通信技术趋势范例6篇

前言:中文期刊网精心挑选了通信技术趋势范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

通信技术趋势范文1

一、移动通信的发展历程

从我国的移动通信发展历程来看,至今为止总共经历了四个发展阶段:

1.1第一代通信技术(1G)

由上世纪八十年代提出,历时十年的时间才发展问世。1G通信技术主要是通过模拟传输来达到传输信息的目的,但是具有速度低、质量差、安全性差等明显的缺点。

1.2第二代通信技术(2G)

这代技术开始于二十世纪九十年代,其采用了更为密集的技术结构以及初步的智能技术,相对于1G技术而言已经有了很大的进步,不过依然还是不能够满足通信业务的发展要求。

1.3第三代通信技术(3G)

此技术运用了智能型号的处理技术,相对前两代的通行技术,3G技术已经能够提供移动宽带服务,通信速度也有了极大的提升。但是,该技术当中对于频谱的利用率还较低,很多宝贵的频谱资源还没有得到利用。3G依然还是不能够满足人们的需求。

1.4第四代通信技术(4G)

目前我们使用的4G网络拥有极高的下载速度与灵活度,其在视频图像的传输效果可媲美高清电视。相对于前三代通信技术而言有了质的飞跃。

不过,随着社会的不断发展,人们对于网络通信技术的要求也会越来越高。目前还处于研发状态的5G通信技术作为最新的一代通信系统,是符合客观的发展规律的。至少在未来的十年之内,能够满足人们对与移动通信的发展需求。

二、5G移动通信技术的特点

以4G网络作为对比,5G网络至少有以下几个特点:

(1)5G网络的峰值速率将会比4G网络高10倍,速率能够达到10Gb/s以上。(2)5G网络具有低延迟与靠可靠性的特点,在使用的过程中,延迟将低于5ms。(3)5G网络在资源下载的速度撒谎那个可以达到10Mb/s,特殊的用户能够达到100Mb/s。(4)5G通信系统将更为环保与节能,其能耗是目前4G网络的十分之一左右。(5)5G网络还包括有五大应用场景:支持大规模人群运用;超高速场景通信;随时随地的最佳体验;无处不在的物物通信以及可靠的实时连接。

三、5G移动通信技术的发展趋势

不可否认,5G移动通信技术必然是通信技术发展的必然趋势。随着近些年计算机网络技术的飞速发展,在近几年之内,该技术将会进入到实质性的发展阶段,同时5G移动通信无论是在容量上还是在速度上或许还会有更大的提升。不仅在中国,在世界各国早在2013年就已经启动了5G的研发项目,。目前现有的固定互联网服务业务将会通过无线网络的方式提供给用户,诸如后台服务以及晕计算的广泛应用,也会极大的推动5G移动通信技术的发展,尤其是在系统的容量以及资源传输的质量上,都有有极大的改进。

一些除去5G的其他通信技术势必也会得到更大的发展,为了提高通信技术的业务能力,网络技术以及传输技术在这方面势必也会有很大的突破。例如开发出更加智能、更加灵活的组网结构,从而增加对网络的利用率。而在无线传输技术上,也将会极大的提升频谱资源的利用,更深的挖掘频谱资源的潜能等等。以上种种,无论是5G移动通信还是对整个通信行业都会带来质的飞跃。

通信技术趋势范文2

关键词:现代通信技术;通讯技术发展;数字通信技术;程控交换技术

中图分类号:TN914 文献标识码:A 文章编号:1009-2374(2012)06-0006-03

一、概述

纵观通信技术的发展,可分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电磁通信阶段。1837年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。

从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。从国外通信技术的发展看,大约从70年代开始,通信即进入了现代通信的新时代,现代通信的多项技术发展处在方兴未艾之中。

二、现代通信技术

(一)数字通信技术

数字通信即传输数字信号的通信,是通过信源发出的模拟信号经过数字终端的信源编码成为数字信号,终端发出的数字信号经过信道编码变成适合与信道传输的数字信号,然后由调制解调器把信号调制到系统所使用的数字信道上,经过相反的变换最终传送到信宿。数字通信以其抗干扰能力强,便于存储,处理和交换等特点,已经成为现代通信网中的最主要的通信技术基础,广泛应用于现代通信网的各种通信系统。

相关技术包括有:模拟/数字信号转换技术,数字滤波(去干扰),编码技术,数字通信技术(包括有线和无线,有线包括各种通信接口的相关技术,例如RS232、USB、协议,无线根据频段又分为蓝牙技术、802.11b/g技术、微波技术等)等。

(二)程控交换技术

程控交换技术是指人们用专门的计算机根据需要把预先编好的程序存入计算机后完成通信中的各种交换。以程控交换技术发展起来的数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,便于改变交换机功能,便于建设智能网,向用户提供更多,更方便的电话服务,还能实现传真,数据,图像通信等交换,它由程序控制,是由时分复用网络进行物理上电路交换的一种电话接续交换设备。常见结构有集中控制、分散控制或两者结合。技术指标有很多,主要为BHCA/呼损接通率,无故障间隔时间等。

随着电信业务从以话音为主向以数据为主转移,交换技术也相应地从传统的电路交换技术逐步转向给予分组的数据交换和宽带交换,以及向基于IP的软交换方向发展。

就控制方式而论,程控电话交换机主要应用分为分布线逻辑控制(WLC) 和存储程序控制(SPC)两大类。

(三)信息传输技术(计算机传输)

主要是指一台计算机向远程的另一台计算机或传真机发送传真、一台计算机接收远程计算机或传真机发送的传真、两台计算机之间屏幕对话及两台计算机之间实现文件传输,即EDI(Electronic Data Interchange)技术。

现代计算机信息传输技术的的蓬勃发展,给现代信息传输带来了一场深刻的革命,享受ISP提供的Internet服务是信息传输的最广泛、发展最快的有效途经,它是现代计算机技术和现代通信技术的有机结合,促进了现代信息传输技术的发展,尤其近十多年,以HTML语言为基础的WWW技术的广泛应用,使信息服务进入前所未有的发展热潮,并朝着多媒体方向发展。

(四)通信网络技术

通信网是一种由通信端点、节(结)点和传输链路相互有机地连接起来,以实现在两个或更多的规定通信端点之间提供连接或非连接传输的通信体系。通信网按功能与用途不同,一般可分为物理网、业务网和支撑管理网等三种。

物理网是由用户终端、交换系统、传输系统等通信设备所组成的实体结构,是通信网的物质基础,也称通信装备网。用户终端是通信网的设备,它将用户发送的各种形式的信息转变为电磁信号送入通信网路传送,或把通信网路中接收到的电磁信号等转变为用户可识别的信息。交换系统是各种信息的集散中心,是实现信息交换的关键环节。传输系统是信息传递的通道,它将用户终端与交换系统之间以及交换系统相互之间联接起来,形成网路。

业务网是完成电话、电报、传真、数据、图像等各类通信业务的网络,是指通信网的服务功能,按其业务种类可分为电话网、电报网,数据网等。业务网具有等级结构,即在业务中设立不同层次的交换中心,并根据业务流量、流向、技术及经济分析,在交换机之间以一定的方式相互联接。

支撑管理网是为了保证业务网正常运行、增强网路功能,提高全网服务质量而形成的网络。在支撑管理网中传递的是相应的控制、监测及信令等信号,按其功能不同可分为信令网、同步网和管理网。信令网由信令点、信令转接点、信令链路等组成,旨在为公共信道信令系统的使用者传送信令。同步网为通信网内所有通信设备的时钟(或载波)提供同步控制信号,使它们工作在同一速率(或频率)上。管理网是为保持通信网正常运行和服务所建立的软、硬系统,通常可分为话务管理网和传输监控网两部分。

(五)数据通信与数据网

数据通信是通信技术和计算机技术相结合而产生的一种新的通信方式。要在两地间传输信息必须有传输信道,根据传输媒体的不同,以有线与无线区分,但它们都是通过传输信道将数据终端与计算机联结起来,从而使不同地点的数据终端实现软、硬件和信息资源的共享。

信号是数据的电磁编码,信号中包含了所要传递的数据。信号一般以时间为自变量,以表示消息(或数据)的某个参量(振幅、频率或相位)为因变量。信号按其自变量时间的取值是否连续,可分为连续信号和离散信号;按其因变量的取值是否连续,又可分为模拟信号和数字信号。

信号具有时域和频域两种最基本的表现形式和特性。时域特性反映信号随时间变化的情况;频域特性不仅含有信号时域中相同的信息量,而且通过对信号的频谱分析,还可以清楚地了解该信号的频谱分布情况及所占有的频带宽度。

由于信号中的大部分能量都集中在一个相对较窄的频带范围之内,因此我们将信号大部分能量集中的那段频带称为有效带宽,简称带宽。任何信号都有带宽。一般来说,信号的带宽越大,利用这种信号传送数据的速率就越高,要求传输介质的带宽也越大。

相关技术主要有:电缆通信技术;微波中继通信技术;光纤通信技术;卫星通信技术;移动通信技术。

(六)宽带IP技术

ATM曾被认为是一种十分完美的、用来统一整个通信网的技术,未来的所有话音、数据、视频等多种业务均通过ATM来传送。国际上,特别是电信标准化机构对该项技术进行了多年的研究,而且也得到了实际应用,但事与愿违,ATM没有能够达到原来所期望的目标。与此同时,IP的发展速度大大出乎人们的预料,一方面,在若干年前自始至终没有一种独立的IP骨干网技术;另一方面,IP在高速发展的同时确实有一定的缺陷,如QoS不高等。因此,在宽带IP骨干网中首先产生的是IP over ATM(IPOA)技术。

IP over ATM的基本原理是将IP数据包在ATM层全部封装为ATM信元,以ATM信元形式在信道中传输。当网络中的交换机接收到一个IP数据包时,它首先根据IP数据包的IP地址通过某种机制进行路由地址处理,按路由转发。随后,按已计算的路由在ATM网上建立虚电路(VC),以后的IP数据包将在此虚电路VC上以直通(Cut-Through)方式传输,从而有效地解决IP路由器的瓶颈问题,并将IP包的转发速度提高到交换速度。

IP over ATM技术很多,但按模型可归类为重叠模型和集成模型两种。

(七)接入网与接入技术

从整个电信网角度讲,可以将全网划分为公用网和用户驻地网(CPN)两大块。其中CPN属用户所有,因而,通常意义的电信网指的是公用电信网部分。公用电信网又可以划分为长途网,中继网和接入网(Access Network,简称AN)三部分。长途网和中继网合并称为核心网。相对于核心网,接入网介于本地交换机和用户之间,主要完成使用户接入到核心网的任务。

接入网可由三个接口界定,即网络侧经由SNI与业务节点相连,用户侧由UNI与用户相连,管理方面则经Q3接口与电信管理网(TMN)相连。传统以太网技术不属于接入网范畴,而属于用户驻地网(CPN)领域。基于以太网技术的宽带接入网由局侧设备和用户侧设备组成。局侧位于小区内,用户侧位于居民楼内。这种技术有强大的网管功能,而且和传统以太网兼容,成本更低。

三、现代通信技术发展的总趋势

现代通信与传统通信最重要的区别是现代通信技术与现代计算机技术紧密结合,其技术发展总的趋势以光纤通信为主体、以卫星通信、无线电通信为辅助,将宽带化、综合化(有的称数字化)、个人化、智能化的通信网络技术作为发展主要内容及方向,目标是实现通信的宽频带、大容量、远距离、多用户、高保密性、高效率、高可靠性、高灵活性。

(一)宽带化

宽带化是指通信系统能传输的频率范围越宽越好,即每单位时间内传输的信息越多越好。由于通信干线已经或正在向数字化转变,宽带化实际是指通信线路能够传输的数字信号的比特率越高越好。

而要传输极宽频带的信号,非光纤莫属。据计算,人类有史以来积累起来的知识,在一条单模光纤里,用3~5分钟即可传毕。光纤传输光信号的优点是:传输频带宽,通信容量大;传输损耗小,中继距离长;抗电磁干扰性能好;保密性好,元串音干扰;体积小,重量轻。

(二)综合化(或数字化)

综合就是把各种业务和各种网络综合起来,业务种类繁多,有视频、语音和数据业务。把这些业务数字化后,通信设备易于集成化和大规模生产,在技术上便于与微处理器进行处理和用软件进行控制和管理。

早在1988年,国际上已一致认为,未来世界网络的发展方向是宽带综合业务数字网。

(三)个人化

个人化即通信可以达到“每个人在任何时间和任何地点与任何其它人通信”。每个人将有一个识别号,而不是每一个终端设备(如现在的电话、传真机等)有一个号码。现在的通信,如拨电话、发传真,只是拨向某一设备(话机、传真机等),而不是拨向某人,如果被叫的人外出或到远方去,则不能与该人通话。而未来的通信只需拨该人的识别号,不论该人在何处,均可拨至该人并与之通信。

(四)智能化

智能化通信就是要建立先进的通信智能网。一般说来,智能网是能够灵活方便地开设和提供新业务的网络。它是隐藏在现有通信网里的一个网,而不是脱离现有通信网而另建一个独立的“智能网”,而只是在已有的通信网中增加一些功能单元,形成新的智能通信网络。智能化后,如果用户需要增加新的业务或改变业务种类时,只要在系统中增加一个或几个模块即可,所花费的时间可能只要几分钟。当网络提供的某种服务因故障中断时,智能网可以自动诊断故障和恢复原来的服务。

四、结语

综上所述,现代通信的主要技术有数字通信技术、程控交换技术、信息传输技术、通信网络技术、数据通信与数据网、ISDN与ATM技术、宽带IP技术、接入网与接入技术等,其技术发展总趋势中的数字化,宽带化、智能化和个人化是互相联系的。没有数字化,宽带化、智能化和个人化都难以实现;没有宽带综合业务数字网,也就很难实现智能化和个人化,现代通信技术的“四化”实际上就是被广为宣传的“信息高速公路”的具体技术内容,随着现代通信技术的发展,人类社会已经逐渐步入信息化的社会。

参考文献

[1] 樊昌信,曹丽娜.通信原理(第6版)[M].北京:国防工业出版社,2006.

[2] 曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,2008.

[3] 李文海,张金菊.现代通信技术(第2版)(上、下册)[M].北京:人民邮电出版社,2007.

[4] 严晓华.现代通信原理[M].北京:清华大学出版社,2010.

[5] 王丽娜,周贤伟,王兵.现代通信技术[M].北京:国防工业出版社,2009.

[6] 谢彤.现代通信新技术的发展趋势[J].沿海企业与科技,2006,(10).

通信技术趋势范文3

一、光纤通信技术及其现状

光纤通信是利用光作为信息载体、以光纤作为传输媒介的通信方式。我们可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯直径一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是将许多光纤聚集在一起组成的光缆。光纤通信技术中的光纤接入技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来光技术的两个主要发展WDM和PON已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的优势

(一)无串音干扰,保密性好。光波在光纤中传播,不会发生串扰的现象,保密性强。这样,在光缆内部,即使光缆内光纤总数很多,也可实现无串音干扰;在光缆外面,也无法窃听到光纤中传输的信息。

(二)损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的,其损耗可低于0.2dB/km。由于光纤的损耗低,因此中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这可以降低海底通信的成本,提高可靠性和稳定性,带来更好的经济效益。

(三)频带宽,通信容量大。光纤的传输带宽比电缆大得多,其可利用的带宽约为50000GHz。频带宽,对于传输各种宽频带信息具有十分重要的意义。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势,因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。

(四)抗电磁干扰。光纤是绝缘体材料,它抗电磁干扰的能力很强,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。

三、光纤通信技术的发展趋势

(一)向超高速系统的发展。目前10Gbps系统已开始大批量装备网络,但是10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求。它的比较现实的出路是转向光的复用方式。

(二)实现光联网。光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且对我国下一世纪的信息产业和国民经济的腾飞,以及国家的安全有极其重要的战略意义。

(三)开发新代的光纤。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中后者将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向。

四、对策

(一)我国要积极创新开发具有自主知识产权的新技术。

尽管我国光缆电缆技术有很大发展,但是应该看到国内200多家光纤光缆厂产品单一,没有自主知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平已差距不大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为工作的重中之重,争取创造更多的光纤光缆专利。

(二)抓住西部大开发的大好机遇,发展光缆电缆技术与产业。

西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业也给予了大力的支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品将会在这里找到很好的市场,光纤光缆和通信电缆的各种技术、产品与成果都会在西部开发中得到发挥。

五、结语

光纤通信技术现已作为一种重要的现代信息传输技术之一,在现在的信息社会背景下得到了普遍意义上的应用,在全球通信领域及相关行业处于非常低迷的状态时,光纤通信技术仍得到了一些发展。依照我国现行的通信技术领域的发展模式,光纤通信技术的应用必会代替一切其他的信息传送方式,而成为未来通信领域发展的主流技术,带领人类进入全光时代。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4).

通信技术趋势范文4

关键词:光纤通信技术特点;应用;发展趋势

1 光纤通信技术概念及特点

光纤通信即光导纤维通信,就是利用光导纤维传输信号,以实现信息传递的一种通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由纤芯,包层和涂层组成,内芯一般为几十微米或几微米,比一根头发丝还细;中间层称为包层,通过纤芯和包层的折射率不同,从而实现光信号在纤芯内的全反射也就是光信号的传输;涂层的作用就是增加光纤的韧性保护光纤。光纤通信系统中使用也不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,这许多光纤聚集在一起的组成的光缆光纤通信在单位时间内能传输的大量的信息是由于光波频率很高,光纤传输的频带很宽,故传输容量很大。光纤通信具有体积小,重量轻,使用金属少,抗电磁干扰抗辐射性强,保密性好,频带宽,抗干扰性好,防窃听价格便宜等优点另外,光线材料来源丰富,可节约大量有色金属,并且它的直径较小,重量比较轻。

2 光纤通信技术的应用

光纤通信发展被广泛的应用到各个领域,包括了邮电通信、电力通信、石油通信和军用通信等领域。主要用于市话中继线,光纤通信的优点可以得到充分的发挥,渐渐地取代电缆,能够广泛应用到了通信主干线道上,特别是广播通信网,电力通信网,电信干线传输网的急速发展,对光纤使用急剧增加。长途干线通信在过去主要靠电缆、微波、卫星通信的方式,而现在已逐步使用光纤通信并形成了占全球优势的比特传输方法,用于全球通信网和各国的公共电信网;还可以应用到高质量彩色的电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线系统。它的发展应用为现代科学技术发展打下了坚实的基础,未来的发展必将成为信息技术的主流。

3 光纤通信技术的发展趋势

⑴光孤子通信。光纤损耗和色散是限制光纤通信传输容量和距离的主要原因。随着光纤技术的发展和完善,其已经接近理论极限,光纤色散就成为了光纤通信发展的瓶颈。而光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信.在零误码的情况下信息传递可达万里之遥。又由于其具有高容量、长距离、抗噪声能力强等优点,光孤子通信备受国内外的关注,并大力开展研究工作。我国光孤子通信技术的研究也取得了一定的成果国家“863”研究项目成功地进行了OTDM光孤子通信关键技术的研究.能够实现20Ghit/s、105km的传输。我们可以看到光弧子技术的发展前景是很可观的,光弧子通信在传输上面主要是实现高速和长距离的通信传播,并且它所具备的控制技术可以使他的速率达到100Gbit/s以上,被认为是第五代光纤通信系统。

⑵全光网络。所谓全光网,是指信号只是在进出网络时才进行电光和光电转换,而在网络中传输和交换的过程信号始终以光的形式存在,全光网是以光节点取代现有网络的电节点,并用光线将光节点互联成网,采用光波完成信号的传输、交换等功能。减少信息传输的拥塞、延时,提高网络的吞吐量。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。未来的高速通信网将是全光网。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

⑶光接入网技术。现存技术上的接入网依旧是双绞线铜线的连接,仍然是原始的、落后的模拟系统,而网络中的光接入技术的应用使其成为了全数字化的,且高度集成的智能化网络。光接入网技术的优点是使维护费用得到降低,故障率得到明显下降;可以用于新设备的开发和新收入的不断增加;与本地网络相结合,减少节点数目,扩大覆盖面范围;通过光网络的建立,为多媒体时代的到来做好准备;另外,可以最大化的利用光纤本身的一些优势特点光纤接入网技术是信息传输技术的一个崭新的尝试,随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接入部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。在光纤宽带接人中,由于光纤到达位置的不同,有FTTB,FTTC,FTTCab和FTTH等不同的应用,统称FTTx。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络。用户接入部分更是关键,光纤接入网是高速信息进入千家万户的关键技术。

[参考文献]

通信技术趋势范文5

关键词:多媒体;通信技术;发展趋势;三网融合 ;ATM技术

中图分类号:TP37文献标识码:A文章编号:

Abstract: Multimedia communication is the product that combined by the computer multimedia technology, television technology and communication technology, At the same time into the multimedia’s plyability, the computer’s interactivity, the television real-time and the distribution of communication. Now with the rapid development of information age and the innovative and high technology keep appearing, multimedia communication has become a basic way to communication.

Key words: multimedia; communication technology; development trend; triple play; ATM technology

引言

多媒体通信是近些年来迅速发展起来的一门新兴的交叉性技术学科,它涉及通信、计算机和多媒体技术等领域,是多媒体计算机技术、电视技术和通信技术相结合的产物,同时融入了多媒体的复合性、计算机的交互性、电视的实时性以及通信的分布性。目前多媒体通信已成为一种基本的通信方式,并且成为世界上发展最快和最富有活力的高新技术之一[1]。多媒体通信的广泛用应可以极大地提高人们的工作效率,减轻社会的交通运输负担,对人们传统的教育和娱乐方式产生革命性的影响。

1 多媒体通信及多媒体网络

多媒体通信(multimedia communication)是多媒体技术与通信技术的有机结合,突破了计算机、通信、电视、等传统产业间相对独立发展的界限,是计算机、通信和电视领域的一次革命。他在计算机的控制下,对动画、音频、视频、图片等多媒体信息进行采集、处理、表示、存储和传输。多媒体通信系统的出现大大缩短了计算机、通信、和电视之间的距离,将计算机的交互性、通信的分布性和电视的真实性完美地结合在一起,向人们提供全新的信息服务。

多媒体网络指以多媒体技术和网络技术为基础,既包括文本,图形,声音,图象,动画等,也包括把这些媒体结合在一起的超媒体技术。多媒体网络为多媒体通信提供一个网络传输环境,包括网络带宽、信息交换方式、高层协议等,其表现形式为电话网、交换网等[2]。

2 多媒体通信的性能需求

2.1吞吐量需求:

网络吞吐量是指有效的网络带宽,通常定义为物理链路传输速率减去各种传输开销(物理传输开销、网络冲突、拥塞和差错等开销)。影响吞吐量的因素:网络故障、网络拥塞、瓶颈、缓冲区容量和流量控制等。多媒体通信要求高传输带宽、大缓冲容量。

2.2可靠性需求

网络差错主要由位出错、分组丢失和乱序等原因引起的。 多媒体应用允许网络传输中存在一定的错误->人类感知能力的限制[3]。

2.3延迟需求

端到端延迟是指发送端发送一个分组到接收端正确地接收该分组所经历的时间。主要包括:(1)传播延迟:传输一个二进制位,为常数;(2)传输延迟:传输一个数据块,与网络传输速率和中间节点处理延迟有关;(3)网络延迟:传播延迟和传输延迟之和;(4)接口延迟:发送端从开始准备发送数据块到实际利用网络发送需要的时间。延迟抖动:在一条连接上分组延迟的最大变化量,即端到端延迟的最大值和最小值之差。视频比音频的可靠性需求要高一些。

2.4多点通信需求 通信种类: (1)点到点通信

(2)多播通信(组播):把相同的数据传送给其它相关站点; (3)广播通信:把相同的数据传送给其它所有站点。

2.5同步需求多媒体通信的同步有两种:

(1)流内同步:保持单个媒体流内部的时间关系,以满足感官上的需求;否则,音频断续,视频不连续(2)流间同步:不同媒体(音、视频)间的同步。需要在目的地对这些媒体流进行同步[4]。

3 多媒体通信技术发展趋势

3.1电信网、广播电视网、互联网三网合一

三网融合需要的是“高速公路”,运营商已经在快马加鞭建设。从三网融合的角度看来,宽带提速将进一步加速三网融合双向业务进入。宽带中国战略在国家层面得到提升和支持,将打响三网融合一路通关的头响炮。同时,各城市也纷纷实施宽带提速、光纤入户工程,有了网络带宽支持,浮沉近十年的三网融合有望结束跌跌撞撞前行的历史。

3.2光纤入户宽带提速

加速提升宽带端口利用率,加快光纤入户改造,超前建设全光网络;加快现有宽带升级改造工程,解决带宽问题,尽快实现宽带网络结构优化。光纤入户工程是一个庞大而系统的工程,从电信网络到小区、小区网络到家庭网络、家庭线路到应用终端,三者缺一不可。光网时代的来临,不仅仅是光纤接入所带来的上网速度的提升,更为重要的是在基于光纤网络上的各种信息应用。在实现全面的光纤入户改造之后,普通家庭不仅能凭借高带宽流畅地观看在线高清影视、体验互动电视业务,甚至还可以实现小区WIFI无线上网,水电气等费用的网上支付,甚至家庭医疗预订,小区周边商家预订等应用。另外,时下备受关注的物联网应用,也将逐步实现。有了光纤网络带来的带宽保障,用户在家里可以安装“视频看家”家庭安全监控系统,相当于在家里安装了一台“直播摄像机”,无论用户在哪里,只要能连上网络,“视频看家”就能通过高速的光纤宽带将家里发生的所有事情实时直播在用户手机上面,而且“直播”质量很高,不会卡更不会中断。”另外用户还能够通过高速的光纤宽带和配套的家庭网关等设备,实现对冰箱、空调、洗衣机、电视机等家用电器的遥控指挥,客户可以随时随地遥控指挥家里的各种家用电器自动工作。”

3.3无线多媒体通信网成为最主流的通信网络技术

LTE(Long Term Evolution,长期演进)项目是3G的演进,LTE并非人们普遍误解的4G技术,而是3G与4G技术之间的一个过渡,是3.9G的全球标准,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准,这种以OFDM/FDMA为核心的技术可以被看作“准4G”技术。在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率。改善了小区边缘用户的性能,提高小区容量和降低系统延迟。LTE采用由NodeB构成的单层结构,这种结构有利于简化网络和减小延迟,实现了低时延,低复杂度和低成本的要求。与传统的3GPP接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的变革,逐步趋近于典型的IP宽带网结构[5]。

目前,移动无线技术的演进路径主要有三条:一是WCDMA和TD-SCDMA,均从HSDPA演进至HSDPA+,进而到LTE;二是CDMA2000沿着EV-DO Rev.0/Rev.A/Rev.B,最终到UMB;三是802.16m的WiMAX路线。这其中LTE拥有最多的支持者,WiMAX次之。

3GPP从“系统性能要求”、“网络的部署场景”、“网络架构”、“业务支持能力”等方面对LTE进行了详细的描述。

(1)通信速率有了提高,下行峰值速率为100Mbps、上行为50Mbps。

(2)提高了频谱效率,下行链路5(bit/s)/Hz,(3--4倍于R6HSDPA);上行链路2.5(bit/s)/Hz,是R6HSU-PA2--3倍。

(3)以分组域业务为主要目标,系统在整体架构上将基于分组交换。

(4)QoS保证,通过系统设计和严格的QoS机制,保证实时业务(如VoIP)的服务质量。

(5)系统部署灵活,能够支持1.25MHz-20MHz间的多种系统带宽,并支持“paired”和“unpaired”的频谱分配。保证了将来在系统部署上的灵活性。

(6)降低无线网络时延:子帧长度0.5ms和0.675ms,解决了向下兼容的问题并降低了网络时延,时延可达U-plan

(7)增加了小区边界比特速率,在保持目前基站位置不变的情况下增加小区边界比特速率。如MBMS(多媒体广播和组播业务)在小区边界可提供1bit/s/Hz的数据速率。

(8)强调向下兼容,支持已有的3G系统和非3GPP规范系统的协同运作[6]。

与3G相比,LTE更具技术优势,具体体现在:高数据速率、分组传送、延迟降低、广域覆盖和向下兼容。

4 结语

TD-LTE有望走向全球,并在全球4G通信市场占据30%的份额。TD-LTE产业的全球发展前景广阔。首先,4G移动通信的产业动力强大。需求方面,全球移动互联网数据流量爆发催生更高带宽的4G移动网络[7];产业方面,已经明确LTE是未来4G技术的主流标准,其次,作为LTE标准的一个分支,TD-LTE已经得到了业界的广泛支持,尤其是中国政府和中国移动的积极推动。尽管起步比另一分支FDD晚,TD-LTE凭借其在频谱资源利用上的独特优势,吸引了越来越多的运营商。全球已有6张商用网络、10家运营商明确了TD-LTE商用计划、33张TD-LTE试验网。最后,TD-LTE坚定地走与FDD融合的国际化路线,成功降低了产业利益格局的障碍因素。全球运营商对TD-LTE商用释放出明确信号,各大厂商也纷纷跟进,技术瓶颈相继突破。

参考文献:

[1] 马晓慧.LTE下行链路关键技术的研究与实现[D].西安电子科技大学,2009.

[2] 薛大澄.电信机房基础架构设计与实施[D].中山大学,2009.

[3] 孙开荣.浅谈LTE技术[J].科学时代(上半月),2010,(9):71-72.

[4] 石清泉.基于串空间模型的3GPP LTE网络安全切换机制分析与改进[D].东南大学,2010.

[5] 李晨.协作MIMO中基于用户的分组算法研究[D].北京邮电大学,2010.

通信技术趋势范文6

关键词: 移动通信 Internet 无线数据 IMT-2000 智能网 网络融合

1前言

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让 GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95 CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级: GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的 EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。