实践能力和创新能力为目标,构建了“一个核心、两个基础、四个层次”的卓越工程师培养多层次实践教学体系,体系结构如图1所示。

(1)一个核心是以工程实践能力和创新能力为培养核心。

(2)两个基础为实践平台和指导团队,是支撑培养体系正常运转的软件和硬件条件,实践平台包括在合作培养企业建立的校外实践教学基地和校内各种实验、实训实验室。

(3)四个层次是指整个体系由基础实践层、专业实践层、创新实践层和企业综合实践层组成,各层次采用逐层递进的方式完成。①基础实践层,包括基本素质模块和实验模块,基本素质模块主要由思想政治理论实践课、入学教育及军训、公益劳动、学科导论、创新创业通识教育课等组成,实验模块由学校通识教育课、专业基础课、专业核心课、专业方向选修课的课内实验环节组成。一方面培养学生树立“工程实践能力和创新能力是生存根本”的基本理念和具备良好的职业道德、职业精神、吃苦耐劳精神等;另一方面培养学生掌握基本专业实验操作能力和动手能力,加深对专业理论的认识和理解,锻炼分析问题和解决问题的基本能力。②专业实践层,包括工程训练模块和综合实习模块。工程训练模块包括工程训练、机械设计课程设计和机械制图测绘等实践课程,该模块主要依托于大学生实训中心开展,主要培养学生对技术工具及加工方法的掌握和图纸的基本绘制能力。综合实习模块包括驾驶实习、认识实习、内燃机构造拆装实习和内燃机制造工艺生产实习,主要为了强化学生对专业综合知识和工程技能的认识,培养学生的专业实践能力和解决实际问题的能力。③创新实践层,包括社会实践模块和科技创新模块。社会实践模块依托社会实践环节开展,主要为了使学生加深对本专业和相关行业的了解,确认适合的职业定位,为向职场过渡做准备,可增强其就业竞争优势,等等。科技创新模块依托专业设计与制作实践课、大学生科技创新项目和大学生科技创新比赛开展,主要为了发挥学生的创新思维和创新精神,使学生的理论知识得到巩固和升华,突出学生个性发展,提高学生的创新能力。④企业综合实践层,包括企业学习模块和工程研发模块。企业学习模块依托企业学习实践环节开展,包括标准化学习、质量管理体系学习、观摩生产线、参与工艺制定及设计等内容,主要培养学生对技术规范的认知与实践,让学生现场体会设计及生产的主要工艺流程及所依据的技术规范及企业文化,等等。工程研发模块依托毕业实践与毕业设计和毕业鉴定实践环节开展,企业根据研发部门需要和学生自身的特点,依托现有研发项目,为学生设计毕业设计题目和内容,使学生在参与工程研发的过程中完成毕业设计环节,从而使学生真正融入到企业中,通过真实项目的操作达到提升工程设计创新能力的目的。

2.制定了实践体系课程标准和质量评价标准。在充分吸收企业对工程人才要求的前提下,针对多层次实践教学体系制定了各个组成环节详尽的课程标准(标准中突出企业的主导和引领地位)。为了保障人才培养质量,各课程制定相应的评价标准,建立以素质、实践、学校导师、企业导师多位一体的质量评价体系。评价标准以学生工程能力评价为主体,评价标准包括详尽的考核评价方案和细则,依据不同环节的性质差异确定针对性的评价指标,并进行量化,以求评价的科学性、公正性和可操作性。

3.加强了指导团队建设。指导团队的建设着重于提高工程教育师资队伍的工程实践能力和设计创造能力,能够有效地将工程实践经验转化为优质的教学资源。

(1)提高了学校专业教师的工程实践创新能力。一方面,加强了学校与企业间的研究和开发合作。一是使已经有企业工作经历的教师具备更加丰富的企业工作经验和工程实践经历;二是使已经具备一定工程实践经历的教师具有企业工程工作的经历,采取了与企业进行工程项目合作、共同完成技术开发、技术服务等方式,教师可直接参与企业日常生产和企业的技术升级、改造。另一方面,对教师队伍中工程实践经历不足或是没有工程经历的教师,采取了集中训练和长期培训相结合的方法。一是通过与企业的技术项目合作、专题训练等方式派遣到相关企业进行每年至少累积3~6月的工程实践,熟悉生产过程、工程技术和管理;二是在校内聘请具有丰富工程实践经历的教师,实行“一对一”的互相帮、带的长期培训方式。

(2)聘用了企业导师。在卓越工程师实践培养过程中,企业导师具有举足轻重的地位,实施了“企业导师核心化”的指导思想。一是聘请企业专家为学校兼职教师参与全部校内实践环节,在培养中采用“企业导师、校内实践中心专业指导教师和专业教师”复合式团队指导模式,采用案例教学、现场教学、专题讲座、工程实践技术指导等方式开展工作,使工程元素提前融入校内教学,使学生进入企业前具备一定的工程设计知识和基本能力。二是在企业综合实践层的培养中采用“企业导师为主、专业教师辅助”的双导师模式,企业导师根据企业的实际情况为学生的生产学习、毕业设计选题及其实施等环节提供指导或现场咨询,负责对学生进行工程师专业培养的全面基本训练。

4.强化实践平台建设。实践平台是保障实践教学顺利开展的基础,本专业在校内实践平台和企业实践平台两方面开展了系统建设。在校内实践平台建设方面,依托学院车辆工程与交通国家级虚拟仿真实验教学中心、能源与动力工程省级高等学校骨干学科教学实验中心、山东理工大学工程实训中心、学院大学生创新创业实验室等,加强了仪器设备投入、实验实训规范化管理、综合性创新性实验项目等建设,划拨了专门经费资助大学生创新创业活动,加强了创新创业活动的管理和指导。在企业实践平台建设方面,以企业研发中心为依托,建立了“卓越工程师培养”专用实践教育中心,设置了专门人员进行管理和运作,建设了实训、实习的专用场所与设备,聘请了企业高级职称以上的技术人员和高级管理人员担任企业导师,充分利用了企业工程设计资源和导师队伍,使企业综合实践层的教学任务落到了实处。

四、多层次实践教学体系优势与特色

1.构建的“一个核心、两个基础、四个层次”实践教学体系,可有效提升学生的工程素养、工程实践能力、工程设计能力和工程创新能力。在本体系中,各校内实践层次中均高度融合了工程实践内容,既可以使学生充分理解专业知识,还可以提前掌握丰富的工程应用知识,实现了理论知识和实践应用的有机结合,为企业综合实践层的快速深入开展奠定了良好基础。在企业实践层次中,充分发挥企业的主导作用,以项目引导培养,学生通过深入参与项目研发,可充分提升其工程素质和创新能力。

2.与企业紧密结合建立“卓越工程师培养”专用实践教育中心,形成了校企合作培养的双赢模式。以企业研发中心为依托,建立了“卓越工程师培养”专用实践教育中心,充分发挥企业在工程人才培养中的核心作用和主导地位。在实践过程中,使学生真正成为了企业的一份子,既可以使实践教学完全融入工程研发过程中,保障了学生工程设计创新能力的培养,又可以使学生成为企业研发的鲜活有生力量,促进了企业整体研发能力提升和人才队伍建设,学生取得的有效成果与企业共享,互惠互利,达到学校和企业双赢的效果。

3.建立了多位一体的卓越工程师培养质量评价体系,有效保障了培养质量。质量评价体系以学生工程能力评价为主体,注重对学生的工程能力、组织能力、团队合作能力、人际交往能力、国际视野等方面的综合评价,是提升培养质量的有效保障。

五、结论

在“卓越工程师教育”核心培养理念下,构建了适用于能源与动力工程专业的“一个核心、两个基础、四个层次”的多层次实践教学体系,建立了相应的课程标准体系和培养质量评价体系,同时强化了指导团队和实践平台的建设,可实现学生的高质量培养。

参考文献:

[1]杨弋涛,朱丽慧.“金属材料工程专业”卓越工程师培养课程体系的构建与实践[J].教育教学论坛,2016,(16):22-24.

[2]李云春,李敬民,韩利红,等.基于“卓越计划”的工程造价专业实践教学体系构建[J].中国教育学刊,2015,(S1):49-50.

[3]周永,夏玉英.基于卓越工程师培养的土木工程专业实践教学改革研究[J].教育教学论坛,2016,(17):77-78.

能源及动力工程范文2

关键词:大学科技园 孵化功能 创新型城市 系统动力学

系统分析

(一)分析方法

系统动力学(System Dynamics,简称SD)是由麻省理工学院的Forrester 教授于1956年创立的一门研究系统动态复杂性的科学。它以反馈控制理论为基础,以计算机仿真技术为手段,主要用于研究复杂系统的结构、功能与动态行为之间的关系。本文以Vensim软件为分析工具,利用图示化编程建立模型;运用结构分析工具研究模型系统结构,数据分析工具研究变量行为模式。

(二)系统边界

作为一种新型的社会经济组织,企业孵化器是经济实践活动发展到一定阶段的产物,其内涵也随着经济发展变得越来越丰富。企业孵化器是在一定的环境和条件下,为中小高科技企业提供专业服务和咨询等相关管理的服务体系,目的在于使中小高科技企业迅速成长,加速科技成果转化,推动技术创新,这一组织体制通过创造就业机会,实现吸引人才和造就人才的价值增值,是一种促进区域经济快速健康发展的新型社会组织。

自提出建设创新型国家以来,城市创新理论问题的研究逐渐兴起,关于创新型城市内涵的研究也有较多探讨。创新型城市是现代城市竞争力发展到一定阶段的结果,它需要依靠一定的科技、产业、经济、体制、人力、文化等核心要素的推动,形成具有一定自主性的价值创新体系,从而促进整个城市经济增长方式的结构性调整,实现城市健康快速发展。

(三)变量选取

企业孵化器与创新型城市建设在理论上存在密切的互动发展关系。一方面,企业孵化器是创新型城市建设的推动力。它可以增强城市的自主创新能力,使较高的创新投入资金获得较高的创新产出,实现城市科技、人才等资源的最优化配置。另一方面,创新型城市建设是企业孵化器的拉力器。企业孵化器的良性运营离不开它所依赖的宏观环境,健全的服务管理体系、良好的创新文化氛围是企业孵化器持续健康发展的保障。该系统的变量因素主要涉及两个方面:

一是创新型城市建设的主要变量因素。包括:政府宏观调控力度、市场机制、相关扶持政策、资本市场的完善程度、技术进步占经济增长的比重、创新人才比重、创新产业比例、法律体系的健全程度、中介机构数。二是企业孵化器的主要变量因素。包括:外部市场需求、员工的素质与能力、企业孵化环境的整合能力、高新技术成果转化率、融资比率、技术创新成本、企业孵化成功率、产学研一体化程度。

(四)模型结构

通过对企业孵化器与创新型城市建设互动关系的简要分析,两者互动发展的系统动力学模型如图1所示。构成系统动力学模型的基本元素包含“流”与“元素”。“流”分为实体流和信息流;“元素”包括状态变量、速率和辅助变量。本文主要运用Vensim软件的结构分析工具,来举例分析企业孵化器与创新型城市建设互动发展模型的结构。

在创新型城市的评价指标中,技术进步在经济增长中的占比是一个重要评价指标。在系统流图中,技术进步占经济增长比重的循环有38个之多,也体现了这一点。其中一个链条较多的包含了10个变量:技术进步占经济增长的比重、市场机制、政府宏观调控力度、法律体系的健全程度、外部市场需求、产学研一体化程度、企业孵化环境的整合能力、融资比率、高新技术成果转化率、企业孵化成功率、技术进步占经济增长的比重。

负反馈中的一个重要变量为技术创新成本,其中循环链条最多的为9个,包括技术创新成本、融资比率、高新技术成果转化率、企业孵化成功率、技术进步占经济增长的比重、市场机制、政府宏观调控力度、相关扶持政策、中介机构数、技术创新成本,在循环中变量的作用不断放大,催生负反馈的自组织行为。

运行机理

机理原是物理学概念,本意指机械内部组织结构之间的互动关系及功能原理,后被其他学科借用。用系统动力学的方法研究创新型城市与大学科技园的互动机理,必须深入以下关键点:原始动力性,即两者互动的动力源,决定着互动发展的状态及其活力;组织互动性,即城市与园区的组织结构,决定着二者相互作用与有机联系的深度与广度;功能导向性,即互动功能的性质与状态,有利于认识两者互动产生、形成与发展的内在动因。根据图1建立的企业孵化器与创新型城市建设互动发展的系统动力学模型,以及模型系统结构变量之间的因果追踪,本文试图从以下主体角度来简要概括企业孵化器与创新型城市建设互动发展的运行机理。

第一,以政府为主体的政策扶持为主导的运行模式主要有三种:一是政府―企业―市场,三者之间的互动运行是一种动态的、螺旋式上升的发展过程。二是政府―高校和科研机构―企业,突出充实本地区人力资本的重大意义。三是政府―高校和科研机构―企业―市场,强调产学研结合是企业孵化器发展的关键。

第二,市场―企业。以市场需求为导向的市场机制、金融活动、法律体系与以孵化企业为主体的技术创新之间的互动运行,突出市场机制、金融活动和法律体系对企业的技术创新都有着重要影响。

在图1所示的系统因果关系图中,有两种动力源,即市场机制与政府作用;两种动力源的不同作用路径也形成了大学科技园孵化功能与创新型城市互动的两种实现模式,即市场驱动型、政府推动型。

互动发展的实现路径

(一)构建互动生态系统是基础

一是立足角色,找准生态位。借鉴斯坦福大学与硅谷在大学科技园区与创新型城市互动发展的成功典型经验,大学科技园区要充实孵化器的角色,孕育创业创新型发展模式。

二是构建系统的内部转化机制。在大学科技园区与创新型城市双向互动中,在关切相关利益的基础上,创新内部转化机制。如斯坦福成立了第一家大学的技术授权办公室,专门负责技术研发与成果转化,后来为其他高校纷纷效仿。

三是注重经验积累。成功的互动关系来自于不断的经验积累,如Gordon Moore(2000)将硅谷经验概括如下:一是科学家成为管理者;二是把科学商业化、产业化;三是善于识别、创造和捉住机会;四是强调专业化。我国大学科技园起步有10余年历史(1999年启动, 2001年首批认定),创新型城市建设时间更短(2006年启动,2008年深圳成为首个国家创新型城市试点),相对于发达国家60余年的历史,还有待经验的逐步积累。

四是创造良好的互动生态环境。以研发及转化为核心内容,组织各种关键资源,营造宏观与微观环境,引导相关利益方的积极参与,包括大学之间的互动、政府的介入,特别是对研究的大力扶持,以及各种专门事务机构的完善。相对于市场驱动模式,我国情境下的互动发展还需要破解区域历史的影响、制度体制的羁绊,如逐步改变资源配置的纯行政方式,变条块管理模式为社区管理模式,解决好属地高校、驻地高校与地方的关系。

(二)优化系统行为是关键

一是优化系统参数。在复杂系统中同时有多个参数需要同时优化,如在图1中,优化相关扶持政策、提高融资比率、创新融资方式、变资金流的校内循环为校地双向甚至多向循环,达到相互影响与相互塑造的更深层面。

二是优化系统结构。复杂系统中包括多个状态变量,如何从中选择决策所依据的信息源以及如何根据所选定的信息源来决策是系统动力学模型中重要的寻优问题。如图1中的企业孵化成功率、技术进步占经济增长的比重、创新人才比重等变量在大学科技园孵化功能与创新型城市互动中成为决策依据的重要信息源。

三是优化系统边界。系统边界及边界条件变化引起系统资源的竞争和再分配。而且引起边界发生变化的条件是历史客观的,涉及的边界优化也有多个视角。在大学科技园与创新型城市互动中,大学学科群与城市产业群的匹配广度与深度,直接影响着互动程度;在人才培养方面,大学提供的各类人才的产业适用性由于时滞的存在需要提前预研,这在行业型高校与资源型城市转型中更加突出;再者,还要突破地域与体制的固囿,在突围中实现突破。

(三)建设学习型组织是重要的实施策略

大学科技园与创新型城市的互动关键在于学习型组织与学习型城市主体的五项修炼,彼得・圣吉认为系统思考的修炼是建立学习型组织最重要的修炼,同时系统思考也需要有自我超越、改善心智模式、建立共同愿景、团队学习四项修炼来发挥其潜力。

第一,以系统思考统领与强化互动发展。以系统思考为统领,在大学科技园孵化功能与创新型城市建设的互动关系中坚持系统观点与理念,探究互动的发生条件、影响因素,发掘互动的深度、广度与可持续性,以推进整体融合获取大于甚至倍于各部分加总的效力。

第二,在开放中实现自我超越。通过大学科技园实现人才培养、科学研究、服务社会、文化传承与创新的大学功能协同,并在实现机制上实现超越。创新型城市建设在于升华城市精神,实现资源整合,创新驱动城市发展。实现二者互动,要在对客观现实正确判断的基础上,积极寻求契合点、成长点,并持续推进。

第三,转变组织心智模式。在大学科技园孵化功能与创新型城市互动中,树立双赢的世界观与方法论,破解固有的行为方式。跳出体制藩篱,在创新型城市建设与服务型政府改革中,提升城市治理能力;在官产学研对接中,在服务地方经济发展中,提高大学的社会认可度,拓展发展空间。

第四,建立共同愿景。转变大学科技园与创新型城市在体制上游离、运作上并行的现状,建立基于超越与创新的共同愿景,并提升实现共同愿景的能力。一是挖掘持久动力,把握现代大学价值与城市时代精神的契合点;二是持续接力,不因管理层的变动而大幅度起伏;三是根植于民众,为社会各阶层高度认同。

第五,团队协作与学习。运用系统动力学工具对大学科技园孵化功能与创新型城市互动进行系统分析,本身就是对创建学习型组织的一个推演。在现实中,促进团队协作与学习,要营造集群氛围,通过中介机构与组织创新,提高面对面交流的频度。以广视野、宽角度、多领域的团队推进大学科技园孵化功能与创新型城市创建的互动走向深入。

参考文献:

1.张波等.系统动力学简介及其相关软件综述[J].环境与可持续发展,2010(2)

2.欧庭高.企业孵化器运行系统论[M].湖南大学出版社,2010

3.蒋年云等.创新型城市:广州的实践与思考[M].中国社会科学出版社,2007

4.王柏轩,刘小元.企业孵化器的运营与发展[M].中国地质大学出版社,2006

5.王步芳.企业群居之谜:集群经济学研究[M].上海三联书店,2007

6.阎光才.斯坦福的硅谷与硅谷中的斯坦福[J].教育发展研究,2003(9)

能源及动力工程范文3

[关键词]热能动力工程的概述?;热能动力工程在锅炉和能源的发展

中图分类号:TK12 文献标识码:A 文章编号:1009-914X(2017)02-0004-01

1.对热能动力工程的概述

热能动力工程所研究的主要是热能与动力之间的能量转化,由于它的复杂性和高难度,所以所涉及到的科学领域主要包括:热能工程、工程物理学、动力机械以及流体机械工程等多个方面的相关内容。

到目前为止,热能动力工程的发展得到了飞速的发展,它成为电厂热能工程、工业企业以及供热企业的主要应用部分。对于我国的热能动力工程而言,需要加强对其自动化的研究,更需要培养出与锅炉热能转换和空调制冷方面的专业性人才。在现在的实际发展中,热能动力工程已经成为热能源的主要应用工程,因其专业性很强,热能动力工程不仅是热能源的主力,同时还成为了现代动力工程发展的基石。热能动力工程对环境的保护也起到了一定的作用,与此同时也推动了我国的国民经济,所以需要相关部门加强对热能动力工程的关注和重视。

2.热能动力工程中锅炉的发展现状

2.1 我国热能动力工程中锅炉的发展状况

自1872年英国第一台锅炉的产生,工业锅炉行业已经有了数百年的发展,经历了锅壳式锅炉、火管锅炉、直水管锅炉、煤粉锅炉、循环流化床锅炉等演化历程。我国是世界上最大的生产和使用工业锅炉的国家,全国拥有一千多家锅炉生产企业,由于受资源结构的影响,煤炭为工业锅炉的主要燃料,还有少量的燃气和电热锅炉。在过去60多年里,我国工业锅炉技术得到了长足的进步,尤其是燃油燃气锅炉技术已经到达了国际先进水平,但是还存在着热效率不高、脱硫技术不成熟、辅助以及自动化控制技术落后、炉排铸件质量不高等问题。工业锅炉主要应用于电力生产、制药、化工、钢铁等行业,是国民经济发展的主要动力来源。伴随着热能动力工程学和锅炉技术的发展,现代化的锅炉设备一般采用步进式炉和推钢式炉,并充分利用计算机自动化控制系统,实现了锅炉的持续稳定加热,不断提高能源利用率。

2.2 我国锅炉技术发展过程中存在的主要问题

我国锅炉技术存在的主要问题是热效率不高、粉尘气体污染严重,产品技术、管理、工艺流程落后,科技研发力度不足,制造标准不规范等。其中,锅炉结构设计起着关键性的制约作用。锅炉内部结构主要存在炉排铸造质量不高、风机运行不稳定、辅助设备不完整等问题。国内一般使用普通铸件,大部分零件采用火焰切割冷加工技术,造成炉排间隙较大,容易造成漏煤和配风不均问题。其次是由于企业为了追逐高额利润,减少锅炉建设投资,经常使锅炉在高负荷下运行,这就有可能造成风机长时间工作而烧坏。在国内锅炉安装过程中,一般使用和燃烧器不配套的辅机设备,缺乏专业性匹配设备的研究开发,严重影响整机运转、节能以及环保性能。在设计制造过程中,只重视元件承压指标,忽视对燃烧装置的研究。

3.热能动力工程锅炉技术的发展

3.1 提高锅炉自动化控制水平,保证锅炉温度的稳定性

科学合理的控制锅炉燃烧温度需要做好能量的转化幅度,锅炉企业应该改变传统的人工填料方式,使用步进式自动化控制技术,通^计算机技术采集、分析、计算、输出合理的结果,把锅炉内温度经过传感器传送到控制系统,检测温度差异性,实现对锅炉燃烧的有效控制。由于锅炉内部结构的复杂性,温度检测影响因素较多,因此要充分地把热能动力工程技术应用到锅炉改造过程中,通过测定从不同方向流入叶片的燃料速度,建立数据模拟二维模型,最后利用数据库软件求出结果,弄清锅炉风机叶片分离和攻角的关系。

3.2 提高燃料利用率,加强节能环保研究力度

燃料利用率的提高首先要做好链条炉排燃烧设备结构改进工作,充分发挥节能减排的作用,尤其是要解决好调节不顺、密封不严、布风不合理、漏煤过多等问题。不断加强对给煤装置、自动化系统控制、炉拱及燃烧系统、锅炉辅机节能改造工作,保证水处理装置的科学合理利用,从整体上实现系统节能。对于使用天然气做为燃料的锅炉可以采取冷凝式锅炉,同时为了避免冷凝结露引发锅炉内壁腐蚀损坏,一般要把锅炉温度设定在比较高的水平。国家要强化节能减排监督管理体系,不断提高锅炉技术研究和操作人员的技能素质,养成节能意识,把节能工作提高到战略位置。

4.热力动力工程在能源发展方面

4.1 能源方面存在的问题

当前,世界各主要经济体的经济复苏迹象逐渐明朗,随着世界经济的复苏和持续发展,能源供应紧张的局面将会加剧,世界各国将会更加重视本国的能源安全问题,在采取行之有效的能源战略同时,加快各种能源利用新技术和新工艺。而能源动力工业作为我国国民经济和国防建设的支柱性产业,在推动国家经济发展方面做出了突出的贡献。所以,必须提高能源利用效率,缓解能源紧张的局面。

而热电厂的风机,是一种可以产生能源的机械装置,通过轴旋转产生的气流,可产生大量的动能,在发电厂、工业生产和锅炉生产过程中具有广泛的应用。对于一些发电机组来说,随着电力需求的增加,电网的运行将会更加的安全和可靠,所以,这对于风机的应用也就提出了更高的要求。

4.2 能源方面的发展前景

人类社会赖以发展的重要基础便是能源,能源在确保人类社会的可持续发展方面有着巨大的作用。在世界能源形势不容乐观的形势下,如果更加合理高效的利用能源,成为世界性的研究课题。当前,我国的能源利用主要以煤炭和电能为主,也就是在能源利用结构中,煤炭是核心,我国是以煤炭为主的能源利用结构。这种能源利用结构,一方面会对环境产生比较大的影响,造成生态环境和大气环境的严重破坏,一方面会消耗大量的能源,过度消耗煤炭资源,使我国的能源供应日益紧张。

在这样的形势下,在我国能源供应日益紧张的形势下,我国能源的主要发展方向是“新能源、核能、智能电网、常规能源、节能减排”。而热能与动力工程符合我国能源发展的大体方向,可为我国能源结构的合理优化做贡献。

参考文献

能源及动力工程范文4

关键词:热能;动力;锅炉

中图分类号: R151 文献标识码: A

一、热能动力工程

热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。

二、我国的热能动力工程发展情况

随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。

三、热能动力工程在锅炉风机方面需要解决的问题

风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。

四、热能动力工程中锅炉及工业炉的发展

1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。

五、热能动力工程炉内燃烧控制技术运用

锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:

1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。

2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。

六、仿真锅炉风机翼型叶片

锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。

七、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

结束语

热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。

参考文献

能源及动力工程范文5

[关键词]热能动力工程;锅炉技术;能源;发展

中图分类号:TK221 文献标识码:A 文章编号:1009-914X(2014)35-0085-01

随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。

一、 热能动力工程概念及在能源方面的现状

(一)、热能动力工程概念

热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。?

(二)、热能工程技术的现状

随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。

能源问题在当今社会举足轻重,热能与动力工程专业在国民经济中的地位可想而知。

能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。

风机是一种装有多个叶片的通过轴旋转推动气流的机械。叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动。风机广泛应用于发电厂、锅炉和工业炉窑的通风和引风,矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却等。尤其是在电站,随着机组向大容量、高转速、高效率、自动化方向的发展,电站也对风机的安全可靠性提出了越来越高的要求,锅炉风机在运行中常发生烧坏电机、窜轴、叶轮飞车、轴承损坏等事故,严重危害设备、人身安全,也给电厂造成巨大的经济损失。此外,风机一直是电站的耗电大户,电站配备的送风机、引风机和冷烟风机是锅炉的重要辅机,降低其耗电率是节能的一项重要措施。

二、热能动力工程技术运用

(一)炉内燃烧控制技术

其燃烧控制是步进炉的核心技术之一,手动控制已被自动控制方式所取代。目前大规格钢锭推钢式加热炉可选用的燃烧自控方式通常有:

(1)空燃比例连续控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等组成。工作原理是由热电偶或气体分析装置检测出来的数据传送到PLC与其设定值进行比较,偏差值按比例积分、微分运算输出4-20 mA的电信号分别对空气/燃气比例阀和空气/燃气电动蝶阀的开度进行调节,从而达到控制空气/燃气比例和炉内温度之目的。

(2)双交叉限幅控制系统,该系统主要由烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等组成。工作原理是:通过一个温度传感器热电偶把测量的温度变成一个电信号,该信号表示测量点的实际温度,该测量点的温度期望给定值是由预存贮在上位机中的工艺曲线自动给定的。根据这两个温度值偏差的大小,PLC自动校准燃气/空气流量阀的开度。该阀通过电动执行机构定位。空气/燃料比控制,借助于孔板和差压变送器来测量空气流量,燃气的流量是借助于一台安装在燃气支管上的质量流量计来测量,使精确的温度控制得以实现。

(二)、软件仿真锅炉风机翼型叶片

由于锅炉叶轮机械内部流场非常复杂,并带有强烈的非定常特征,进行细致的实验测量非常困难,目前尚没有完善的流体力学理论解释诸如流动分离、失速和喘振等流动现象,这就迫切需要可靠详细的流动实验和数值模拟工作来了解机械内部流动本质。将利用软件对锅炉风机翼型叶片进行二维的数值模拟,研究空气以不同的方向流入翼型叶片入口所造成的流动分离。根据数值模拟的一般步骤:创建二维模型,进行网格划分,设定边界条件和区域,输出网格,再利用求解器求解,对不同空气来流攻角角下的流动进行二维数值模拟。在得到模拟结果后,对不同攻角下模拟所得到的速度矢量图进行比较分析,得出锅炉风机翼型边界层分离和攻角的关系。

三、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

四、结束语

热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。

参考文献

[1] 安连锁.泵与风机[M].北京:中国电力出版社,2001.

[2] 袁春杭.锅炉引风机事故的预防[J].中国锅炉压力容器安全,2005,14(6):38-39.

[3] 蔡兆林,吴克启,颖达.离心风机损失的计算[J].工程热物理学报,1993,14(1):53-56.

[4] 王松岭.流体力学[M].北京:中国电力出版社

[5]安连锁.泵与风机[M] .北京:中国电力出版社,2001.

[6]袁春杭.锅炉引风机事故的预防[J].中国锅炉压力容器安全,2005,14(6):38-3 9 .

能源及动力工程范文6

关键词:热能动力工程;锅炉;能源;发展

中图分类号:TE08文献标识码: A

引言

科学技术的进步,社会生产力的不断发展,能源缺乏成为了生产生活亟待解决的问题,热能作为长期广泛被应用的能源,在众多的企业发展,工程作业中发挥着重要的作用,尤其是在动力工程中。众多的企业锅炉工厂、药厂等都对热能和动力工程有着不时之需。并且应用范围逐渐扩大,应用领域也不断延伸,发展前景不可估量。

1、热能动力工程

热能动力工程,简而言之就是热能与动力工程的有机结合体,它的研究范围广泛,涉及学科众多,与很多相关专业出现了交叉现象,专业研究的方向主要被定位于二者之间的相互转换问题,能源的来源及利用途径问题。

2、我国的热能动力工程发展情况

随着社会的发展,我国国民经济得到很大的发展,人们也是越来越关注人才和教育方面,为了能够更好的适应经济前进局势中对于人才的需要,我国也会加大了对这方面的力度。在1993年我国教委对各个高校下发了相关政策,要细致划分专业,主要是9个学科,包括热能项目、热能项目以及动力设备、热力发动设备、制冷和低温项目、流体设备以及流体项目、水利水电动力项目、项目热物理、能源项目以及冷冻冷藏。到了1998年教育机构又重新下发了更改计划,将这些专业合并到一起,也就是现在的热能和动力项目,并且在全国的各个高校成立这个专业。大量的运用能源在很大程度上推动了热能以及动力项目的发展,它将各类设备原理,动力学理论学识,教育各类优异的设备转化措施进行了全面的综合,正在运用到社会的建设中,促进了社会的发展。能源动力已经广泛的运用到各个行业中,推动了我国科学技术的发展。

3、热力动力工程存在问题的深入研究

热力动力应用于锅炉是一项新的研究,虽然可以很好的解决资源环境问题,但在一定程度上它也有一些显而易见的毛病。其中最为不容忽视的便是风机问题,风机是一种机械,它通过装有多个叶片轴旋转来推动气流,叶片将施加于轴上旋转的机械能,转变为推动气体流动的压力,从而实现气体的流动,是一种广泛应用于生活中的设备。举例说明,比如说发电厂,锅炉,矿井,隧道,车辆,船舶和建筑物的通风等,都离不开它或多或少的帮助,其中,作为重要的是应用于电站,它发挥着不可磨灭的作用。如今,机组向大容量,高转速,高效率,自动化方向飞速发展,是得风机的安全可靠性受到巨大压力,一旦发生巨大事故,如烧坏电机,窜轴,叶轮飞车,轴承损坏等,不仅对当地电厂造成巨大的财产损失,更是威胁着当地工作人员的生命安全。由此可见,风机利弊兼互,但技术的要求使得风机必须使用,所以,待发现新技术之前,还需的是不断完善风机技术,引进先进技术,使其向智能化方向发展,从而达到真正的节能高效。

4、热能动力工程在能源与锅炉方面的应用

4.1、热能动力工程在动力能源方面的应用与发展

在我国的工业发展中,能源动力是不可缺少的重要生产力,并且在很多工业领域中,都离不开热动能这一生产资源。如何提高能源动力的应用效率,减少热动能的无功损耗,成为了当前工业发展中最需要解决的问题。只有实现热能的高效利用,才能起到节能环保效果,才能促进工业的可持续发展。而在热能动力工程技术中,其所应用在最主要方面就是风机。

风机是一种应用非常广泛的机械设备,在多个个工程领域都是不可或缺的重要生产设备。如发电厂、车辆、船舶等。风机的主要运行原理是利用多个叶片进行旋转来产生机械能,并应用在工程机械的动力能源中,从而推动工程机械运作。随着工程机械的性能要求越来越高,对风机的运行效率也提出了更高的要求。提高风机性能同时还对于节省动力工程能源也有着重要意义,这是热能动力工程的研究方向之一。

另外,工业锅炉中的风机叶片旋转的内部机械流场的不定性非常强,所以,做详细的试验去研究锅炉风机是非常困难的,因为会涉及到很对的细节,比较繁琐,就目前的情况对其的力学解释和分析方法也不是非常的完善,尤其是对于流动分离等现象的研究在锅炉研究中时非常重要的。进行研究的时候还需要建立比较可靠的实验模型和数值模拟,从而能够仔细的分析机械流场内部。为了能够准确的研究锅炉风机叶片旋转的空气流动情况,一般情况下都是利用软件建立二维数值模拟实验的方式。对于这个软件数值模拟实验首先是要建立一个二维模型,然后根据提供的相关的数值进行网格的划分,设定边界区域,然后是求解输出的网格,主要是利用这些相关条件进行,也可以使用求解器。最后将求解出的结果在建立一个二维数值模拟,然后模拟求解空气留角下的流动,然后分析比较得出的结果与速度矢量图,从而能够得出锅炉风机叶片分离和攻角之间的关系。

4.2、热能专业中工业炉的发展

1)、空燃比例连续控制系统

这种系统的组成涉及很多,主要是烧嘴、燃烧控制器、空气/燃气比例阀、空气/燃气电动蝶阀、空气/燃气流量计、热电偶、气体分析装置、PLC等。它的主要工作原理是首先将热电偶或气体分析装置检测出数据,然后将这些数据传送到PLC,然后将这个值和设定的值进行比较,偏差值就按照比例积分、微分运算输出4-20mA的电信号,然后调节空气/燃气比例阀和空气/燃气电动蝶阀的开度,从而能够很好的控制空气/燃气比例和炉内温度。

2)、双交叉限幅控制系统

这种系统的组成涉及的方面也很多,主要包括烧嘴、燃烧控制器、空气/燃气流量阀、空气/燃气流量计、热电偶等。它的主要工作原理是通过一个温度传感器热电偶,将测量的温度转变成电信号,这个信号主要是代表测量点的实际温度,而对于这个点的温度期望值主要是通过预存贮在上位机中的工艺曲线进行自动设定的。这两个温度之间存在的温差刚好由PLC对燃气/空气流量阀的开度进行自动校准。对于该空气流量阀测量的方式主要是通过电动执行机构定位、控制空气/燃料比,以及借助外界的仪器进行的(主要是孔板和差压变送器),测量燃气的流量主要是通过一台安装在燃气支管上的质量流量计进行的,从而能够很好的控制温度。

5、热能动力工程的未来发展方向

5.1、往热能动力和控制工程发展

热能动力和控制工程的发展需要掌握热能和动力之间的相关知识内容,与此同时对锅炉的原理、汽轮机的原理、风机的原理等方面也是需要了解和掌握的,与此相关的动力机械设计、热力发电厂、燃烧污染与环境、传热传质数值计算以及流体机械相关的领域知识也需要了解和掌握的。

5.2、往热力发动机和汽车工程发展

对于热力发动机和汽车工程的发展需要掌握热力发动机的原理与车辆工程两个主要方面的知识。在此基础上,还可以往制冷低温工程和流体机械方面做进一步的发展,因而需要进一步的掌握制冷、流体力学以及机械方面的相关知识。

5.3、往水利水电动力工程发展

水利水电动力工程需要掌握水轮机、水轮机的安装检修和运行、水轮机调节、水利机组辅助设备、现代控制理论、电机学、发电厂电气设备、发电厂自动化、继电保护原理等众多领域的知识,与此同时还需要了解水电厂的计算机监控与现代测试技术的相关知识。

结束语

随着科学技术的不断发展和进步,使得热能动力工程也有了进一步的发展,同时也促进了我国热力发动机行业的发展以及一些新兴行业的发展。另外,热能动力工程在能源和锅炉中的应用,也因为经济的发展和技术的进步得到了广泛的应用。随着热能动力工程对日常生活的重要作用,希望相关的研究者更加的努力,继续在能源和锅炉的应用中发掘新的功能,进一步的满足人类的需求。

参考文献

[1]王强.浅谈热力动力工程在锅炉和能源方面的发展状况[J].科技致富向导,2014,18:87.