前言:中文期刊网精心挑选了生物燃料的作用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
生物燃料的作用范文1
DOI:10.16640/ki.37-1222/t.2017.11.243
随着人口的不断增加,能源短缺的问题也日益暴露,寻找新的绿色能源已经迫在眉睫。生物燃料电池则是应用微生物或者酶作为催化剂,把燃料中的化学能转化成电能,这种生物燃料电池原料易得,拥有非常高的能量转化率,对环境产生的危害更小,可以广泛的应用在很多行业之中。
1 生物燃料电池优势
生物燃料电池和其他电池有着很大的不同,它主要是通过生物原料经过催化剂的催化从而生成氢离子,生成的氢离子又与空气中的氧气或者其他氧气中的氧相结合从而生成电流[1]。以葡萄糖分子为例,完全氧化葡萄糖分子的过程中能够让24个电子生成电流,通过光合作用产生的葡萄糖在氧化过程中碳元素不会发生变化,更有利于对环境的保护。而且生物燃料电池的原料非常易得,可以是有机物、无机物还可以利用污水。相对于其他类型的电池,生物燃料电池在操作的时候只需要在一般的温度和压力的环境下操作就可以,因为生物电池的催化剂一般采用的是酶或微生物,所以不需要创造额外的环境和条件。此外,生物燃料电池还能够通过和人体内的葡萄糖、氧气相结合,帮助被移植在人体中的人造的器官产生电能。
2 工作原理与分类
2.1 微生物电池
微生物电池是将燃料放置在阳极室内,微生物不断的发生代谢和氧化反应,在外电路的连接下电子达到阴极,而质子则是利用交换膜到达阴极,已经发生了氧化的物质受到催化剂的影响在阴极室发生氧化还原反应[2]。在最理想的操作状态之下,每包含 0. 4 g 湿微生物细胞(相当于 0.1g干细胞) 的电池能够输出电压0. 4 V输出电流0. 6 mA。因为电子转移形式的不同微生物燃料电池又被分为两种,其中燃料在电极上直接发生氧化反应的是直接微生物电池,燃料在其他地方发生氧化反应并通过一些特定的途径将电子传递在电极上的为间接微生物电池。
2.2 酶生物电池
微生物电池虽然在工作期间比较稳定,催化燃料的程度比较彻底,但是将化学能转化为电能的转化率可能会因为在传输过程中受到生物膜的影响而大大降低。但是酶生物电池就能够克服这一问题。因为酶催化剂拥有非常高的浓度,在电能传输的过程中能够不收到生物壁垒的影响,所以能够输出更多的电流和电压。它的工作原理为,葡萄糖被氧化辅酶进行催化从而变化为葡萄糖酸,利用介质将产生的电子进行转移,并由氢离子利用隔膜进行扩散。在阴极中获得电子的过氧化氢经过催化剂催化和与氢离子进行反应,从而产成水。
3 研究现状与应用
现在对生物燃料电池的研究还处于不断探索的阶段,生物燃料电池还存在着电能转化和输出效率低,使用的时间较短等问题[3]。有研究表明,科学家利用从菠菜叶叶绿体中分解出来的多种蛋白质放入特殊导电装置进行电池的制作,但是这样的电池使用寿命仅有21天,将光能转化成电能的转化率仅仅只有12%,但是电能的转化了率可能会随着科技的不断发展,提高为 20% ,到那时这种生物燃料电池的能量转换率就将超过太阳能硅电池,所以这项研究也吸引了很多的关注,相关的研究人员也在一直积极的探索者这种电池对环境变化的适应情况。可以预见生物燃料电池在很多领域都能得到应用。
3.1 交通运输供能方式更换
现阶段的交通运输采用的能源主要是利用一些化石燃料燃烧所产生的能量,最主要的就是应用石油。但是化石燃料的燃烧会对环境产生极大的危害而且不便于携带储存量较小。但是应用生物燃料电池,就能够应用其他材料作为能源,有效的缓解化石燃料燃烧造成的不好影响,减轻相关的环境问题研究证实1L 浓缩的碳水化合物溶液可以驱动一辆车行驶 25~30km。
3.2 可植入的能量来源
生物燃料电池能够在生物的身体内进行工作,而且产生电能所需要的氧和燃料能够直接从生物体内获得,应用在医学中,能够为移植在人体内的医学装置提供能量。比如说,葡萄糖生物传感器就可以应用生物燃料电池,其中葡萄糖氧化酶为阳极,一个细胞色素 C 的最为阴极,为装置提供电能。
3.3 污水处理
废水也可以作为生物燃料电池原料的来源,产生电能。这样一来不仅能够获得能源,同时也能将废水中的有机化合物提出出去,对污水起到净化的作用。有研究表明150000 人口的城镇的废水如果效率为100%的话甚至能够产生2.3Mwof 的能量。
4 前景展望
生物燃料电池原料来源广泛,操作方便的同时对环境的危害也很小,是一N新型的优质可再生的绿色能源。虽然现阶段生物燃料电池还存在着不够稳定,电能转化率低等问题,但是随着科技的不断进步,生物燃料电池将被不断的发展和完善,在今后的智能电网发电体系中发挥出重要的作用。同时还需要加强对材料稳定性、增加生物催化效率以及电子转移等相关知识的研究,配合生物燃料电池的探究和开发。
5 结束语
生物燃料电池是一种新的能源,虽然对生物燃料电池的研究还处于初级阶段,但是可以预见生物燃料电池未来会在污水处理、智能电网建设、交通、医疗等方面发挥出巨大的作用,对我们的生活和环境产生巨大的影响。
参考文献:
[1]葛小萍,刘财钢,石琰Z.微生物燃料电池在污水处理方面的应用研究进展[J].科学技术与工程,2010,10(14):3419-3424.
生物燃料的作用范文2
关键词:环保;生物燃料电池;污水同步处理发电
收稿日期:2010-07-28
作者简介:陈丁丁(1982―),男,江西武宁人,助理工程师,主要从事环境工程方面研究。
中图分类号:Tk01
文献标识码:C
文章编号:1674-9944(2010)08-0207-03
1 引言
环保生物燃料电池并非刚刚出现的一项技术。1910年英国植物学家马克•比特首次发现了细菌的培养液能够产生电流,于是他用铂作电极放进大肠杆菌和普通酵母菌培养液里,成功制造出了世界第一个微生物燃料电池。1984年美国制造了一种能在外太空使用的微生物燃料电池,使用的燃料为宇航员的尿液和活细菌,不过放电率极低。传统的燃料电池是利用氢气发电,但从来没有尝试使用富含有机物的污水来发电。环保生物燃料电池是一种特殊的燃料电池,以自然界的微生物或酶为催化剂,直接将燃料中的化学能转化为电能。
2 环保生物燃料电池的工作原理
环保生物燃料电池(Microbial Fuel Cell MFC)是以微生物作为催化剂将碳水化合物中的化学能转化为电能的装置,由阳极区和阴极区组成,中间用质子交换膜(Proton Exchange Membrane,PEM)分开,如图1所示。环保生物燃料电池的工作过程分为几个步骤:在阳极区,微生物利用电极材料作为电子受体将有机底物氧化,这个过程要伴随电子和质子(NADH)的释放;释放的电子在微生物作用下通过电子传递介质转移到电极上;电子通过导线转移到阴极区,同时,由NADH释放出来的质子透过质子交换膜也到达阴极区;在阴极区,电子、质子和氧气反应生成水,随着阳极有机物的不断氧化和阴极反应的持续进行,在外电路获得持续的电流[1],其反应式如下:
阳极反应:
C.6H.12O.6 + 6H.2O 6CO.2 + 24H++24e-,
E.0=0.1014V
阴极反应:
6O.2+24H++24e-12H.2O,
E.0=1.123V
图1 生物燃料电池结构示意图
3 环保生物燃料电池的利用领域
3.1 废水同步的处理与发电
3.1.1 单一槽设计
电池装置和氢燃料电池有点相似,是一个圆柱形的树脂玻璃密闭槽。微生物燃料电池是单一反应槽,里面装有8条阳极石墨棒,围绕着一个阴极棒,密闭槽中间以质子交换膜间隔。密闭槽外部以铜线组成的闭合电路,用作电子流通的路径。当污水被注入反应槽后,细菌酶将污水中的有机物分解,在此过程中释放出电子和质子。其中电子流向阳极,而质子则通过槽内的质子交换膜流向阴极,并在那里与空气中的氧以及电子结合生成干净的水。从而完成对污水的处理。与此同时,反应槽内正负极之间的电子交换产生了电压,使该设备能够给外部电路供电。单一反应槽是微生物燃料电池设计的创新。大部分燃料电池的设计以两反应槽为主,分别为阳极槽和阴极槽,在阳极槽中以厌氧方式维持微生物生长;阴极槽中则需维持在有氧环境下,使电子与氧结合并且与质子形成水分子。而单一反应槽以质子交换膜连接两槽,其功能不仅可分开两槽水溶液,还可以避免氧气扩散至另一槽内。两槽式的电解槽,需以外力方式提供溶氧至阴极,而单一槽微生物燃料电池可以以连续注水方式将空气带入阴极,从而减少通氧设备的花费。在发电量方面,在实验室里,该设备能产生72W的电流,可以驱动一个小风扇。虽然目前产生的电流不多,但该设备改进的空间很大。从提交发明报告到现在,已经把该燃料电池的发电能力提高到了350W,这一数值最终能达到500~1000W。技术成熟后,可以批量生产的微生物燃料电池的发电能力将获得很大提高,可以产生500kw的稳定电流,大约是300户家庭的用电量。
3.1.2 不间断上流微生物燃料电池
华盛顿大学的研究人员日前称,他们把利用废水发电的微生物燃料电池技术又向前推进了一步。去年他们已研究出了这一利用废水发电的新技术,现在,他们又把新技术的发电量比去年提高了10倍。如果利用这一技术能使发电量再提高10倍的话,食品和农业加工厂就有望能安装这种设备用于发电,并能为附近居民提供清洁和可再生电能[2]。华盛顿大学环境工程学项目成员、化学工程助教拉思安晋南特博士在“环境科学技术”网站上介绍了这种不间断上流微生物燃料电池(UMFC)的设计以及工作原理。同过去那些让微生物在含有营养液的封闭系统中工作的实验不同的是,安晋南特为微生物提供的是源源不断的废水。由于食品和农业加工中会不停排放废水。因此,安晋南特的技术更容易在这些工厂得到应用。利用废水发电的微生物燃料电池技术,是在阳极室内安装价格低廉的U型质子交换膜,将阳极和阴极分开。废水中含有的有机物,可为细菌群提供丰富食物,使其得以生存和繁衍。这些细菌在电池阳极电极上形成生物膜,同时在食用废水中有机物时向阳极释放电子,电子通过与阳极和阴极相连的铜导线移动到阴极,废水中的质子则穿过质子交换膜回到阴极,同电子和氧原子结合生成水。而电子在导线中的运动过程就形成了人们所需要的电流。继2005年首次完成了废水发电的微生物燃料电池设计后,安晋南特新推出的U型设计增加了质子交换膜的面积、缩短了两极距离,因此降低了因阻力引起的能耗,使电池发电能力提高了10倍,每立方米溶液的发电量从3W/m3增加到了29W/m3。如果微生物燃料电池系统能够维持20W/m3的电力输出,就可以点亮小功率的灯泡。
3.1.3 利用太阳能和光和细菌的环保生物燃料电池
Noguera与土木与环境工程教授Marc Anderson、助理教授Trina McMahon,细菌学教授Timothy Donohue,研究员Isabel Tejedor Anderson,以及研究生Yun Kyung Cho和Rodolfo Perez合作发展出一种能在污水处理厂应用的大规模微生物燃料电池系统。目前,研究人员们把微生物封装在密闭的无氧测试管中,测试管的形状被做成类似电路的回路。当处理废物时,先把有机废水通入管中,作为副产品电子向阳极移动,然后通过回路流到阴极。另外一种副产品质子通过一块离子交换膜流到阴极。在阴极中,电子和质子与氧气发生反应形成水。一块微生物燃料电池理论上最大可以产生1.2V电压。但是可以像电池一样把足够多的燃料电池并联和串联起来产生足够高的电压来作为一种有实际应用的电源。目前该研究小组正在利用他们在材料科学、细菌学和环境工程方面的优势来最优化微生物燃料电池的结构。
3.2 新型的环保燃料电池
英国牛津大学科研人员研制出一种新的环保生物电池,这种环保生物电池装有一种生化酶,可以吸收空气中的氢和氧来发电。这种生化酶是从一种需要氢气来维持新陈代谢的细菌中分离出来的。这种酶的独特之处在于可以与那些如一氧化碳和硫化氢等常规的电池催化剂并存。这种酶是“生长型”的,因此能够以价格低廉、可再生等特点取代传统价格昂贵的铂基催化剂。这种电池消耗的是大气中的氧气和氢气。所使用的酶是从自然界中利用氢气进行新陈代谢的细菌中分离出来的。这种酶的特性是具有高选择性,能够忍受对传统的燃料电池催化剂具有毒害作用的气体,例如一氧化碳和硫化氢。研究人员表示,由于这种酶能够生长,所以对比于其他的氢燃料电池所使用昂贵的铂催化剂而言,这是一种廉价的、可更新的环保燃料电池。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
3.3 生物医学的应用
环保生物燃料电池还可以造出另一种重要产品,根据电信号立即测出病人血糖水平的仪器。对于向包括起博器和胰岛素生成器等在内的可植入电控医学设备供电来说,环保生物燃料电池非常有用。这些设备需要无限的电源,这是因为更换这些设备的电池可能需要外科手术。BFC从活的生物体内提取燃料(例如从血流中提取葡萄糖)来产生电流。只要生物个体是活的,这种燃料电池就可以持续起作用[5]。
2010年8月 绿 色 科 技
第8期
4 结语
尽管环保生物燃料电池经数十年研究仍距实用遥远,燃料电池研究从20世纪90年代初开始又成为热门领域,现在仍在升温阶段。几种燃料电池已经处在商业化的前夜。另外,近20年来生物技术的巨大发展,为环保生物燃料电池研究提供了巨大的物质、知识和技术储备。所以,环保生物燃料电池有望在不远的将来取得重要进展。随着生物和化学学科交叉研究的深入,特别是依托生物传感器和生物电化学的研究进展,以及对修饰电极、纳米科学等研究的层层深入,环保生物燃料电池研究必然会得到更快的发展。环保生物燃料电池作为一种绿色环保的新能源,在生物医学等各个领域的应用的理想必然会实现。
参考文献:
[1] 韩保祥,毕可万.采用葡萄糖氧化酶的生物燃料电池的研究[J].生物工程学报,1992,8(2):203~206.
[2] 贾鸿飞,谢 阳,王宇新.生物燃料电池[J].电池,2000,30(2):86~89.
[3] 连 静,祝学远.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005(22):162~163.
[4] 尤世界,赵庆良.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,9(9):17~18.
[5] 宝 ,吴霞琴.生物燃料电池的研究进展[J].电化学,2004,2(1):1~8.
The Research and Foreground of Biofuel Cell
Chen Dingding
(Wuning Environmental Protection Bareau, Wuning JiangXi 332300,China)
Abstract:Biofuel cell is a device converting chemical energy into electrical energy directly with the biocatalysts, which has the advantages of abundant fuel resource, mild reaction condition and goodbiology consistence. And, Biofuel cell are capable of converting chemical energy presented in organic wastewater into electricity energy with accomplishments of wastewater treatments simultaneously , which possibly captures considerable benefits in terms of environments and economics.
生物燃料的作用范文3
关键词:生物质,成型燃料,热水锅炉,节能研究,经济评价
概述
能源是推动经济增长的基本动力[1],能源节约则是促进能源发展的重点。生物质能源具有来源广泛,成本低廉、用能清洁等特点,特别适合于拥有丰富生物质资源的中国,通过发展生物质能源打造节能新亮点前景可观。
我国从20世纪80年代引进螺旋推进式秸秆成型机以后[2],生物质压缩成型技术已经发展得比较成熟,但是,相应的专用生物质成型燃料燃烧设备的发展相对滞后。为燃用生物质成型燃料,出现盲目将原有的燃煤燃烧设备改为生物质成型燃料燃烧设备的现象,致使锅炉燃烧效率及热效率较低,污染物排放超标。燃烧设备成为生物质能源发展链的薄弱环节。因此,根据生物质成型燃料燃烧特性设计合理的生物质成型燃料燃烧专用设备,对能源节约有着重要的意义。
生物质成型燃料热水锅炉作为燃用生物质燃料的主要设备之一,直接燃烧固体生物质颗粒燃料,主要用于家庭、宾馆、酒店、学校、医院等场所的热水、洗浴和取暖。由于燃料为生物质燃料且结构合理,此类锅炉基本达到无烟化完全燃烧的效果,排放达到环保要求,具有较好的经济、社会和环境效益。
1、生物质成型燃料
1.1生物质成型燃料的元素特性
生物质成型燃料是指通过生物质压缩成型技术将秸秆、稻壳、锯末、木屑等农作物废弃物加工成具有一定形状、密度较大的固体成型燃料。
生物质原料经挤压成型后,密度可达1.1~1.4吨/立方米,能量密度与中质煤相当,而且便于运输和贮存。在压缩过程中以物理变化为主,其元素组成及微观结构与原生物质基本相同。各种生物质成型燃料中碳含量集中在35%~42%,氢含量较低,为3.82% ~5%,而氮含量不到1%,硫的含量不到0.2%,因此,造成的污染程度极低。生物质成型燃料的挥发分均在60% ~70%,因此在设计燃烧设备时应重点考虑挥发分的问题[3]。
1.2生物质成型燃料的燃烧特性
生物质成型燃料经高压形成后,密度远大于原生物质,燃烧相对稳定。虽然点火温度有所升高,点火性能变差,但比煤的点火性能好。由于生物质成型燃料是经过高压而形成的块状燃料,其结构与组织特征就决定了挥发分的逸出速度与传热速度都大大降低,但与煤相比显得更为容易[4,5]。因此,生物质成型燃料的挥发分特性指数大于煤的,其燃烧特性指数较煤的大。燃烧速度适中,能够使挥发分放出的热量及时传递给受热面,使排烟热损失降低;同时挥发分燃烧所需的氧与外界扩散的氧很好的匹配,燃烧波浪较小,减少了固体与排烟热损失[6]。
2、生物质成型燃料热水炉
2.1 生物质成型燃料热水炉的结构
目前我国拥有多种型号生物质成型燃料热水锅炉,按燃料品种可分为木质颗粒锅炉和秸秆颗粒锅炉,按应用场合可分为家用型和商用型。下吸式固定双层炉排热水炉是应用较广的一种结构形式,其充分考虑生物质燃料燃烧特性,由炉门、炉排、炉膛、受热面、风室、降尘室、炉墙、排汽管、烟道、烟囱等主要部分组成,结构布置如图1所示[7]。
1.水冷炉排 2.上炉门 3.出灰口 4.炉膛 5.风室 6.高温气流出口 7.降尘室 8.后置锅筒
9.排污口10.进水口 11.引风机 12.烟囱13.排气管14.对流受热面15.出水口
图1下吸式固定双层炉排热水炉示意图
2.2 生物质成型燃料热水炉的工作过程
一定粒径生物质成型燃料经上炉门加在炉排上,根据生物质容易着火的燃料特性,片刻就会燃烧起来,在引风机引导下进行下吸式燃烧;上炉排漏下的燃料屑和灰渣到下炉膛底部继续燃烧并燃烬,然后经出灰口排出;燃料在上炉排上燃烧后形成的烟气和部分可燃气体透过燃料层、灰渣层进入下炉膛继续燃烧,并与下炉排上燃料产生的烟气一起经出高温气流出口流向后面的降尘室和对流受热面,在充分热交换后进入烟囱排向外界。
3、节能原理
由有关燃烧理论可知,保持燃料充分燃烧的必要条件为保持足够的炉膛温度,合适的空气量及与燃料良好的混合、足够的燃烧时间和空间。因此,本文将依据生物质成型燃料本身的特性,结合燃烧理论,针对锅炉结构进行节能分析。
3.1 炉排及炉膛
生物质成型燃料热水锅炉采用双层炉排结构,即在手烧炉排一定高度另加一道水冷却的钢管式炉排,其成弯管直接插入上方锅筒中,这种设计一方面增大了水冷炉排吸热面积,另一方面加快了炉排与锅筒内回水的热传递。
燃料燃烧采用下吸式燃烧方式。成型燃料由上炉门加在上炉排上进行预热、燃烧,由于风机的引导,新燃料不会直接遇到高温过热烟气,延缓了挥发分的集中析出,从而避免了炉膛温度的波动,使燃烧趋于稳定;同时,挥发分必须通过高温氧化层,与空气充分混合,在焦炭颗粒间隙中进行着火燃烧;在完成一段燃烧过程后,上炉排形成的燃料屑和灰渣漏至下炉膛并继续燃烧,直到燃烬。
采用双层炉排,实现了秸秆成型燃料的分步燃烧,缓解秸秆燃烧速度,达到燃烧需氧与供氧的匹配,使秸秆成型燃料稳定持续完全燃烧,在提高燃料利用率的同时起到了消烟除尘作用。
3.2 辐射受热面
早期的部分生物质成型燃料热水锅炉设计布置不够合理,水冷炉排直接与水箱相连,使得炉膛温度过高,特别是上炉膛,致使上炉门附近炉墙墙体过热,增加了锅炉的散热损失。在不断优化设计中,水箱被上下两个锅筒所代替,上锅筒部分置于上炉膛上方,利用锅筒里的水吸收燃料燃烧在上炉膛的热量,从而增加辐射受热面积,起到降低上炉膛温度的目的,从而减少锅炉的散热损失,提高热效率。
3.3 对流受热面
生物质成型燃料热水锅炉的对流受热面分为两个部分:降尘对流受热面和降温受热面。对流受热面极易发生以下现象:高温烟气与锅筒中的水换热不均,从而引起热水部分出现沸腾,增加锅炉运行的不稳定因素;受整体外形约束,烟道长度设计偏短,导致烟气与锅筒里的水换热不够充分,使得排烟温度过高,增加了锅炉的排烟热损失。为避免上述问题出现,降温对流受热面与降尘对流受热面常常采取分开布置;降温换热面置于上锅筒内,采用烟管并联设计,增加烟气与锅筒中水的热交换,降低排烟温度,提高燃烧效率;降尘则利用锅炉后部的下锅筒及管路引起的烟气通道面积的变化达到效果。
3.4 炉门设计
目前应用较多的炉门设计为双炉门。上炉门常开,作为投燃料与供应空气之用;下炉门用于清除灰渣及供给少量空气,正常运行时微开,在清渣时打开;一方面保证了燃烧所需条件,另一方面减少了由于炉门多而造成的散热损失。
4、技术经济评价
4.1 技术评价
研究对象为生物质成型燃料热水锅炉,本文采用与目前应用最广的燃煤锅炉相比较的方法,来分析它们各自的优劣。评价针对锅炉的节能环保性能,主要指标有热效率、燃烧效率、出水量和污染物的排放量(主要是排烟处的NOx、CO、SO2和灰尘的含量),并与国家相关标准比较。
生物质成型燃料热水锅炉与燃煤锅炉的性能指标比较如表1所示[8,9]。
从表1中的数据对比可知,生物质成型燃料热水锅炉在性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中NOx、CO、S O2及烟尘含量均低于燃煤锅炉,符合使用清洁能源的要求。
4.2 经济评价
经济性评价以设备运行费用为指标,将生物质成型燃料热水锅炉与燃煤锅炉、燃油锅炉、天燃气锅炉、电锅炉、空气源热水器进行比较。各热水设备的效率及相应热源(燃料)热值、单价详见表2。
运行费用计算公式如下:
(1)
以加热1t水为基准,温度从20℃升至90℃(温升70℃),此时需要热量70000kcal。根据式(1)求得各设备在此负荷下的运行费用列于表2,可知生物质成型燃料热水锅炉在运行费用上相对较低,但是就目前而言,其固定资产投入费较同类型的其它锅炉设备要高。不过随着化石能源价格的上涨和国家对环保的要求的提高,生物质成型燃料热水锅炉在经济效益上将会越来越具有优势。
通过技术经济评价,生物质成型燃料热水锅炉在技术上是可行的,经济上是合理的。该锅炉用生物质成型块做燃料,一方面为生物质废料找到了有效的利用途径,节约化石能源,另一方面染物排放量低于同类型的燃煤锅炉,因此该锅炉具有良好的社会和环保效益。
5、结论
(1)生物质成型燃料热水锅炉依据生物质成型燃料本身的特性,结合燃烧理论,在炉排及炉膛、辐射与对流受热面、炉门等结构设计上充分挖掘节能潜力。锅炉燃烧效率可达94.84%,热效率为78.2%~81.25%。
(2)生物质成型燃料热水锅炉在技术性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中NOx、CO、SO2及烟尘含量均低于燃煤锅炉,符合清洁能源的要求。
(3)生物质成型燃料热水锅炉在运行费用上较其它类型设备要低,尽管目前其固定资产投入费相对较高。随着节能环保要求的提高,此类锅炉在经济效益上将会越来越具有优势。
参考文献:
[1]V.斯密尔,W.E.诺兰德. 发展中国家的能源问题[M]. 北京:农业出版社,1983
[2] 刘胜勇,赵迎芳,张百良. 生物质成型燃料燃烧理论分析[J]. 能源研究与利用,2002(6):26-28
[3]阴秀丽,吴创之,娥等. 生物质气化对减少CO2排放的作用[J]. 太阳能学报,2000,21(1):40-44
[4]马孝琴. 生物质(秸秆)成型燃料燃烧动力特性及液压秸秆成型及改进设计研究[D]. 郑州:河南农业大学,2002
[5] 马孝琴. 秸秆着火及燃烧特性的实验研究[J]. 河南职业技术师范学院学报,2002,16(2):69-73
[6]孙学信. 燃煤锅炉燃烧试验技术与方法[M]. 北京:中国电力出版社,2002
[7]刘胜勇. 生物质(秸秆)成型燃料燃烧设备研制及实验研究[D]. 郑州:河南农业大学,2003:94-99
生物燃料的作用范文4
根据目前国内生物发电锅炉运行中炉膛燃烧不稳定冒灰冒火的现象,根据多年经验而总结出一种适用于BWE生物质锅炉炉膛压力自动控制的模型及该模型在光大砀山项目的实际应用。
关键词:
生物质发电;国能生物;光大国际;BWE锅炉;光大砀山;炉膛压力;自动控制;PID
中图分类号:
TB
文献标识码:A
文章编号:16723198(2014)23019702
1 引言
开发利用可再生能源,对于保障能源安全、保护生态环境、实现可持续发展具有重要意义。
我国生物质能资源非常丰富,发展生物质发电,实施煤炭替代,可显著减少二氧化碳和二氧化硫排放,产生巨大的环境效益。因此生物质能发电行业有着广阔的发展前景。
国内生物质直燃发电的锅炉主要有流化床生物质锅炉(主要代表是凯迪生物发电集团的机组)和振动式炉排锅炉(主要代表国能生物发电集团、光大国际集团的机组)两种。两种锅炉各有优点,也各有不足。
国内振动式炉排锅炉主要采用的是BWE锅炉,该炉型由北京德普新源公司(原龙基电力)从丹麦BWE公司以生物质能发电技术引入,该炉型由济南锅炉厂生产。该锅炉的特点:适应燃料性较强,不需用床料,锅炉燃烧工况容易控制,机组带负荷能力强,热效率高等特点;从这几年国内生物质机组的运行情况及效益来看,该炉型比较适合我国北方地区。
2 国内生物质锅炉燃烧工况现状
由于国内生物质燃料的特点:燃料品种繁多,品质差异性大。例如有的项目所用燃料品种能达几十种之多,且燃料的热值、水份、杂质又非常难以控制。这就造成了锅炉运行人员要根据燃料品种、品质不断地调整工况,在调整过程中会频繁出现燃烧不稳定的工况(如暴燃、炉膛冒正压或负压过大、因炉膛正压太大导致给料系统着火、因负压过大致炉膛灭火等事故),目前在国内上百个生物质直燃发电项目中,极大多数锅炉都存在着炉膛压力波动很大的现象,波动范围达正常设定值±800Pa,有的经常会出现压力到上千Pa以上。加上锅炉本体密封不严等因素,锅炉向外冒灰冒火的现象极为普遍,造成锅炉本体上积灰积料、设备卫生差,给安全生产带来极大隐患,也给环境造成了不同程度的污染。而能将炉膛压力在各种工况时控制在微负压(-50Pa~-30Pa)波动范围在正常设定值±100Pa的运行项目很少。
在锅炉燃烧过程控制中,炉膛压力是反映燃烧工况稳定与否的重要参数,也是运行中要控制和监视的重要参数之一。炉内燃烧工况一旦发生变化,炉膛负压随即发生相应变化。当锅炉的燃烧系统发生故障或异常时,最先将在炉膛负压上反映出来,而后才是火检、火焰等的变化,其次才是蒸汽参数的变化。因此,监视和控制炉膛压力对于保证炉内燃烧工况的稳定均有极其重要的意义。
原因分析:大多数项目由于在工程建设中调试阶段为了保证机组调试期间的稳定,基本上都选用热值较高且品种单一的燃料,调试时虽然也都进行了炉膛压力自动参数的PID整定和调整,但当在机组投入以后,由于使用燃料品种变化大,燃料品质有好有差,这种造成实际运行中炉膛压力自动无法投入的情况,即使可以投入,调节性能也不能满足要求,尤其在燃料为较小颗粒状,或燃料水份、杂质较多时,燃烧工况更是难以控制。显然通过常规的炉膛压力PID控制是无法满足锅炉安全经济运行需求的。
所以如果能将炉膛压力自动投入并长期稳定运行,是做为热控专业人员及电厂运行人员的迫切期望;这样即节省了运行人员的人力投入,也相应对设备起到间接的保护作用。更能为机组的安全稳定经济运行提供有力保障。
3 BWE锅炉炉膛压力自动控制模型介绍及应用
本人从事电厂热控专业近20年,并有多年生物质发电的调试、运行经验,凭借多年的经验并结合生物质锅炉的特性,逐步摸索并建立了一套适合生物质锅炉炉膛压力自动控制模型(前馈+预控+PID),通过在光大砀山项目(2011年10月投入生产运行)实施了该控制模型,经过该项目的长期运行实践,这种模型的炉膛压力自动投入效果良好,炉膛压力自动在锅炉燃烧工况较稳定时可以将压力维持在-30Pa左右(波动范围±50Pa),在不稳定工况时也可将压力稳定在-30Pa(波动范围±100Pa)左右,在大扰动出现时,瞬间最高压力基本不会超过±160Pa,且能在1.5秒内就可将压力回调至设定值正常范围内。现就以光大砀山项目为例,介绍该模型特点及实施情况如下。
3.1 主要设备
(1)BWE振动式炉排炉。
主要参数:额定蒸发量:130t/h;
过热蒸汽压力:9.2MPa;过热蒸汽温度:540℃;
给水温度:220℃;冷空气温度:35℃;
空气予热器出口风温:195℃;排烟温度:134℃;
锅炉设计效率:89%;排污率:2%。
(2)引风机。
主要参数:电机功率:900kW;全压:7440Pa;
流量317800m3/h;转速:980r/min;
额定电压:10kV;
厂家:南通大通宝富风机有限公司。
(3)变频器。
主要参数:HIVERT-Y10/系列高压变频器;
采用高-高结构,电压等级10kV。
厂家:北京合康亿盛变频科技股份有限公司。
(4)DCS系统。
采用浙江中控公司的ECS-100控制系统。软件采用Advantrol-pro,该软件功能强大,各功能软件间采用对象链接与嵌入式技术,该软件人机交互界面为中文,并采用了windows标准控件,易学易用。该软件集成了LD、FBD、SFC、ST语言等编辑器,使用户编程更方便、直观,并具有强大的在线帮助和在线调试功能。
3.2 燃料品种
主要燃料品种:树皮、树枝、碎木块、小麦桔杆、玉米桔杆等。水份40%~60%,杂质15%左右。
3.3 炉膛压力扰动分析
锅炉燃烧时压力扰动主要有三种情况:
(1)燃料变化致使燃烧工况波动。
如燃料中有粉状燃料,或较小颗粒燃料,如锯末,花生壳、稻壳等或燃料水份太大或杂质过多等。
(2)炉排振动时造成的扰动。
(3)其他设备操作造成随机的扰动。
3.4 前馈+预控+PID模型应用分析
当燃料变化时,燃烧工况会发生较大变化,且出现压力波动很大的情况较多,并且是在极短时间内发生。普通的PID调节回路,无法适用这一情况,如果采用加微分的方式,通过实验,PID回路无法正常调节。主要原因是加入微分后调节回路振荡时间长,不易稳定(炉膛压力本身就是一个经常波动量)。且扰动幅度太大,PID本身无法及时回调。解决办法:在PID回路外加一分析模块,主要用于分析压力波动范围,当在正常范围时,自动调节PID回路超调节作用,当在一定时间内波动值超限(根据多次同种燃料燃烧试验取得该值),根据超限的幅度,通过折算模块,将可能出现超限的量直接叠加在PID的输出上,然后直接作用于引风机变频器(前馈方式),使引风机迅速回调,这样就可以在大扰动出现初期抵其带来的波动,通过这种前馈方式可消除大扰动变化量70%左右,其余则就由常规PID回路进行消除和调整。
当炉排振动时,由于生物质料层厚度较大,炉排风透过料层时的压力和风量会在短时间内改变炉内动力场分布。这种扰动引起压力波动也较大,但其有规律性,其压力波动图形基本属于抛物线形或尖峰型。根据其规律,通过中控DCS组态软件中ST语言程序编辑器,编写了一个预控模块,主要功能是通过计算炉排振动时可能产生的压力波动值,提前控制炉排风量(减少),并通过改变炉膛压力PID设定值(增加偏置量,该数值通过现场多次试验取得)两种方式协同作用,就可将炉排振动时产生的扰动消除。
其他随机扰动一般很少出现,当出现时可通过上述的综合控制模型(前馈+预控+PID)进行消除。
4 光大砀山项目流程图及炉膛压力历史趋势
生物燃料的作用范文5
我国生物质资源(农作物秸秆)丰富,但利用率不高。为了高效利用生物质资源,本文就生物质成型燃料的加工技术与装备进行初步研究,以探讨综合利用生物质资源的技术途径。
一、影响生物质成型燃料加工装备性能的因素分析
1、生物质原料的来源与特点
我国是农业大国,农林废弃物资源十分丰富。我国每年总量约有7亿吨的农作物秸秆,另外,我国每年还有大量的林业采伐和林木制品加工厂产生的废弃物。如枝桠、小径木、板片、木屑等,总量也近1亿吨。生物质成型燃料。是以枝条、树皮、秸秆等农林剩余物为原料。这些原料具有来源广泛、分散、种类多、质地不统一等特点。决定了成型燃料加工技术与装备的设计必须做到满足原料来源的广泛性、多样性和方便灵活性。
2、生物质成型燃料的特点要求与使用对象
生物质成型燃料是将生物质原料经过粉碎、调质等处理,在高压条件下,压缩成颗粒状且质地坚实的成型物,除应具有比重大、便于贮存和运输、着火易、燃烧性能好、热效率高(是直接燃烧的5倍以上)的优点外。还应具有灰分小、燃烧时几乎不产生SO2、不会造成环境污染等优点。可作为工业锅炉、住宅区供热、农业暖房及户用炊事、取暖的燃料。成型燃料的这些特点。决定了成型燃料加工技术与装备的设计必须在充分考虑生物质原料特点的基础上,保证生物质原料的粉碎细度达到成型的要求,燃料成型的密度、成型设备的有关模板、模孔、压辊等成型关键部件,在尽可能满足吨料加工能耗较少,加工关键设备使用寿命较长,加工的成型燃料性能具有较好的燃烧性能的要求下,应具有实用性、适应性和经济性。
3、生物质成型燃料加工技术与设备的国内外现状
成型燃料有颗粒状和棒状两大类。根据成型主要工艺特征的差别,国内外生产生物质压缩燃料的工艺大致可划分为湿压(冷压)成型、热压成型、碳化成型等3种。按成型加压的方法不同来区分,技术较为成熟、应用较多的成型燃料加工机有辊模挤压式(包括环模式和平模式)、活塞冲压式(包括机械式、液压式)、螺旋挤压式等三种机型,其中辊模挤压式成型机采用的是湿压(冷压)成型工艺,活塞冲压式、螺旋挤压式成型机都采用的是热压成型工艺。
国外开发工作始于20世纪40年代。1948年日本申报了利用木屑为原料采用螺旋挤压方法生产棒状成型燃料的第1个专利,60年代成立了成型燃料行业协会。70年代初,美国研究开发了环模挤压式颗粒成型机,并在国内形成大量生产。瑞士、瑞典、西欧等发达国家都先后开发研究了冲压式成型机、辊模挤压式颗粒成型机。其中已有120多年历史的世界著名饲料机械生产企业――德国卡尔公司(Kahl)生产的动辊式平模制粒机,不仅能生产中低密度的颗粒饲料,而且还能生产较优高密度的颗粒燃料,成品产量大、能耗低而且质量好,在欧洲和东南亚国家使用较为广泛。在最早开发螺旋挤压成型燃料生产技术的日本也有采用环模颗粒成型机加工木屑成型燃料的大型生产企业。如今,固化成型燃烧在日本、欧、美等地已经商品化,在丹麦的一座叫阿文多的发电厂,还利用木屑压缩颗粒来发电。1985年日本平均每户家庭消耗成型燃料达750kg。1985年美国生产成型燃料达200万t以上。
我国从20世纪80年代中期起开始了成型燃料的开发研究,一方面组织科技攻关,另一方面,引进国外先进机型。经消化、吸收,研制出各种类型的适合我国国情的生物质压缩成型机。用以生产棒状、块状或颗粒生物质成型燃料。全国现有生物质压缩成型厂35个。生物质成型燃料的种类按其密度分为中密度(800―1100Kg/m3)和高密度(1100―1400kg/m3)二种,前者适宜于家庭炉灶或小型锅炉用,也可满足自动炉排机械加料的大型锅炉用,后者更适于进一步加工成为炭化产品。
国内主要的几种成型燃料生产技术的现状分述如下:
1)螺旋挤压技术
螺旋挤压成型技术是目前生产生物质成型燃料最常采用的技术,尤其是以机制炭为最终产品的用户,大都选用螺旋挤压成型机。
1990年中国林科院林产化学工业研究所与江苏省东海粮食机械厂合作,完成了国家“七五”攻关项目――木质棒状(螺旋挤压)成型机的开发研究工作,并建立了1000t/年棒状成型燃料生产线;1 993年前后,中国大陆的一部分企业和省农村能源办公室从日本、中国台湾、比利时、美国引进了近20条生物质压缩成型生产线,基本上都采用螺旋挤压式,以锯木屑为原料,生产“炭化”燃料。棒状成型燃料的形状为直径50*10-3m2左右、长度450*10-3m2左右,横截面为圆形或六角形,每根重约1Kg,用于蒸发量≤1000kg/h工业锅炉或民用炉灶。
国内现已有包括陕西武功县轻工机械厂、河南省巩义合英实业公司等在内的近十家厂家生产此种类型的设备。
螺旋挤压成型机的优点是:
①成品密度高。以木屑、稻壳、麦草等为原料,国内生产的几种螺旋挤压成型机加工的成型棒料的密度都在1100~1400Kg/m3。
②成品质量好、热值高,更适合再加工成为炭化燃料。
螺旋挤压成型机的缺点是:
①产量低,目前国产设备的最高台时产量不到150Kg/h,距离规模化生产的产量要求相差较大。
②能耗高,粉料在螺旋挤压成型前先要经过电加温预热,挤压成型过程的吨料电耗就在90Kwh/t以上。
③易损件寿命短,国产设备主要工作部件――螺杆的最高寿命不超过500h,距离国际先进水平1000h以上还有不小的差距。
④原料要求苛刻。螺旋挤压成型机采用连续挤压,成型温度通常调整在220~280℃之间,为了避免成型过程中原料水分的快速汽化造成成型块的开裂和“放炮”现象发生,一般要将原料含水率控制在8~12%之间,所以对有的物料要进行预干燥处理,增加了加工成本。这一点,对于移动式的成型燃料加工系统来说也许是一个致命伤,因为与旋挤压成型工艺相衔接还需有配套的烘干机。
2)活塞冲压技术
这种设备的优点是成型密度较大,允许物料水分高达20%左右,但因为是油缸往复运动,间歇成型,生产 率不高,产品质量不太稳定,不适宜炭化。活塞式的成型模腔容易磨损,一般100h要修一次,有的含SO2少的生物质材料可维持300h。
另据报道,2003年,河南农业大学承担完成了科技部研究项目“秸秆压块成型燃料产业化生产的可行性研究”,开发了HPB―m2型液压驱动式秸秆成型机,采用活塞套筒双向挤压间歇成型。生产率:400kg/h;吨料成型电耗:60Kwh/t左右。
另外北京三升集团研发了机械传动、活塞挤压成型技术,在工业化生产中密度饲料块的同时,还生产高密度(>900Kg/m3)的燃料块。
3)辊模挤压技术
生物质颗粒燃料的辊模挤压成型技术是在颗粒粒饲料生产技术基础上发展起来的。二者的主要区别在于纤维性物料含量的多少和成型密度的高低。用辊模挤压式成型机生产颗粒成型燃料一般不需要外部加热,依靠物料挤压成型时所产生的摩擦热,即可使物料软化和黏合。对原料的含水率要求较宽。一般在10%~40%之间均能成型。其最佳水份成型条件为18%左右,相比于螺旋挤压和活塞;中压而言,辊模挤压成型法对物料的适应性最好。因此。国内一些生产秸秆颗粒饲料的企业在生产颗粒饲料的同时也生产颗粒燃料,以提高设备的利用率。
以国内知名饲料机械生产企业――江苏正昌集团为代表的我国饲料机械业界,目前在环模制粒机和平模制粒机的设计、制造方面,已积累了丰富的经验,某些方面已达到世界先进水平。在生物质颗粒成型燃料加工机械的研发方面也进行了多年的探索,并取得了可喜的成绩。
4)环模挤压成型技术
1994~1998年,江苏正昌集团公司联合中国林科院林产化学工业研究所承担了国家林业局下达的项目“林业剩余物制造颗粒成型燃料技术研究”。该项目以江苏正昌集团公司生产的KYW32型环模式饲料颗粒成型机为基本结构,研究成功了以木屑和刨花粉为主要原料的颗粒燃料成型机,台时产量在250Kg/h左右,产品规格:直径6*10-3m2,长度为8-15*10-3m2,颗粒密度>1000Kg/m3,其热值为4800kcal/Kg左右。产品质量达到日本“全国燃料协会”公布的颗粒成型燃料标准的特级或一级。但是由于当时在材料和加工工艺等方面的原因,主要易损件环模在面对粗纤维物料时,暴露出了使用寿命短的缺陷。使用成本高,成为环模式制粒机难以在生物质成型燃料领域大面积推广的重要原因。但是,该项目的开展,为我国今后在辊模挤压成型燃料技术的发展打下了良好的基础。
5)平模挤压成型技术。由于在平模制造工艺水平和主要加工物料对象方面与国外的差距等原因,以前国内在对平模式制粒机的研究方面不够深入,国内能生产的最大平模直径只有400*10-3m2。2000年,我所承担了农业部引进国际先进农业科学技术项目(简称“948”项目)――秸秆颗粒饲料加工技术与设备的引进,在引进国际上著名的德国卡尔公司(Kahl)的38-780型大型平模式制粒机的基础上,结合我国实际,又进行了多处技术改进和创新。2003年12月,该项目通过了农业部“948”项目办公室的验收。
与其他生物质成型颗粒(块)加工技术相比。大型平模式制粒机的优点在于:
①原料适应性广。平模式制粒机压制室空间较大,可采用大直径压辊,因而能将诸如秸秆、干甜菜根、稻壳、木屑等体积粗大、纤维较长的原料强行压碎后压制成粒,对原料的粉碎度要求降低了。另外,平模式制粒机在压缩纤维性物料时,原料水分在15~25%(最佳18%左右)都能被压缩成型。大多数情况下,不需要对原料进行干煤。
②产量大。经江苏省农机鉴定站检测,SZLP-780型平模制粒机在以100%苜蓿草粉为原料时,产量可达2100kg/h。在此后进行的以木屑为原料的制粒试验时,当成型颗粒密度在1100Kg/m3时,产量达到1500Kg/h,是国内现有成型颗粒燃料加工设备所达到的最大产量。
③吨料耗电低。一方面,平模式制粒机由于压制室空间大、压辊直径大的原因,能将粒度相当大的原料制成颗粒,因而能克服环模挤压制粒机和螺旋式挤压机在这方面的局限,这就减少了物料在粉碎工段的能耗;另一方面,与环模制粒机相比,平模模孔带面积比值高,出料孔多。而且出料颗粒密度和大小比较一致。
④辊模寿命长。由于工作原理的差异,平模式制粒机压辊的线速度比环模式的低,因而辊、模的磨损比较慢。而且,平模在一侧面工作面磨损后可翻过来使用另一侧面,可以提高使用寿命。
⑤成型密度可调。压辊和压模之间的工作间隙和压力可通过液压式中央螺母调节装置使压辊同步升降,操作简单省时。既可生产中低密度的颗粒饲料,也可生产较高密度的颗粒燃料,一机多用。
但总体来看,目前,我国的生物质固化成型装备在设备的实用性、系列化、规模化上还很不足,距国际先进水平还有不小的差距。这一问题以成型机最为突出,表现在生产率低、成型能耗高、主要工作部件寿命短、机器故障率多、费用高等方面。
4、生物质成型燃料加工技术与设备的发展趋势
进入二十一世纪以来,人们愈加感觉到石化能源渐趋枯竭,在对可持续发展、保护环境和循环经济的追求中,世界开始将目光聚焦到了可再生能源与材料, “生物质经济”已经浮出水面。以生物能源和化工产品生产为主的生物质产业正在兴起,引起了世界各国政府和科学家的关注。许多国家都制定了相应的计划,如日本的“阳光计划”,美国的“能源农场”,印度的“国家战略行动”等。2005年“可再生能源法”在我国正式颁布实施,所有这些。预示着各国在包括生物质成型燃料开发在内的生物质技术领域的竞争进入一个白热化时代。
虽说生物质产业是世界发展之大势和新兴的朝阳产业,但其当前成本与价格尚难与石油基产品竞争,这一点对于成型燃料来说,表现得尤其明显。因此,以降低储运成本和压缩成型成本为目的,寻求技术上的创新、突破,成为生物质成型燃料领域最大的命题。降低颗粒燃料的吨料能耗、降低设备的使用成本。也成为本“863”项目所追求的最大目标。
在生物质固化成型技术装备研究、开发方面,国内外的发展趋势是装备生产专业化、产品生产批量扩大化、生产装备系列化和标准化。尤其在国内应在设备实用性、系列化上下功夫。不断降低成本并提高技术水平,为21世纪大规模开发利用生物质能提供必要的技术储备。
5、生物质成型燃料加工技术与设备的先进性与性价比
生物质成型燃料加工技术与设备先进程度的高低必须与其性价比有机的结合起来综合考虑。单一讲究技术 和设备的先进性,不考虑技术的投入成本和市场的接受程度,不考虑技术和设备的性能与市场接受的价格合理之比,再先进的技术在市场上如得不到应用,也得不到用户的认可,这种技术起码可以说是不完全适用的技术。生物质成型燃料加工技术与装备的先进性主要体现在以下几方面:一是理想的吨料加工耗能量;二是适度的关键部件的使用寿命;三是良好的产品结构组成;四是合理的加工工艺路线等等。因此,在研究和设计生物质成型燃料加工技术和加工设备时,要在尽可能低的吨料耗能的前提下,使得产品的结构优化与合理,在产品得到较高的使用寿命的基础上,保证产品的价格尽可能适应市场的接受程度。使生物质成型燃料加工技术与装备的先进性与产品的性价比有机结合与统一,以利于推广应用。
二、生物质成型燃料加工装备技术方案技术特征
1、技术路线和技术方案
考虑到上述一些因素,我们在研究设计时充分借鉴利用现有技术成果,并在利用国产制粒机进行成型燃料加工试验的基础上,优化创新设计,采用新结构、新材料、新工艺,研发关键部件;其系统技术方案如下所述。
(1)技术方案分析
我们研究设计的技术方案及机组总体配置示意见以下附图:
本技术方案以秸秆等农林废弃物为原料,既可将多物料联合粉碎机、粉料输送组合装置、制粒机等有机集成组装在一台拖车上,形成一个可移动的颗粒燃料加工设备系统,又可将多物料联合粉碎机、粉料输送组合装置、制粒机等有机集成组装在一个固定场所进行加工。系统各部分的设计方案说明如下:
1)多物料一次粉碎机
适应的原料包括经自然风干的玉米秆、棉秆以及麦秆、稻草等,充分考虑到了移动式成型燃料加工系统对原料应具有广泛适应性的要求特点。采用搓揉装置和锤片粉碎、筛分装置的有机组合技术,对原料进行切段粉碎复合作业。粉碎后的粉料过筛后经风管直接输送到粉料暂贮箱中输送至制粒机中;人工只要把待粉碎的原料放到加料斗里即可,大大减轻了劳动强度,并改善了劳动条件。
2)粉料输送组合装置
秸秆类生物质经粉碎后,堆密度很低,输送过程中容易结拱,使送料受阻。本装置的作用是接受由粉碎机经风管输送来的粉料,通过简易脉冲装备向制粒机内连续不断地输送粉料。
该装置将采用料仓防结拱技术,有效地避免因纤维性物料流动性差,而导致喂料不均匀情况的发生。
3)颗粒燃料制粒机
这是本技术装备的核心和关键。根据移动式作业特点考虑上述的多种因素。采用平模制粒技术方案。实施时通过试验,进一步优化设计平模制粒成型模孔,调整颗粒燃料制粒工艺,减小功率,降低主轴转速,增加辊模压力,保证得到较高密度、质量稳定的成型燃料的。
在主要工作部件(同时也是主要易损件)压辊和模具的加工方面。充分利用国内辊模制造领域技术工艺和设备方面的优势,采用新材料和新工艺,进一步提高辊模耐磨性。
4)系统集成技术
上述3部分集成装在1台拖车上,可以灵活方便地在村镇间转移。成为一个流动的加工车间,适应了农村秸秆原料既分散、季节性又强的实际作业条件。同时,可以根据不同的用户要求,也可将上述3部分集成在固定的工作场所进行作业。
本技术方案在粉碎机喂料、粉料输送、成型颗粒筛分等环节充分考虑到了自动化的有机衔接,因此,整个系统的操作工人只要有3―5名即可。
如上所述,本方案全面考虑了农村的实际条件,从有效发挥机组加工效能、减轻人工劳动强度等方面着眼,优化了系统的设计。整个加工系统总功率80KW左右,处理能力500―1000Kg/h。是可以满足课题确定的指标要求。
(2)设备投资分析
本技术方案以枝条、秸秆等农林废弃物为原料,有机集成从原料筛分、粉碎到制粒成型的工艺,形成为一个整体可移动的加工设备系统,其中从粉碎到压缩成型所需的设备投资合计约为20万元。综合分析国内外现有成型燃料加工设备的生产率和设备投资情况,本项目制的成型燃料加工设备系统有较大竞争优势。
2、生物质成型燃料加工技术与装备技术特征
(1)技术特征
1)多物料一次粉碎技术。该技术针对不同来源、不同生物质原料,采用组合粉碎转子等结构,实现多种生物质原料一次粉碎,并达到制粒成型所需的细度要求。
2)物料流量自动调节技术。该技术就是主要是根据成型机加工成型燃料的产量要求,采用简易脉冲、负压输送等机构自动调节来自于粉碎机粉碎后的生物质原料的流量,在保证成型机不发生堵塞的情况下,使输送到成型机的物料流量达到最大。
3)颗粒燃料成型技术。该技术就是将由粉碎机输送来的生物质原料。通过平面辊压和平模将原料压制成颗粒成型燃料。动力通过减速传动机构带动主轴运转,不同直径模孔的平模可以根据需要进行更换,成型燃料加工过程可以通过检查视窗口直接观察并可通过打开视窗进行维护和修理,模辊间隙和压制压力实现自动调节,确保颗粒成型燃料的密度符合规定的要求。
4)既可移动又可固定场所连续生产机组集成技术。该技术就是根据用户需要将多物料一次粉碎机和颗粒燃料成型加工机有机的集成为连续生产机组。这种机组既可安装在固定场所,也可集成在平板机车上,所需加工动力既可适用于电力。也可适用于柴油机动力机等。
(2)主要技术指标
1)成型燃料加工机组
总功率:80KW左右;生产能力:500―1000Kg/h;
可方便地整体转移作业;
2)成型燃料加工成本
农林剩余物固化成型燃料成本低于煤的价格,吨料能耗≤70KWh/t;
3)成型燃料产品性能
密度≥1g/cm3;
水分≤12%。
进料流量可调。
三、生物质成型燃料加工装备的设计与研究
1、多物料一次粉碎机的设计
多物料一次粉碎机采用同轴搓揉旋切装置和锤片式粉碎、下置式筛分装置有机组合技术。电机动力通过皮带盘驱动转子高速旋转,使秸秆通过搓揉旋切装置,搓揉旋切成3~5厘米长,再进入锤片粉碎室,经受锤片撞击剪切而粉碎。另一方面,物料与物料之间、物料与锤片之间相互摩擦进一步破碎。小于筛孔的粉体被排出粉碎室。大于筛孔的原料则继续被锤片打击、粉碎、直至通过筛孔,从而达到粉碎的目的。其结构示意如下图所示。
本粉碎机主要由:转子、机座、上下壳体、操作料斗、传动装置等五大部分组成。考虑到使用与维护的需要,设计了方便安装更换筛片和锤片的简易拆卸机构。可以方便用户使用。
多物料一次粉碎机的主要设计技术参数为:转子直径:720m2m2,主轴转速:2700rpm2一3500rpm2,锤片数量:128片,配用功率:22kw,轴承型号:NSK SN520, 吸风量:3300m3/h,产量:500~1 000Kg/h,整机重量:1200Kg,外形尺寸(m2m2):2975×1730×1140。筛片面积(m2m2):1120×540。
2、颗粒燃料成型机的设计
根据技术方案,成型机采用平面辊压和平模的组合结构,而这种结构按执行部件的运动状态分,有动辊式、动模式、模辊双动式三种。由于后两种仅适用于小型平模燃料成型制粒机,较大机型一般用动辊式。因此本机即采用动辊式结构。按磨辊的形状分,又可以分为锥辊式和直辊式两种。考虑到加工的工艺性本机设计为直辊式。其工作原理如下图所示。
由图可以看出,电动机通过减速箱驱动主轴,主轴带动磨辊。磨辊绕主轴公转的同时也绕磨辊轴自转。加工颗粒时,生物质原料被送入平模机的喂料室。在分料器和刮板的共同作用下均匀地铺在平模上,主轴带动的压辊连续不断地滚过料层。将物料挤压进入模孔,物料在模孔中经历成型、保型等过程。具体过程为:供料区内的物料在重力作用下紧贴在平模上,当压辊向前滚动,物料进入变形压紧区。这时因受到挤压,原料粒子不断进入粒子间的空隙内,间隙中的空气被排出,粒子间的相互位置不断更新,粒子间所有较大的空隙逐渐都被能进入的粒子占据。随着压辊继续滚动,被压实的原料进入挤压成型区,模孔的锥孔部分和前半部分都属于挤压成型区,该区内,压力继续增加。粒子本身发生变形和塑性流动,在垂直于最大主应力的方向被延展。并继续充填周围较小的空隙,由于压辊和物料间的摩擦作用加剧而产生大量热量。导致原料中含有的木质素软化。粘合力增加,软化的木质素和生物质中固有的纤维素联合作用。使生物质逐渐成形,这时部分残余应力贮存于成型块内部,粒子结合牢固但不甚稳定。成型块在挤压作用下进入模孔的保型段,在该段不利于形状保持的残余应力被消除,颗粒被定型。一定时间后以圆柱状态被挤出,旋转的切刀将物料切断,形成颗粒。由扫料板将颗粒送出。
本燃料成型机主要由:电动机、传动箱、主轴、喂科室、压辊、平模、切刀、扫料板、出料口等九大部分组成。考虑到加工密度的调节和辊模间间隙的调整,设计有液压调节机构,一是保证加工过程中的加工压力的稳定。二是保证辊模问间隙的自动调节。同时考虑到安装与维修的方便性。在制粒室周围设计有观察与调节窗口。
颗粒燃料成型机设计的主要技术参数为:平模直径:520m2m2。压辊转速:56rpm2,压辊压强:100m2pa,配用功率:45Kw,整机重量:1 500Kg,外形尺寸(m2m2):1530×840×2047,产量:500―1000Kg/h。颗粒直径:10m2m2一20m2m2,颗粒长度:30m2m2,颗粒产品密度:≥1g/m3。
3、生物质成型颗粒燃料加工装备的集成设计
生物质成型颗粒燃料加工装备的集成设计,就是将多物料一次粉碎机和颗粒燃料成型机,通过负压简易脉冲风网系统有机的连接起来,一方面要求加工系统在加工过程中确保生物质原料的输送均匀,防止堵塞与结拱,另一方面要保证加工系统在加工过程中不会对环境造成严重污染,同时尽可能少用人工作业,减少作业劳动强度和用工量。因此。系统的集成设计成两种方案,一是直接将集成系统安装在固定场所。二是将系统集成安装在可移动的平板车上。
4、生物质成型燃料加工装备有关重要技术参数的研究结论
(1)生物质原料压缩特性
粉碎后的生物质原料(秸秆)在压缩过程中。是在一定压力下,通过秸秆的塑性变形和其本身的木质素软化固化成型的。在压缩过程中可分为3个阶段:松软阶段、过渡阶段和压紧阶段。在压力较小时,成型密度随压力的增大显著增大,但达到压紧阶段后,变化缓慢,趋于常数。一般情况下,在压力为85m2Pa时,制粒的成型效果就较好,将压力控制在85―100m2Pa范围内就可以达到较理想的成型要求。同时通过试验,探索了生物质压缩力和压缩密度的关系。确定了压缩力、压缩密度、压缩量的关系。
(2)生物质原料的特性对成型的影响
生物质原料具有流动性差、相互牵连力较大的特性,是成型喂入和压缩的瓶颈。对于不同的原料、不同的含水率、不同的粒度,压缩特性有很大的差异,并对成型过程和产品质量有很大的影响。当原料水分过高时,加热过程中产生的蒸汽不能顺利地从燃料中心孔排出,造成表面开裂,严重时产生爆鸣。但含水率太低。成型也很困难,这是因为微量水分对木素的软化、塑化有促进作用。成型原料的含水率一般在16%左右。植物秸秆易压缩,在压力作用下变形较大,压缩比在9~12之间,木屑废料较难压缩,压缩比在5~9之间。粒度小的原料轻易成型,粒度大的较难压缩。试验与研究的结果表明,生物质的特性对于解释和说明物质的机械变化过程很有价值。
生物燃料的作用范文6
生物质能是一种以生物质为载体的能量,这种能量直接或间接地通过绿色植物的光合作用,把太阳能转化为化学能蕴藏在生物质内部。生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。生物质能资源通常指农业废弃物、林业废弃物和畜禽粪便等现有的废弃型资源,此外还包括专门种植的能源植物。二氧化碳(CO2)是导致温室效应的主要气体,而生物质燃烧所释放出的二氧化碳(CO2)大体上相当于其生长时通过光合作用所吸收的二氧化碳(CO2),因此生物质能利用的二氧化碳(CO2)排放可被认为是零。
生物质气化顾名思义,是将固态的生物质转变为气态的生物燃气利用,这个过程是通过生物质在高温条件下与氧气和/或水蒸气反应,转化为氢气(H2)和一氧化碳(CO)等可燃气体。生物质气化和我们比较熟悉的燃烧虽然都是在高温条件下进行,但还是有重要的区别。燃烧是在氧气充足的条件下生物质完全燃烧,其中蕴藏的化学能全部转化为热能,反应产物为二氧化碳(CO2)和水(H2O);而气化则是在缺氧条件下生物质不完全燃烧,尽可能地减少二氧化碳(CO2)和水(H2O)的生成,从而将生物质的能量以化学能的形式保留在氢气(H2)和一氧化碳(CO)等可燃气中。
生物质气化产生的可燃气,也称为生物质气化燃气,利用范围非常广泛,既可以用来集中供气、替代化石燃料,还可以用来发电,甚至可以进一步变身成为液体燃料。
将生物质气化燃气通过集中供气系统,供给到居民家里,可以供居民进行炊事和采暖。自1994年山东省桓台县东潘村建成中国第一个生物质气化集中供气试点以来,山东、河北、辽宁、吉林、黑龙江、北京、天津等省市陆续推广应用,在2000年前后达到了一个高峰。相关规范和制度正逐步完善,生物质气化集中供气应用在中国农村能源建设中稳步推进。
生物质气化燃气还可以替代工业锅炉/窑炉使用的化石燃料。工业锅炉和工业窑炉是我国能源消耗和污染排放的大户。而生物质气化产生的可燃气体,可不经净化直接应用于燃料品质要求较低的工业窑炉,如钢厂的轧钢加热炉,水泥厂的水泥回转炉;经过净化后的燃气可应用燃料品质要求较高的工业窑炉,如发电厂、陶瓷厂的窑炉。广州能源所及其合作公司已将生物质气化成功应用于工业锅炉、钢材煅烧炉、熔铝炉、熔铜炉、不锈钢退火炉等,燃烧效率可达到99%以上,节能减排效益显著。利用生物质气化燃气代替化石燃料,既节能又环保。