微波在有机合成中的应用范例6篇

前言:中文期刊网精心挑选了微波在有机合成中的应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

微波在有机合成中的应用

微波在有机合成中的应用范文1

[关键词]微波催化 有机合成 废水处理 煅烧催化剂

中图分类号:TM933.3+4 文献标识码:A 文章编号:1009-914X(2014)40-0026-01

引言:

微波化学是研究微波与化学反应体系相互作用的一门学科,是在深人研究微波场中物质的自身特性及其与微波辐射相互作用的基础上发展起来的。传统的加热方式是依靠热传导,对流域辐射逐步由表及里传入物质内部。而微波加热是一种内源性加热,是对物质的深层加热。此外,相比较传统的加热方式,微波加热具有选择性,对各种极性物质,则很容易受热,但有时也会导致过热现象,即溶剂温度超过了沸点而不沸腾,也可以出现局部过热现象。因此,在对物质进行微波加热时,必须考虑微波的辐射功率、微波对物质的加热速度、溶剂的极性和反应体系的结构特点等因素。

常规催化理论提出的活性中心学说,主要经历了中间化合物理论,催化电子理论和均相配合酶催化理论三个阶段。把微波加热手段和催化技术相结合的应用,往往得到令人想象不到的结果。本文重点就微波催化技术在有合成、有机废水处理、工业钒催化剂以及粮油化工技术上的应用进行阐述。

1 微波催化在有机合成上的应用

由于微波独特的加热方式,在有机合成中越来越显示出其反应迅速、收率高、选择性好等优点。因此被广泛应用于酯化反应、合成醚反应、皂化反应、缩合反应、成环反应、开环反应、偶合反应、重排反应等方面。

1.1 配合物催化

配位化学是化学领域中最活跃的前沿科学之一,几乎渗透到所有的学科。高军军等[1]以肉桂酸钠和氯化苄为原料,四丁基氯化铵作催化剂,采用微波辐射技术,在常压下直接合成肉桂酸苄酯。考察催化剂用量、微波辐射功率和辐射时间对酯收率的影响,最适宜的反应条件选择:当肉桂酸钠与氯化苄的摩尔为1:1.2时,采用1.0mol四丁基氯化铵和0.05mol肉桂酸钠,微波功率为300W,辐射25min,收率达84%以上。此外,罗军等[1]将微波加热用于卤素交换氟化反应中:以季铵盐、聚乙二醇和三氯化锑作为有效催化剂,采用四甲基氯化铵和PEG一6000以二甲亚砜为溶剂反应4h可分别得到收率为75.1%和77.2%的邻硝基氟苯,反应时间大大缩短,收率明显提高。

1.2 酶催化剂

酶是一种高效的生物活性催化剂,它催化的反应速度比非酶催化的反应速度一般要快106一1012倍。微波辐射可以改善酶的“微环境”,从而可提高酶催化的专一性,酶催化体系经过微波辐射后,增强了活

性中心的立体结构与相关底物基团的诱导和定向作用,使底物分子中参与反应的基团与酶活性中心更加相互接近,并严格定位,使酶催化反应更具选择性和专一性。Parker研究了非水相微波辐射条件下酶催化酯交换反应,实验结果表明:由于微波加热是内加热方式,反应物在较短周期内将得到很快的均匀加热,反应时间过长反而影响收率。Zare一vucka等研究了微波辐射条件下通过葡萄糖苷基转移作用,酶促进拆分烷基--D-吡喃葡萄糖苷和烷基--D-吡喃半乳葡萄糖苷,实验结果表明,相对于传统加热条件,酶催化有机合成的选择性大大提高,反应时间明显缩短。Carrillo一Munoz等研究微波辐射下的脂肪酶催化反应:1-苯基乙醇的手性拆分,相对于传统加热方式,微波技术提高了脂肪酶在酯化和转化反应中对底物的亲和性和增加了反应的选择性。

2 微波催化处理有机废水

化工废水大都是有机物(浓度CODcr>5000mg/L),具有生物降解性极差的特点,很难用传统方法处理。目前,处理高浓度难降解有机废水,较好的方法是湿式氧化法,但该方法需要高温、高压,对于难降解氧化的有机物,条件则更为苛刻,不适应实际的工业生产。微波辐射技术具有快速、高效和不污染环境等特点。张慧敏[2]在催化湿式氧化法的基础上提出了微波催化湿式氧化法,处理难降解有机废水的新工艺,以含硝基苯类、苯胺类、氟化物的废水(A)、含乙酸素的废水(B)和含硝基物的废水(C)为水样进行测定,实验采用间歇微波催化湿式氧化工艺,微波功率为630W,微波辐照废水水样10min,实验结果表明,(A)的CODcr,去除率达到了90.9%;时间为15min时,去除率为89.7%反而有所下降,同样辐射10min,(B)的COD去除率达到了97.7%,(C)的CODcr去除率达到了93.4%,并且全部超过采用传统方法的去除率[3]。研究表明:对于连续流染料废水中的初试浓度过高时,微波输出功率越大,停留时间越长,脱色效果越明显。如果初试染料废水的质量浓度在400mg/L,输出功率为720W,停留时间在4.76min,出水10L内其脱色率为95%,CODcr毛去除率高于92%。

3 微波煅烧钒催化剂

硫酸是重要的无机化工原料,主要采用接触法生产,二氧化硫的催化氧化是硫酸生产的关键步骤。目前世界上普遍采用钒催化剂催化氧化二氧化硫。钒催化剂生产中干燥和煅烧,此过程中,反应时间长、能耗大、扬尘点多,致使钒催化剂的机械强度降低,磨耗大。因此,试图采用微波辐射的方法来取代传统的干燥和煅烧方法。实验表明,V2 O5具有强烈吸收微波的功能,这为采用微波法提供了可能。东南大学的孙德坤等[5-6]报道了微波煅烧制备钒催化剂的实验,结果表明:微波法煅烧钒催化剂的催化活性、机械强度等指标都超过了采用传统法生产的催化剂,并且能够减少耗能,降低成本,同时减少环境污染具有即经济又环保的优点。此外,微波催化技术还应用于石油化工、烟草行业和微波催化辅助提取中药有效成分等方面[7]。

4 展望

微波催化技术是一门综合叉科学,尽管它的作用机理尚不够清楚,人们对反应机理的争议也较多,但由于它能在一些反应中加快反应速度,缩短反应时间,提高收率,实现某些常规方法不能进行的合成,并且可以和大多数常规催化剂共同作用的特点,有待于更为进一步研究与探讨。同时,随着人们对微波催化的不断认识、对微波催化技术的深人研究和微波装置的不断改进,可以预见微波催化技术将会得到广泛的应用和发展。

参考文献

[1] 高军军,胡书明,吾满江,等.微波催化技术在有机合成中的作用[J]新疆师范大学学报,2011

[2] 张慧敏.微波催化湿式氧化法处理难降解有机废水[M].河南化工,2011

[3] 谭亚军,蒋展鹏.废水处理催化湿化氧化法及其催化剂的研究进展,环境工程,1999

[4] 都苗,微波催化处理连续流染料废水的研究[D].长春:东北师范大学,2012

微波在有机合成中的应用范文2

关键词:药物工程;药物合成反应实验;教学方法

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0281-02

制药工程是适应世界医药行业在20世纪90年代迅速发展而产生的新学科,发展历史不长,主要涉及的内容是药物的合成、分离、过程控制等工程与质量管理法规,是一个以培养从事药品制造工程技术人才为目标的化学、药学和工程学交叉的理工科结合的专业。实验教学可以加深学生对理论知识的理解和记忆,提高学生理论联系实际的能力和观察问题、分析问题、解决问题的能力,培养学生严谨求实的科学态度和创新意识。因而实验教学成为高等学校教学工作的重要组成部分,是提高学生综合素质、培养学生能力的重要教学环节。药物合成反应实验是面向药学专业开设的重要专业课程之一,该课程是对药物合成反应理论课程的辅助和补充,又是一门实践性很强的综合性课程,担负着培养制药工程专业学生职业能力和职业素养形成的重要任务。在药学专业药物合成反应实验的传统教学中,教学方式枯燥、单一,这严重扼杀了学生的学习主观能动性,导致学生缺乏创新能力,不利于当代大学生综合素质的提高。所以,对药学专业药物合成反应实验开展教学改革势在必行,以求提高课程教学质量,增强教学效果,因此本文对药物合成反应实验课程教学方法提出了以下建议。

一、启发兴趣,调动学生学习积极性

科学而合理地处理、安排好教学工作,启发兴趣,才能充分调动学生学习积极性。在教学过程中,可结合制药工程专业的学科特点,让学生了解到运用药物合成反应的知识在开发新药方面所起到的重要作用,以此来激发制药工程专业的学生学习的热情,使学习成为学生自觉的行动。为此教师应收集相关的发展动态,并结合自身的科研工作,发掘药物合成反应中学生感兴趣的内容,将其贯穿于实验教学中,如教学中根据所学到的药物合成反应设计合成一些畅销药物,让学生充分感受到学习药物合成反应实验的重要性。

二、多媒体教学与传统教学结合,提高教学效率与教师的综合素质

多媒体教学可以节约时间,教师不必像传统教学那样花费大量时间写板书,在有限的课时条件下扩大了教学容量。教师将教学内容利用多媒体课件进行讲解,并有时间向学生介绍相关专业的新理论,新方法和新技术,从而扩大了教学容量,增加了学生与教师的交流机会,提高了教师教学和学生的学习效率。多媒体可以将药物合成反应实验教学中复杂枯燥的反应被形象化、立体化、模拟化的反应所取代,使抽象难懂的反应通过多媒体表达得清楚易懂,不仅可激发学生的学习热情,而且也有助于对药物合成反应实验理论知识的理解和记忆。多媒体教学是现代化教学的一种辅助教学手段,不仅要求教师具有精湛的专业知识,还要具有制作多媒体课件的能力,教师在课件的制作过程中加强对知识的理解和运用,从而提高教师的专业水平,同时在制作课件过程还增加教师对多媒体技术的了解和运用,提供自身的综合素质。

三、开展第二课堂,培养应用型人才

通过让学生自主设计实验,搜集某一药物制备的原理、所用原料、哪个方案应用的最广,进一步深化有关药物合成反应的理论和实践知识,加深学生对重要药物合成反应的理解和认识,训练学生合理选择合成方法,正确应用新试剂、新反应,培养学生的创新能力。实验完成后,可鼓励有能力的学生部分地参与到教师的科研工作中来。并与当地的药业集团、药物研究院等优秀制药企业和研究机构建立联系,有计划,有组织地开展第二课堂,开展生产实习活动,让学生了解药物合成在实际生产中的操作步骤、注意事项等,让学生熟悉药物合成反应实验在制药领域应用的内容。

四、实施双语教学,培养满足符合时代需求的人

针对21世纪人才培养目标要求与药物合成反应课程教学中需要培养学生专业英语应用能力的要求,学生还应具备查阅英文文献的能力和实验过程处理问题的能力。在课件制作的过程中,可兼有中英文两种方式,将专业教学与英语教学有机地结合起来,提高学生的学习专业英语的效率。另外,在本课程的授课过程中,结合教材习题中英文药物合成实验部分,让学生自己查阅相关文献,并专门抽出一定时间,让学生对药物合成外文文献进行口头翻译,切实提升他们的专业英语运用能力。

五、重视实验安全和保护内容

药物合成属特殊岗位,安全意识、产品质量意识、责任意识等职业素养的形成必须贯穿于实验课程教学内容中。因为药物的化学结构极其复杂,合成中可能会使用许多危险的试剂和特殊的反应条件,而且合成步骤都比较多,有许多反应过程存在着各种危险因素,所以药物合成反应实验教学需要对安全操作问题作具体详细的讲授。实验预习要求学生事先查阅文献资料,了解实验中使用原料的理化性质、安个防护及应急处理手段。

六、注重绿色化学以及合成前沿

绿色合成是今后药物合成工业的必然趋势。在这一原则指导下,有机合成新技术不断涌现,对教师的知识结构提出了更高的要求。例如,无溶剂反应中的研磨反应原理,无毒害溶剂的选择类型;又如微波反应在有机合成中的应用范围,微波反应使许多在一般条件下难反应或难操作的过程变得比较顺利等。药物合成反应发展非常迅速,教师在课堂教学中尽可能地将药物合成反应新理论、新方法、新成果教给学生,使他们能够在将来的实际工作中有更为开阔的思路。为此,教师需要积极收集阅读文献,认真听取专家学者的学术讲座,不断追踪最新的学科发展,吸取新的营养,以此来完善自己的知识结构。

药物合成反应实验作为制药工程专业课程之一,在其教学方面,教师需不断地探索新教学的方式,积极听取经验丰富的老教授的意见,并不断地反馈学生的意见。制作与实验内容密切相关的课件,并不断进行内容的更新。从提高学生的动手能力,启发学生的创新思维能力出发,为培养21世纪的新人才而不懈努力。

参考文献:

[1]黄华容,谭伟,杜志云,赵肃清.《药物合成反应》课程教学改革与探讨[J].广东化工,2012,(16):167.

[2]陈爱华.《药物合成反应》课程教学研究[J].科技信息,2013,(2).

[3]张江华,才谦,高欣钦,刘平,刘岩,杨欣欣.药学专业药物合成反应实验教学改革初探[J].广州化工,2013,(2).

[4]赵鹏.中药制药专业《药物合成反应》教学方法探讨.宁夏师范学院学报(自然科学),2008,(6).

微波在有机合成中的应用范文3

关键词:对硝基苯甲醚 合成 相转移催化剂 研究进展

中图分类号:O625 文献标识码:A 文章编号:1672-3791(2012)09(c)-0065-03

1 前言

1.1 开题依据

对硝基苯甲醚(C7H7NO3,p-Nitroan isole,简称PNA)又称对硝基茴香醚,熔点54℃,沸点259℃,溶于乙醇和乙醚,在水中溶解度很小,为黄色结晶。对硝基苯甲醚是合成对氨基苯甲醚等化合物的重要前期物质[2,9],是合成颜料、染料和医药的重要中间体[1,7]。

对硝基苯甲醚作为重要的有机中间体,近年以来由于我国纺织、染料、制药等工业的发展,以及国内外市场需求的增加,从而有着巨大的市场前景。

国内对硝基苯甲醚的生产目前最常用的方法是对硝基氯苯催化甲氧基化。本文重点介绍以对硝基氯苯、甲醇和氢氧化钠为原料合成对硝基苯甲醚的相转移催化剂法。

1.2 对硝基苯甲醚合成工艺发展

目前,我国大多采用对硝基氯苯法。在大量甲醇存在下对硝基氯苯与固体氢氧化钠在加压釜中反应约10~13h合成对硝基苯甲醚。但此工艺有着反应时间长,甲醇消耗量大,副产物对硝基苯酚生成大,收率低下,环境污染等问题[4,11]。而采用相转移催化法合成对硝基苯甲醚,可以克服现行工艺中的诸多缺点,而且相转移催化反应副反应极少,反应体系中未能检出氧化偶氮苯、偶氮苯和酚类等副产物,从而能创造出更多的社会、经济以及环境效益[4]。

对硝基苯甲醚的产量和质量直接影响其下游产品的生产和销售,相转移催化剂的应用给对硝基苯甲醚的市场带来新的生机。

常用的小分子相转移催化剂有季铵盐(苄基三乙基氯化铵、四丁基溴化铵、四丁基硫酸氢铵)、季铵碱、季磷盐、叔胺(吡啶,三丁胺)、聚醚(如链状聚乙二醇,链状聚乙二醇二烷基醚)以及环状冠醚(如18冠6,15冠5)等,其催化效果好,但有着一次使用且稳定性差的缺点[6,7]。

为此,近年来研发的高分子相转移催化剂,能够克服上述小分子相转移催化剂的缺点,在有机合成中的逐渐得到广泛的应用。例如,聚苯乙烯固载聚乙二醇树脂作催化剂;高分子固载季铵盐作催化剂,其中有聚苯乙烯固载的季铵盐树脂、吡啶树脂、三乙胺树脂、三乙醇胺树脂,聚苯乙烯固载的吡啶树脂,氯化聚氯乙烯固载三乙胺树脂,聚氯乙烯固载的吡啶树脂、多乙烯多胺树脂等。以上几种高分子相转移催化剂在合成对硝基苯甲醚中效果均良好,产品收率达90%以上[6]。

高分子催化剂使用、保存方便,可重复使用,对环境友好,对设备腐蚀小,应用前景广阔。但高分子相转移催化剂也有合成麻烦、成本较高的缺点。

若将PTC活性中心以一定方法接枝到聚合物载体上,可制成三相转移催化剂。该催化剂除具有PTC的反应条件温和,选择性高,副产物少等优点外,还具有高分子试剂稳定性好,能回收和重复使用,分离方便等[11]诸多优越性,克服传统工艺甚至二相转移催化工艺中的一些缺陷。

2 文献综述

2.1 以对硝基氯苯、甲醇和氢氧化钠(或氢氧化钾)为原料简易合成法

在不使用催化剂时,甲醇和氢氧化钠反应生先成甲醇钠,甲醇钠再和对硝基氯苯反应生成对硝基苯甲醚。此法条件温和,操作简单,但由于反应体系里含有苯环结构,因此在甲醇中的溶解度极低。所以,在没有催化剂的情况下,互溶性差,反应耗时长,而且副产物对硝基苯酚等较多,对环境污染较为严重[1]。

俞善信和文瑞明由对硝基氯苯和甲醇在氢氧化钾存在下,未使用催化剂而直接合成对硝基苯甲醚[9],反应时间短,操作方便。因为氯化钾在甲醇中的溶解度小于氯化钠在甲醇中的溶解度,所以在非催化剂存在下使用氢氧化钾能更有效地合成对硝基苯甲醚[9]。

2.2 以对硝基氯苯、甲醇和氢氧化钠(或氢氧化钾)为原料相转移催化剂法

研究发现在反应中使用相转移催化剂,速率可显著提高。因相转移催化剂可使参加反应的离子OCH3-从水相转移到有机相,加速处在不互相溶解的两种溶剂中的甲醇钠与对硝基氯苯的反应[1]。

该反应过程中,首先是溶解在水相中甲醇与氢氧化钠反应,生成CH3ONa,CH3ONa是一个强碱,CH3O-具有很强的亲核性,由于对硝基氯苯中氯原子的对位有很强的吸电基-NO2的存在,与氯原子相连的芳环碳原子电子云密度较少,具有较强的接受电子的能力[4],受到亲核试剂CH3O-的进攻,发生芳香族亲核取代反应。

以一种相转移催化剂季铵盐(Q+X-)为例,季铵盐的分子既有可溶于有机相的基团,又有可溶于水的基团。季铵盐中的正与负离子在水相形成离子对,可以将负离子从水相转移到有机相,而在有机相中,负离子无溶剂化作用,而且正负离子之间作用弱,因而反应活性大大提高[5]。

卤代苯和脂肪醇在季铵盐作为相转移催化剂的条件下反应生成醚,脱去一份氯化氢,以氢氧化钠水溶液为缚酸剂。

在对硝基苯甲醚合成反应中,甲醇与氢氧化钠先反应生成亲核试剂CH3ONa,然后催化剂与水相中的亲核试剂形成离子对Q+CH3O-,使原来不溶于有机相的亲核试剂进入有机相,与有机相中的反应物生成产物,反应后离去的基团与Q-又结合成离子对,返回水相.循环此过程就实现了两相间的转移[4]。

常用的催化剂有季铵盐、季磷盐、冠醚、线性聚氧乙烯类催化剂(如聚氧乙烯脂肪醇、聚氧乙烯烷基酚以及聚乙二醇等)[3]、壳聚糖钯、聚苯乙烯-多乙烯多胺树脂、聚苯乙烯固载聚乙二醇树脂、苯乙烯和二乙烯苯共聚物固载季铵盐等[1]。

2.2.1 季铵盐作催化剂

季铵盐虽不大稳定,但却是相转移催化剂中研究得最早、应用较广的一类相转移催化剂[7]。其中三乙基苄基氯化铵作为常用的季铵盐,可以使正常条件下难进行的反应进行,缩短反应时间,提高产率,在有机合成中有着非常广泛的应用[8]。

章亚东和高晓蕾等在氢氧化钠碱性介质中,以氯化苄基三乙基铵为相转移催化剂,由对硝基氯苯和甲醇反应合成了对硝基苯甲醚,产品收率高纯度也高[4]。

李玉红,孟小华的相关研究表明:在对硝基苯甲醚的合成反应中,加入相转移催化剂TEBA后,此反应的反应收率可达到92%以上,较不加催化剂的反应收率提高了10个百分点[8]。

作者使用一定量的对硝基氯苯,甲醇和季铵盐加热至70℃,恒温回流。然后一次性加入预热至65℃的35%的氢氧化钠溶液反应2h,升温至80℃再反应2h。得到的反应物在不断搅拌下倒入冷水中,进行抽滤,再用蒸馏水洗,抽干得到结晶物。经过分析,产品纯度高,收率良好。

2.2.2 聚乙二醇作催化剂

相转移催化剂中,季铵盐的乳化作用明显,稳定性差,产物的分离、纯化有一定的困难;冠醚类价格贵,且有毒性,应用受到一定的限制[3]。采用聚乙二醇(又称聚氧乙烯化合物)为相转移催化剂制取对硝基苯甲醚,不仅价廉、来源丰富、化学稳定性好、无毒,且反应条件温和,操作简便[3,7]。

陈邦俊采用聚氧乙烯化合物为相转移催化剂,比较了原料与催化剂,原料与碱的不同摩尔此,对转化率的影响。在适当控制配比的条件下,获得对硝基苯甲醚收率为95%,含量为98%的结果[3]。

褚斐,杨祥,周朝昕也研究了对硝基氯苯在聚乙二醇相转移催化剂作用下合成对硝基苯甲醚[16]。研究表明:此法能在常压下进行,条件温和,操作简便,产品质量好,收率高而且副产物少。克服了之前老工艺甲醇循环量大,能耗大及污染严重等缺点[3,7]。

2.2.3 聚氯乙烯-多乙烯多胺树脂作催化剂

聚氯乙烯与多乙烯多胺反应,制备一种具有固载季铵离子结构的树脂,根据其在甲醇中的良好溶胀性能,成功地用它合成了对硝基苯甲醚[10]。

李善吉的对硝基苯甲醚的合成技术如下:在三颈烧瓶中加入一定量的季铵碱型树脂催化剂(聚氯乙烯(PVC)与多乙烯多胺反应而成)和无水甲醇溶胀过夜。再加入反应物对硝基氯苯和氢氧化钠,在60~65℃中搅拌反应一定时间。然后蒸馏回收多余的甲醇,加水搅拌,冷却滤出碱液。沉淀用水洗至中性,用热乙醇溶解产物,趁热过滤分离出催化剂(可重复使用),冷却,析出沉淀,过滤,干燥得产品并测定熔点。将乙醇液蒸馏回收,待蒸出大部分乙醇后,加入少量水,摇动,冷却,抽滤,水洗,得浅黄色结晶(第二批产品)[2,10]。

实验表明合成的聚氯乙烯-多乙烯多胺树脂具有稳定的催化性能以及良好的亲水性能。

2.2.4 壳聚糖钯作催化剂

壳聚糖是甲壳素的脱乙酰化产物,分子内有大量氨基和羟基,对过渡金属离子具有较强的吸附和螯合能力。壳聚糖作为金属催化剂的首选载体,是一种用途广泛的环境友好型高分子材料[17]。

童永芬,唐星华,舒红英以天然可降解高分子壳聚糖为载体,在室温下通过与PdCl2盐酸溶液作用制得壳聚糖PdCl2的黄色粉末,然后进一步在乙醇中回流还原制得壳聚糖钯配合物催化剂。他们三人研究了在不同反应条件下该催化剂对合成对硝基苯甲醚的催化性能。研究表明:将壳聚糖载钯催化剂应用于合成对硝基苯甲醚的反应,条件温和,产率较高。而且壳聚糖在自然界中的储量巨大,且催化剂重复使用率高,从而有效地提高了贵金属钯的利用率[17]。

2.3 聚苯乙烯-二乙烯苯接枝聚乙二醇作催化剂

章亚东,蒋登高合成出了聚苯乙烯-二乙烯苯接枝PEG-400并以此为三相转移催化剂,研究了对硝基苯甲醚的合成工艺。考察了催化剂、氢氧化钠、甲醇用量等对反应转化率的影响,建立了较佳的合成工艺条件[11,15]。此法产品纯度高,催化活性高,无毒、反应后易分离可重复使用。

三相相转移催化是将PTC活性中心通过一定方法接枝到载体上,形成高分子支载化三相相转移催化剂,与可溶性PTC相比具有不溶于水、酸、碱和有机溶剂等特点。

三相催化剂已高分子化,挥发性小,毒性相应减少,且有容易保存、分离、回收等优点。常用载体有聚苯乙烯树脂、氯化聚氯乙烯等有机载体以及硅胶、氧化铝等无机载体。有机载体中,聚苯乙烯树脂价廉易得、稳定性好,成为目前应用最广泛的高分子载体[15]。

2.4 以硝基酚与卤代甲烷为原料合成

以对硝基苯酚和氯甲烷为原料,加入氢氧化钠作用下,在145~155℃的温度和0.8~1.8mP的压力下,可以制得对硝基苯甲醚。此方法产率高,产物纯度高,但需要在加压的条件下才能进行,所以目前只适合在实验室中合成,还不适合工业化生产[1]。

2.5 苯甲醚的硝化

以苯甲醚和硝酸为原料,在硫酸的催化下硝化,可以制得对硝基苯甲醚。该法的主要原料苯甲醚不易大量获得,在硝化过程中有副产物,而且分离比较困难。所以此法不常使用,必须寻找比较理想的催化剂减少副产物邻硝基苯甲醚的生成[1]。

2.6 以碳酸二甲酯与对硝基苯酚为原料合成

在以活性炭为载体和以KOH为活性组分的固体作为催化剂的条件下,碳酸二甲酯和对硝基苯酚合成对硝基苯甲醚[1]。

碳酸二甲酯是一种环境友好的化学品,其分子中含有甲基、羰基、甲氧基等活性基团,可以替代剧毒化学品氯甲烷、光气等,活性远高于甲醇。虽然它目前的价格比较昂贵,但价格有望降低从而会有更广泛的应用。所以以DMC为烷基化试剂与对硝基苯酚反应合成对硝基苯甲醚是一条环境友好的绿色工艺路线[13]。

蔡明明,薛冰,李永昕研究表明:负载型KOH/AC催化剂对对硝基苯酚和碳酸二甲酯反应合成对硝基苯甲醚具有较高的活性[13]。

3 结论

综上所述,对硝基苯甲醚通常以对硝基氯苯、甲醇和氢氧化钠为原料,用相转移催化法合成。相转移催化法不需要特殊的仪器设备,也不需要价格昂贵的无水溶剂或非质子溶剂,而且反应条件温和、操作简便、副产物量少,因此成为近年来的研究热点[1,16]。

相转移催化剂有的不稳定(如季铵盐)、有的有毒(如冠醚),而高分子相转移催化剂虽然是效果良好且能重复使用的催化剂,但其合成麻烦且成本也较高,所以也未能得到广泛应用[13]。

有研究者在研究在使用相转移催化剂的同时,采用微波辐射,发现可以极大地促进化学反应,缩短反应时间,提高收率,同时成本低,具有良好的应用前景[14]。

未来的研究方向是:用尽可能少的成本,尽可能简便的方法制备催化性能良好、选择性高、来源广泛、重复使用率高、安全方便、稳定性高、无毒环保的催化剂,达到缩短生产时间,提高反应转化率等的目的,实现生态效益、经济效益和社会效益的统一。

参考文献

[1]黄国华.对硝基苯甲醚的合成方法综述[J].化学工程与装备,2011(8):131-132.

[2]李善吉.对硝基苯甲醚的相转移催化合成[J].河北化工,2004(5):32-33.

[3]陈邦俊.对硝基苯甲醚新合成工艺研究[J].浙江化工,1990,21(3):38-39.

[4]章亚东,高晓蕾,等.季铵盐相转移催化合成对硝基苯甲醚工艺研究[J].精细石油化工,2002(4):6-10.

[5]李玉红,孟小华.三乙基苄基氯化铵相转移催化性能研究[J].咸阳师范学院学报,2009,24(4):49-51.

[6]相转移催化合成对硝基苯甲醚[J].化工中间体,2004(2/3):45.

[7]俞善信,文瑞明.相转移催化合成对硝基苯甲醚[J].精细化工中间体,2003,33(5):19-20,34.

[8]李玉红,孟小华.转移催化剂TEBAC的合成与应用研究[J].宝鸡文理学院学报:自然科学版,2009,29(3):40-42.

[9]俞善信,文瑞明.对硝基苯甲醚的简易合成法[J].山西大学学报:自然科学版,2004,27(3):283-284.

[10]李善吉.对硝基苯甲醚的转移催化合成[J].河北化工,2004(5):32-33.

[11]章亚东,蒋登高,等.聚苯乙烯-二乙烯苯接枝聚乙二醇催化合成对硝基苯甲醚[J].高校化学工程学报,2002,16(5):524-529.

[12]俞善信,李军勇.聚苯乙烯三乙醇胺树脂催化合成对硝基苯甲醚[J].广州化学,2001,26(1):15-18.

[13]蔡明明,薛冰,李永昕.KOH/AC催化合成对硝基苯甲醚的研究[J].江苏工业学院学报,2010,22(1):9-12.

[14]吴萍.微波辐射相转移催化合成对硝基苯甲醚[J].淮海工学院学报,2000,9(4):30-31.

[15]章亚东,高晓蕾,等.三相相转移催化合成对硝基苯甲醚的研究[J].现代化工,2002,22(1):27-30.

微波在有机合成中的应用范文4

关键词:有机化学实验;废弃物;绿色化学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)50-0265-02

随着工业化生产的不断提高,环境污染越来越受到人们的关注。防止工业污染特别是化学污染,从根源上解决环境污染问题,是一个迫在眉睫的课题,更是绿色化学的根本任务。绿色化学给化学工作者提出了一项新的挑战。化学实验室在学生的化学学科知识以及实验技能方面起到一个非常重要的作用,化学实验室的科学利用,对学生的科技创新思维有很大的提高。化学实验室管理的规范性、创新性,特别是绿色化管理程度直接影响到实验教学。有机化学实验在四大基础化学中又不同于其他化学实验,这就要求有机化学实验室的管理具有一定的特殊性。我院有机化学实验室承担着化学、化学工程、应用化学以及制药工程、生物技术等专业的有机化学实验教学,实验室使用频率高,难于管理。作为从事有机化学实验室的管理工作者,将环保与绿色化学理念贯穿于整个实验教学中,是我们责无旁贷的责任。本文试图从我院有机化学实验的绿色化学意识、微型化、低值易耗品管理、注重有机废弃物的回收利用等方面,探索实验室的绿色化管理。

一、加强绿色化学意识

学生环保意识、绿色化学管理意识的提高贯穿于整个有机化学实验教学过程中。有机实验教学中常用到或产生一些污染环境的药品和试剂,要减少环境污染,必须培养学生的环保意识,养成良好的实验习惯。因此,在新学期的第一堂有机化学实验课中,我们用现代化多媒体工具,通过一些教学事故案例、化工类产业事故等图片或视频,对学生进行实验室安全、环保教育,每次实验前让学生分析该实验的安全隐患,做到实验前心中有数,实验过程认真负责,实验结束后及时总结,让学生直观的认识实验室绿色化管理的重要性。其次,从有机化学实验教学出发,对有机实验的教学内容进行合理的调整,改变以现有教材为标准的教学方法,逐步实施绿色化的实验教学模式,让学生在做实验过程中自觉养成绿色化学的环保意识。

二、实验微型化

为了加强实验室的绿色化学管理,我们采取半微量实验装置,从实验源头上减少药品的使用量从而减少污染。近年来,在保证实验教学的前提下,对多数有机实验进行了微型化实践。如溴乙烷的制备、己二酸的制备、乙酰苯胺的制备、乙酸正丁酯的制备等。将试剂用量由常规用量减至原来的1/2~1/5后,通过对比实验可知,微型化后同样能达到教学要求。同时,改变传统的合成方法,例如,在肉桂酸的制备、乙酰水杨酸的合成中引进现代有机合成实验新技术与新方法,分别采用微波辐射法和超声波合成法,在节约药品用量、减少“三废”排放、提高学生实验技能的同时,也让学生在微型化实验合成方法中感受绿色化学的重要性。而实验微型化的实施、药品用量的减少,也让实验室药品的库存降低,从而提高实验室的绿色化管理。

三、低值易耗品管理

有机实验室中的低值易耗品的管理主要涉及有机化学试剂和玻璃仪器。因化学试剂使用不当或管理不当而引起教学事故或意外的案件常有发生。针对有机化学试剂品的特殊性,即品种多,具有易燃、易爆、易挥发、易腐蚀,毒害性,在管理上,采取专人管理制度。玻璃仪器在实验操作过程中极易打碎,学生操作不规范,极易造成玻璃仪器的破损。针对上述情况,在化学实验室管理中对化学试剂、玻璃仪器进行规范化管理。

1.化学试剂的管理。实验室的管理工作很大程度上是化学试剂的管理工作。有机化学试剂的特殊性,要求管理工作者必须是化学专业的管理人员。化学试剂的绿色化管理可从药品的存放和保管两方面进行。药品存放库房通风设施必须良好,所有试剂标签清楚明了,密封合格;易挥发、易燃、易爆试剂按教学计划购买,保证实验教学,控制库存,分类存放在药品房中。一般试剂的存放要注意酸、碱性物质以及氧化剂、还原剂分开,以免发生意外反应。管理人员应该做到熟悉各种试剂的名称、数量、存放位置等详细信息,采用专用的账本记录,并借用电子化管理;药品的领用情况做好记录,期末清点库存,按实验教学项目进行相应的采购计划,避免多余库存。对于易挥发的有毒药品,必须在通风橱内进行操作,以防污染环境;对于强腐蚀性药品,必须戴乳胶手套,必要时还要戴护目镜或面罩进行操作,以防灼烧,造成伤害;对于危险品和贵重类药品,按实验项目和学生实验用品量控制实验用量,要求学生严格按量称取,不得超量,实验结束后,认真检查验收,及时归位,以防危险品外流,发生意外事故。常规性药品可放置在普通药品柜中。用量比较大或较小的药品,由管理人员提前准备,放到实验室公用桌面或小组试剂架上供学生公用,避免学生称量过程造成不必要的损失。实验结束后,实验员及时整理归位。通过实验室中各类药品的使用、存放等注意事项,加强学生绿色化管理意识。

2.玻璃仪器的管理。完成有机化学实验的器材多数是易碎的玻璃仪器,管理的不当或者学生操作不规范,极易造成玻璃仪器的损坏。在玻璃仪器的管理上,实验常用玻璃仪器,每组分发一套《少量半微量有机制备仪》玻璃仪器,如半微量三颈圆底烧瓶、单颈圆底烧瓶、球形冷凝管、直型冷凝管等,以及一些常用的烧杯、漏斗、量筒等存放在各小组的实验柜中,实行管理责任制。开学初期,要求学生对照仪器清单清点仪器,实行“多还少补”制度。实验结束后,进行学生检查、教师监督,做好仪器损坏登记,损坏仪器的学生及时领用补充完整,适当实施赔偿。重复使用的小组成员实验前须检查玻璃仪器的完整性。不常用的玻璃仪器,如滴液漏斗、分液漏斗、恒压滴液漏斗、油水分离器等,实验结束后清洗干净,在磨口旋塞上垫上小纸片以防旋塞打不开,并用橡皮筋固定,贴上实验小组编号,单独存放,需要时再按编号发放给学生。特别是水银温度计,使用过程中极易打坏,造成水银脱落掉出来,严重影响环境和人体健康。每次实验结束后,学生必须清洗玻璃仪器,有机实验玻璃仪器比较难清洗,很多学生用完后用水冲一下,或干脆不洗,实验管理人员可配制一些特殊的洗涤剂做清洗仪器使用,同时实验教学老师应加强监督管理。

四、注重有机废弃物的回收利用

在有机化学实验教学中,有机化学试剂的使用,必然会产生一定量的废弃物,这些废弃物若处理不当,学生或教师不够重视,对我们的人体、实验室环境甚至周边的环境有非常大的危害。注重废弃物的回收利用,减少实验室环境污染,可以增强学生的绿色化学意识和环保意识。因此在实验中的废酸、废碱,我们采用集中收集的方式,尽量回收,如“熔点的测定”实验用过的浓硫酸,回收后可以用作洗涤剂或配制50%的硫酸,备“正丁醚的制备”实验中用,不能回收的倒弃前将其中和到规定的pH值。回收的废碱液,可以和95%乙醇配成洗液,用于洗涤油脂、焦油、树脂等残留物。有机实验中常用的一些有机溶剂如苯、乙醇、乙醚、丙酮、氯仿等,直接倒弃严重污染环境,造成药品的浪费。如实验中用过的萃取剂苯,精制后可作“乙酰苯胺”实验的原料,该实验产物可掺入一些杂质,在“重结晶与提纯”实验中利用;其他废弃液如乙醇、丙酮、四氯化碳等,因实验中用量较少,回收后可用做有机洗涤剂。对实验过程中产生的废气,如“苯乙酮的制备”过程中产生的HCI气体,将吸收液由碱液改为水吸收,既有效地吸收了HCI气体,又可将吸收液与废碱作用,从而减少废碱液,是一举两得的好方法。实验教学过程中,可以组合优化实验教学内容,一些基本操作实验和重要的性质实验可结合合成实验,做到节省时间和化学试剂,也有利于学生对相关有机知识的理解和掌握,提高原子经济性,又减少有毒试剂对环境的污染。通过实验教学中产生的废弃物的环保处理,培养学生实验室绿色化管理意识。因此,在实验教学和管理过程中,只要用心去研究、探索化学实验的绿色化,就能增强学生的环保意识和绿色观念,培养具有环保意识的人,为实验环境、社会环境的“绿色化”尽一份力量。

实验室的管理工作繁琐但却重要。有机化学实验室的特殊性使得其管理在实验室管理要求更高,实验室管理水平的高低直接影响学生的实验技能以及实验室的建设和发展,必须对其实行科学化、规范化的管理。实验室的每一个主体都要以主人翁的态度对待实验室的管理。实验技术人员在做好实验室管理工作的同时还要积极进行自我学习和交流,教育、感染学生,在实验室的管理中不断提高管理能力,确保实验室教学和科研工作有条不紊地进行,使学生在掌握基本知识的前提下,深化实验室绿色化理念,增强自身的综合素质。

参考文献:

[1]高占先.有机化学实验[M].北京:高等教育出版社,2004.

[2]曾昭琼.有机化学实验[M].北京:高等教育出版社,1999.

[3]苏桂发.有机化学实验[M].桂林:广西师范大学出版社,2012.

[4]赵永丽.浅谈大学有机化学实验室管理[J].甘肃联合大学学报,2010,(24).

[5]杨国玉,徐翠莲.有机化学实验绿色化教学的改革与实践[J].实验室科学,2010,(4).