前言:中文期刊网精心挑选了计算机视觉开发范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
计算机视觉开发范文1
关键词:检修;预决算;定额;ERP;Ajax;AOP/IOC
中图分类号:TP311.52
随着中国国内经济的持续发展,国有大型石化化工企业为了加快企业发展和增强市场竞争力,需对原有炼油及化工生产装置进行改造、扩建及设备检维修,这些项目的结算过程通常采用手工结算方式,即使ERP上线后,设备检维修项目的结算仍然按线下手工结算方式,这种结算方式过程中往往涉及的部门、人员较多,甚至涉及外部造价咨询机构,处理的环节和工单数量也非常多,目前采用纸质传递、手工核算,审核痕迹不便查询,各级审核人员的工作量将相当庞大,容易造成出错,同时审核效率低,对施工单位也造成诸多不便。
为了解决石油化工行业工程项目预决算管理手工核算的问题,目前国内许多企业都做了一些有意义的探索,希望通过信息系统将工程结算流程实现电子化在线执行,提高工作效率,避免因手工操作引起的人为错误等,同时在流转过程中会保留每一步的操作痕迹,并且人员的查看、修改、审核权限控制到单据的字段级别,不同人员根据分配的不同权限,处理各自的业务。此外,能与ERP系统的通过接口集成,以获取项目的相关信息,验证结算工程项目的合法性。
1 开发内容
(1)检修预决算电子化管理系统将提高检修项目结(预)算审核效率。检修项目结算整个流程涉及的部门及人员多,审核环节多,工单数量多,目前采用纸质传递、手工核算,审核效率低,审核痕迹不便查询。采用此系统后,实现全流程网上流传、审核,提高ERP劳务工单结算及时性,及时掌握检修项目结(预)算动态。
(2)本系统与ERP系统后台实时关联。此系统作为ERP工单结算的辅助系统,实时提取ERP模块每张劳务工单数据信息,在此系统实现劳务工单结算网上审核,结算终审价再按ERP操作规则,进行SES(收货过账)并对工单进行技术完结。
(3)本系统进一步提高计价定额执行的统一性。在此系统实现本公司检修计价定额库管理,进一步提升检修结算的工程量签证、结(预)算计价等表单模版的规范化管理水平,嵌入检修项目计价定额库以及常规检修项目统一计价表,对人工取费、材料费、机械台班费定期统一维护,便捷追溯检修项目计价的历史记录,对同类或类似项目计价进行查询、对比,提高审核效率。
(4)本系统强化检修项目结算的报表统计、过程跟踪、考核。按ERP工单类型、作业类型、专业类型、时间等参数,在此系统实现实时查询统计,对审核流程各环节进行跟踪、提醒等动态管理,强化管理工作绩效考核。
2 工艺技术
本开发和设计坚持继承与创新,坚持现有技术与先进性、前瞻性统一,坚持系统安全性与操作灵活性统一,坚持研究与实践紧密结合的模式。
本开发和设计的实现基于B/S结构的多层应用,客户端不需要安装应用,只需要IE或FireFox等浏览器就可以操作。由于采用HTTP协议,服务器只需对外开通“80”WEB服务端口,有效阻止网络攻击。
在实现方式采用以J2EE为技术框架,J2EE有着稳定、灵活、安全、可伸缩性强、易维护、支持异构环境、支持多种操作系统等先天的优势,有大量成功的商业系统案例,保证的系统健壮性。
使用网络WEB技术,结合ERP模块和定额库,实现预决算网上在线审批和管理。根据ERP工单确定检维修预决算书工程量签证的来源依据,进行工程量核实程序,然后根据石油化工行业定额或地方定额编制预决算书,并通过可定制的流程实现预决算书的流转过程;审批流转过程中系统记录了工程量签证和定额修改的历史痕迹和变化的过程,并且系统可以通过Ajax技术清楚的回显预结算的审核修改过程,而且施工单位可以实时跟踪预决算书审核过程;结合系统数据库可以对预决算书和各阶段审核数据即时查询和统计分析,可以达到很好地控制设备检维修费用的作用,确保设备和装置的安稳长运行。
通过AOP/IOC技术,基于系统核心工作流程,实现预决算的高效审核。通过制定控制审核限制和对接期限、ERP采购订单等业务策略,以及基于定额库关联关系,制定预决算审核过程中定额、取费等数值计算规则和策略,达到审核高效的目的。
3 结构设计
整个开发和设计分为二个层次,基础模块和业务模块,如图1所示。基础模块包括基础信息配置模块和权限管理;业务模块包括工作流模块和统计分析,工作流模块是系统的核心模块,通过配置,实现签证单和结算书的多种审核流程。
4 功能特点
4.1 网上审核,及时反馈。通过全流程网上流传、审核,及时掌握检修项目结算动态,可以有效地提高各级审核员的办事效率;同时给各个施工单位以明确的审核结果出示时间,可以有效地促进施工单位、项目所在单位和各级审核单位之间的工作协调。同时施工单位可以在本单位进行数据上传和审核结果查看、修正等工作,不用再频繁的来往于本单位和审核单位之间。
4.2 结算单数据自动核对、计算。通过网上审核,系统可以充分利用信息技术来实现结算的数据自动核对、计算;系统可以实现实时计算功能,即在用户修改单据某个数据后,马上根据修改内容自动计算相关联的数据。通过这些功能,可以大大减少审核员的工作量,避免误算,提供审核效率。
4.3 进一步提高计价定额执行的统一性。通过内置定额库管理,进一步提升结算的工程量签证、结算计价等表单模版的规范化管理水平,嵌入项目计价定额库以及常规检修项目统一计价表,对人工取费、材料费、机械台班费定期统一维护,便捷追溯检修项目计价的历史记录,对同类或类似项目计价进行查询、对比,提高审核效率和计价管理水平。
4.4 保留审核操作痕迹。在本系统中,每一步的审核过程中都会将数据修改痕迹保留下来,审核员在审核过程中可以查看前面审核人员的数据修正纪录。在结算书审核完之后,这些修改的历史纪录会保存下来,供以后核查。
4.5 历史数据查询统计。以数字信息方式存在的结算单审核数据可以有效地进行历史数据的管理,不用担心数据丢失、查询困难的问题。用户可以方便的查询历史数据,同时根据选定条件来做数据的统计和分析,把历年“死”数据盘活起来。
4.6 强化过程跟踪、考核。通过系统进行审核流程各环节进行跟踪、提醒等动态管理,分析某一段时间内的特定审核员的审核速度、准确程度,可以为对各级审核员的绩效考核提供有用的数据基础,强化管理工作绩效考核。
5 结论
实现结算书全流程网上流传、审核,减少结算过程中的计算差错、结算书丢失、查找结算书困难等问题,提高劳务工单结算及时性,及时掌握检修项目预决算动态,推进规范管理工作,强化管理工作绩效考核。大力推进工程结算管理工作进步,通过信息技术带来管理效益,同时通过和其他信息系统的整合,有效的提高企业的整体信息化水平。
参考文献:
计算机视觉开发范文2
关键词:计算机视觉技术;C# ;;作物无损检测;软件设计
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)15-3640-03
数字农业和农业物联网技术作为现代农业最前沿的发展领域之一,是当今世界发展农业信息化,实现农业可持续发展的关键和核心技术。数字农业要求快速、实时、准确和定位化的获取植物生长信息,而农业物联网技术要求植物信息可实时动态感知,显然,传统的实验室测量分析和信息获取方法已经不能满足数字农业和农业物联网技术的发展要求。因此,研究和开发植物生命信息快速无损检测技术和传感仪器等软硬件平台已经成为现代农业承待解决的关键问题[1]。
目前,国内在作物无损检测方面的研究仪器主要是依赖进口,而相应的软件也是伴随着仪器而购买。此类软件,一般价格昂贵,而且在自主研究平台中,因为无法取得源代码而无法使用或升级,从而出现研究瓶颈。在各类无损化检测技术中,随着计算机视觉技术越来越广泛的应用,对应的软件系统的开发迫在眉睫[2]。
正是基于这样的背景,我们通过对目前应用比较广泛的C#进行研究,利用C#强大的数据处理能力和良好的用户界面开发,并结合强大的图像处理能力,进行作物实时检测软件平台的自主设计与开发。
1 计算机视觉技术简介
计算机视觉也称机器视觉,是采用摄像机或者数码相机将被检测图像转化为数字信号,再采用先进的计算机软件技术对图像信号进行处理,从而得到所需要的各种目标图像特征值。并由此实现模式识别,坐标计算等功能。然后再根据其结果输出数据,发出指令,再配合执行机构完成好坏筛选,位置调整,数据统计等自动化流程。与人工视觉相比较,计算机视觉的最大的优点是快速、精确、可靠,以及数字化。
随着数字农业和农业物联网技术的发展,计算机视觉技术将越来越广泛的应用于农业生产中,而构成计算机视觉系统的软件系统是整个计算机视觉系统的灵魂。随着硬件技术的不断发展完善,计算机视觉系统其功能是否强大,可以说完全取决于软件系统的能力。
2 软件系统设计
2.1 C#与
C#是由微软公司开发的一种面向对象的新型编程语言,它是从C和C++ 中派生出来的,保留了C/C++原有的强大功能,并且继承了C/C++的灵活性。同时由于是MicroSoft公司的产品,它又同Visual Basic一样具有简单的语法结构和高效的开发能力,可以使程序员快速的编写出基于.NET平台的应用程序。
一个基于C#框架,专门为C#开发者和研究者设计和开发的,这个框架提供了丰富的类库资源,包括图像处理,神经网络,模糊系统,遗传算法,人工智能和机器人控制等领域。该框架架构合理,易于扩展,涉及多个较前沿的技术模块,为相关开发人员或科研人员的工作提供了极大的便利。本系统就是采用C#程序设计语言,通过调用该框架来实现作物无损检查系统的开发。
2.2 系统设计与实现
本软件系统是在数码相机拍摄的作物图像的基础上,采用图像处理方法进行特征提取与分析,从而实现作物的无损检测。主要分为图像输入,图像预处理,特征提取,特征分析几个模块。
1) 图像输入
将要分析处理的图像读取到系统中来,为后面图像处理作准备。C#提供了三个最重要的图像处理类,即Bitmap类、BitmapData类和Graphics类。三种图像处理的方法,即提取像素法、内存法和指针法。从执行效率和实现难度综合考虑,本系统的开发采用内存法。
2) 图像预处理
图像预处理主要包括图像的大小调整,形态矫正,平滑和去噪等,以降低环境对拍摄照片造成的不利影响。提供了多个类,可以对图像进行平滑去噪等操作,本系统中采用了中值滤波算方法,对应中的Median类。
3) 特征提取
特征提取分析,是整个系统的核心所在,需要选取合适的图像分割算法,对图像进行处理,提取目标区域,为特征分析作准备。在本系统中采用了阈值分割技术,因为这种算法相对来说比较直接并且易于实现。
采用阈值分割技术,首先,必需确定一个阈值作为图像分割的阈值,在本系统中,采用自适应阈值法,由用户在软件的操作过程中进行设定,并且可以根据需要进行调整。然后,根据这个阈值对图像进行分割,并将其转化为二值图,如图(b)所示。从图中我们可以看到二值图像中存在大量的小孔,这种太小的孔洞对我们进行图像分析没有实际意义,并且会干扰结果的正确性,因此我们需要采用腐蚀和膨胀的形态学方法来进行填充孔洞,结果如图(C)所示。最后,我们需要根据需要提取目标区,涉及到连通区域的提取问题。最后,输出结果。
4) 特征分析
对图像分割结果进行分析,用于指导生产实践。我们可以对通过图像处理得到的目标区域进行分析,比如可以根据叶片颜色的变化判断叶绿素含量,进而推算出作物的营养状况,根据色素区域的大小计算出叶面积,根据不同区域的形状、大小判断病虫害等。
3 实验结果及分析
软件运行后主界面如图3所示。
为验证本系统的有效性,我们通过设定不同的阈值进行图像分割,并跟photoshop cs4软件中魔棒的工具作对比,来提取图片中的目标区域。测试图片大小为800px×610px,取特征点坐标P(310,70),该点的RGB值为(29,92,0),获取目标区域的总像素和绿色分量平均值,数据如表1所示。
从上述表中我们可以看出,本软件在图像处理目标区域的提取方面,提取到的目标区域较photoshop 提取的小,绿色分量平均值较photoshop更接近特征点数值,由此看出用本软件做图像分割准确性更高。
4 结束语与展望
计算机视觉具有非破坏性、快速、高效、信息量大等特点,目前已在主要的农作物和经济作物的养分诊断,植物病虫害的快速检测及预警预报等方面有了广泛应用,取得了较好的效果。随着计算机视觉技术和图像处理技术的发展,计算机视觉技术将更多的应用于植物长势预测、产量估计等方面。
通过本次研究,开发了一个交互界面良好的色素分量检测系统,能对图像在RGB分量上实现阈值分割,并实现目标区域的获取分析。该文主要提倡一种软件开发的理念,所设计开发的软件的针对性较强,还存在着很多的局限和不足,要作为计算机视觉类的通用软件,系统的稳定性和功能都还有待进一步提升。
参考文献:
[1] 刘飞.基于光谱和多光谱成像技术的油菜生命信息快速无损检查机理和方法研究[D].浙江:浙江大学博士学位论文,2011.
[2] 朱哲燕,陈红.基于MATLAB的作物信息光谱分析平台的设计与开发[J].科技资讯,2012(16).
[3] 蒋丽华.基于计算机视觉技术的叶绿素含量检测系统[D].苏州:苏州大学硕士学位论文,2009.
[4] 赵春江.C#数字图像处理算法典型实例[M].北京:人民邮电出版社,2009.
[5] 何勇,刘飞,聂鹏程. 数字农业与农业物联网技术[J].农机论坛,2012(1).
[6] 张起丽.基于数学形态学的彩色图像处理研究[D].西安:西北大学硕士学位论文,2009
[7] 冀高.基于数字图像处理的棉花群体特征提取[D].北京:北京邮电大学硕士学位论文,2007.
计算机视觉开发范文3
关键词:OpenCV;手势识别;模式识别;图像处理
中图分类号:TP368 文献标识码:B 文章编号:2095-1302(2015)06-00-03
0 引 言
随着科技的日益进步,传统的、基于键盘鼠标的人机交互方式略显单调。各国的研究者们探索着一个又一个新的人机交互方式,而在这些方式中,基于图像理解的方式已经取得了很大的进展。我们的生活离不开肢体动作,而图像方式是计算机能够理解人类动作最直接的方式。图像处理的研究内容非常广泛,配合统计、模式识别等学科知识的应用,我们已经能够识别并理解常用的人类肢体动作。
在肢体动作中,手势动作又是其中的重点。如今很多新的交互方式都建立在手势识别理解的基础上,例如:Microsoft的kinect系统,primesense的生物识别系统等。很多公司已经将其应用到了医疗、教育教学、失语者手势理解等领域。因此,研究手势识别理解将会是未来计算机领域的一大热点。
运动识别系统的进步伴随着数字图像处理领域的进步,各国学者相继开发出了大量优秀的计算机视觉和图像处理软件包。大多数软件包基于计算速度的考虑采用C/C++ 编写[1]。虽然这些软件包对计算机图像处理和计算机视觉的研究提供了很大地便利,但也存在着不足之处[2]:
(1)现行的多数图像处理平台没有提供高级数学函数;
(2)Matlab 的运行速度需要提高并且对宿主机器的配置要求较高;
(3)绝大多数图像处理库不支持嵌入式程序开发。
开源计算机视觉库OpenCV(Open Source Computer Vision Library)的出现极大地弥补了这些不足,给开发者提供了强大的综合开发平台。
1 OpenCV简介
OpenCV(Open Source Computer Vision Library)诞生于Intel 研究中心,是一个开放源代码的、高质量的计算机视觉库。它轻量且高效,采用C/C++ 语言编写,可以运行在Linux/Windows/Mac等操作系统上。OpenCV 还提供了Python、Ruby、Matlab及其他语言的接口[3]。OpenCV中包含了大量经典的计算机视觉处理函数,这些函数涵盖了机器视觉领域的大多数应用。OpenCV提供的视觉处理算法非常丰富,利用其开源特性,只要开发者处理得当,不需要添加新的外部支持也可以支持完整的编译链接生成执行程序。
OpenCV 现行版本为2.4.11.0,已放出了3.0.0的Beta版本。现行版本的OpenCV分为18个模块,其中常用的有8个模块:
(1)Core:定义基本的数据结构,包括矩阵和被其他模块使用的公共函数;
(2)Imgproc:包含线性和非线性图像过滤器、几何图形变化、色彩空间变化等功能;
(3)Video:包含运动分析、背景剪切和对象追踪等功能;
(4)Calib3d:包含多视角集合算法、3D重建等功能;
(5)Features2d:包含特征匹配等功能;
(6)Objdetect:包含预定义对象距离探测等功能;
(7)Highui:包含一个简单易用的高层级接口,用以抽象不同操作系统对视频提取和图像操作的功能;
(8)GPU:包含GPU加速相关的算法,这些算法可以被其他模块使用以加速程序的运转。
2 手势识别简介
根据计算机系统检测手势姿态的传感器的不同,我们可以将手势识别理解系统分为两类:一是利用数据手套获相关技术;二是利用计算机视觉捕获和处理图像流。利用数据手套捕获技术实现的手势识别系统使用不方便,用户需要学习的内容多且使用场景受到限制,而且成本较高[4]。而基于计算机视觉的手势识别系统则具有使用场景广阔、使用习惯符合人体本能、传感器成本低、普及率高等优势。
基于图像的手势识别系统一般可分为手势姿态图像采集、手势姿态图像分割、手势姿态特征提取及手势姿态识别四个步骤[5]。
在大量手势识别系统的实际开发过程中,都牵扯到使用肤色过滤系统来分割获取手势的binary图像。手势姿态的binary图像的获取关系到后期手势姿态理解的稳定性和准确性,但是人体的手部颜色受到个体差异、光源颜色以及光照角度的影响,其中任何一个因素变化都将造成阴影、遮蔽等不良影响[6]。手势识别的方法主要有4种,具体见表1。
表1 手势识别方法静态识别[7] 动态识别[8]
模板匹配法(TM) 动态时间规整法(DTW)
神经网络法(NN) 隐马尔可夫模型法(HMM)
本文首先使用YCrCb肤色分割算法在使用者在线模式下提取使用者手势姿态30组,利用30组手势姿态的均值测量出使用者手部的色彩平均值;然后提取环境光照的平均值、极大值和极小值,利用环境关照的取值和手部均值做运算,特定区域内找点最少的环境光照值和手部均值,最后利用这两个值进行手势姿态图像binary处理。将得到的binary图像进行特征化处理,得到手部特征点,通过对特征点的运算,得到最终的手势姿态理解。
3 手势姿态的binary处理
手势姿态的binary处理核心代码如下:
主函数:
frame = cvQueryFrame(capture);
//读取一帧图像
//cvShowImage( “Main_cam” , frame);
if( !frame ) break;
assert( 0 ==
binary_image_process( frame , mask , high_threshold1 , high_threshold2 , high_threshold3 , &is_get_binary )
);
cvShowImage( “Binary_cam” , mask );
//binary_image_process函数,使用环境光和肤色在线测量均值得到的三个阈值:threshold1,threshold2,threshold3,分别对应YCrCb颜色空间的Y,CR,CB通道:
IplImage* ycrcb = cvCreateImage( cvGetSize(frame) , 8 , 3 );
cvCvtColor( frame , ycrcb , CV_BGR2YCrCb );
for(int i=0 ; i < ycrcb->height ; i++ ) //二值化
{
uchar *row = (uchar *)(ycrcb->imageData) + i * ycrcb->widthStep;
for(int j=0 ; j < ycrcb->width ; j++ )
{
uchar *p = row + 3*j ;
//if( *(p+1) > threshold2 && *(p+2) < threshold3 )//||
if( *(p) < threshold1 )
{
binary_image->imageData[ i * (binary_image->widthStep) + j ] = 255; // 白色
}
else
{
binary_image->imageData[ i * (binary_image->widthStep) + j ] = 0; // 黑色
}
}
}
IplConvKernel *element = cvCreateStructuringElementEx( 4 , 4 , 0 , 0 , CV_SHAPE_RECT );//创建用于腐蚀的核函数
cvErode( binary_image , binary_image , element , 1); // Erotion
cvDilate( binary_image , binary_image , NULL , 1); // Dilation
cvReleaseStructuringElement( &element );
cvReleaseImage( &ycrcb );
经过提取的手势识别binary图形如图1(a)~(e)所示。
可见此方法提取的binary图像清晰准确,具有利用价值,可以为后期的特征提取与识别创造有利条件。
(a) (b)
(c) (d)
(e)
图1 手势识别binary图形
4 手势姿态特征的识别与理解
首先,我们通过对最小包络圆和手腕的计算得出手掌心的位置,然后利用每个点与相邻点做向量外积计算是否为手指尖点和手缝点,最后即可得出手势姿态的全部特征点。
//计算整个轮廓的中心点
for( int i=0 ; i < real_contours_number ; i++ ){
contour_rectangle = cvMinAreaRect2( sort_contours[i] , 0 );
arm_center[i].x = cvRound( contour_rectangle.center.x );
arm_center[i].y = cvRound( contour_rectangle.center.y );
cvCircle( frame , arm_center[i] , 10 , CV_RGB(255,255,255) , -1 , 8 , 0 );
}
//取得凸包,画出指缝
for( int i=0 ; i < real_contours_number ; i++ ){ get_convex_hull( i );
finger_tip( i );
hand( i );
cvClearSeq( hull ); //清空凸包序列
cvClearSeq( defect );
}
最终,得到的含有全部手势特征点的图像如图2(a) 、图2(b)所示。
(a) (b)
图2 含有全部手势特征点的图像
5 结 语
新版本的OpenCV计算机视觉库给我们提供了很强大的计算机视觉处理能力,利用其提供的高级别函数和矩阵运算能力,开发者们可以开发出大量基于图像的应用。利用OpenCV强大的可移植能力,开发者可以使用相应的移植工具将PC平台上的成果转化到移动端,这将会为开发者创造新的机会。
参考文献
[1]喻擎苍, 翁秀娟, 赵匀,等.交互式开放结构计算机视觉平台[J]. 计算机工程与应用,2006,42(23):78-81.
[2]秦小文, 温志芳, 乔维维. 基于OpenCV的图像处理[J]. 电子测试, 2011(7):39-41.
[3]于仕琪, 刘瑞祯. 学习OpenCV( 中文版)[M]. 北京:清华大学出版社,2009.
[4] LEE C, XU Y. Online interactive learning of gestures for human /robot interfaces [C] Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Washington,DC: IEEE Computer Society Press,1996,4: 2982-2987.
[5]赵健, 张冬泉. 基于OpenCV的数字手势识别算法[J]. 计算机应用, 2013, 33(z2):193-196.
[6] SURAL S,QIAN G,PRAMANIK S.Segmentation and histogram generation using the HSV color space for image retrieval[C] of the 2002 International Conference on Image Processing.Piscataway: IEEE,2002: 589 - 592.
计算机视觉开发范文4
近日,国内创业公司商汤科技宣布获得4.1亿美元B轮融资,这是截至目前为止全球范围内人工智能领域单轮最高融资。至此,这家成立仅三年的公司累计融资额达4.5亿美元,估值超过15亿美元,成为全球融资额最高的人工智能独角兽企业。当前,人工智能发展势头良好,技术和产品研发能力大幅提升,市场空间逐步拓展,社会关注与投资力度持续加大,技术创新驱动的人工智能企业正成为资本青睐的热点。
一、商汤融资背景分析
人工智能迎来估值猛涨期。自2014年起,人工智能领域一直都是全球投资热点。近年来,技术与产品的迅速成长带动国内创业热情高q,也引发了资本的高度关注。据统计,截至2017年5月31日,我国人工智能类创业公司已超过650家,产业规模较2016年同期增长达到51.2%,投融资事件超过430起,融资总额达340亿元。科技巨头加大在人工智能领域的布局,投资案例不断涌现。同时,社会资本竞相追逐人工智能领域的优质项目,整体行业获投率偏高,超过一半的人工智能公司成立时间在两年之内,可见资本市场对人工智能产业发展的信心。
计算机视觉领域成为热点聚焦。在大数据、深度学习等新技术推动下,以计算机视觉和语音识别为代表的感知智能正呈现出高速演进态势。目前我国计算机视觉技术水平已达到全球领先水平,并在安防、汽车、金融等领域取得了显著的应用成效。在安防领域,智能技术如人脸识别、图形识别应用场景众多,如车牌识别、车辆视觉特征识别、被动人像卡口、身份证比对等应用。在汽车领域,围绕智能驾驶汽车人工智能在环境感知、路径规划与决策等关键环节均有所应用和体现,在该领域百度、乐视等企业已开展卓有成效的实践。广泛的商业化渠道和技术基础推动计算机视觉成为创投热门领域,据数据显示,中国人工智能创业公司所属领域分布中,计算机视觉领域拥有最多创业公司。2016年,人脸识别服务开发商旷视科技完成至少1亿美元融资,估值超过20亿美元,专注图像识别的图普科技获得千万美元A轮融资。
商汤科技技术实力领先,发展潜力巨大。商汤科技主攻人脸识别、视频监控识别算法、增强现实、文字识别、自动驾驶识别算法和医疗影像识别算法等技术,基础研究实力强大,高质量专利数量、专业学术数量均保持全国领先水平。在2015年ImageNet大规模视觉识别竞赛中,商汤科技获得视频识别冠军,次年在该竞赛中,商汤科技凭借原创深度神经网络平台,获得3个项目的冠军。商汤科技主要业务范围是将计算机视觉技术赋能给安防、金融、机器人、政府大数据分析以及虚拟增强现实等行业。
二、由商汤融资带来的两点思考
计算机视觉开发范文5
关键词:机器视觉技术;大米;品质检测
中图分类号:TP391.4 文献标识码:A 文章编号:0439-8114(2012)05-0873-04
Application Progress of Machine Vision Technology in the Quality Inspection of Rice
WAN Peng,LONG Chang-jiang,REN Yi-lin
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)
Abstract: The research dynamic of machine vision technology was reviewed from the aspects of rice varieties, germ, crack, yellow grain rice, and so on; and the shortcomings of the machine vision technology in rice quality inspection were proposed for its further application.
Key words: machine vision technology; rice; quality inspection
我国是世界上最大的稻米生产国,稻米年产量常年保持在1.8亿t左右,占世界稻米总产量的1/3,居世界第一位[1]。我国也是大米消费大国,有近2/3的人口以大米为主食,全国大米年消费总量保持在1.35亿t左右[2]。我国的水稻研究在世界上处于领先地位,但是在国内外贸易、加工和消费等领域中仍然存在诸多问题[3,4]。
我国曾经是世界三大稻米输出国之一,但是由于我国大米的品质不高,再加上大米的生产标准、质量技术标准、检验检疫技术等与发达国家存在较大差距,在相当程度上影响了我国大米在国际市场上的竞争优势,大米的年出口量已退居六七位。2008年以来,随着世界稻米产量的下降,各国对大米出口配额进行调整,导致国际大米的价格出现了疯涨,而我国出口的大米因品种不稳定、品质较差,在国际市场上竞争力较低,市场份额逐渐减小。
为了提高大米的品质,不但需要选育优质的稻米品种,还需要加强大米品质的检测。但是,由于我国对大米品质的检测研究起步较晚,同时也缺乏方便简单的检测方法和快捷准确的检测仪器,在对大米品质进行检测的过程中,主要依靠人工识别、感官评定等方法进行检测,这些方法主观性较强,准确度较低,可重复性较差,工作效率也较低,因此在实施过程中的有效性受到了质疑[5]。
机器视觉(Machine vision)又称计算机视觉,是指利用计算机实现人的视觉功能,是研究采用计算机模拟生物外显或宏观视觉功能的科学和技术,是一门涉及数学、光学、人工智能、神经生物学、心理物理学、计算机科学、图像处理、图像理解、模式识别等多个领域的交叉学科[6]。机器视觉技术在农业上的应用研究始于20世纪70年代末期,主要进行的是植物种类的鉴别、农产品品质检测和分级等。随着计算机软硬件技术、图像处理技术的迅速发展,它在农业上的应用研究有了较大的进展[7,8]。
目前,大部分的大米品质检测指标根据国家标准采用人工进行检测,容易产生许多问题。随着机器视觉技术的发展和在农产品无损检测领域的广泛应用,采用机器视觉技术对大米的品质进行检测,不仅能够提高大米品质的检测效率,而且能够克服主观因素的影响,降低检测误差,使得大米品质的检测变得更加快速和准确[9]。
1 基于机器视觉技术的大米品质检测装置
基于机器视觉技术的大米品质检测系统由检测箱、检测台、光源、CCD图像传感器、镜头、图像采集卡和计算机系统等几个部分组成[10,11](图1)。
大米品质检测系统是一个内空的箱体,箱子的底部是检测台,顶部为光源和摄像头;检测箱内表面粘贴有背景纸,使光在箱体内形成均匀的漫反射,避免样品在检测时形成镜面反射。光源提供样品检测照相时所需的亮度,为了提供充足的光线,同时尽量消除光源照射样品时在背景上产生的阴影,通常选用环形荧光灯管作为光源[12]。CCD图像传感器是获取数字米粒样品图像的关键部件之一,它将大米图像由光信号转换为表示R、G、B颜色值的模拟电信号,并输入图像处理设备进行后续处理[13]。计算机软件系统用于对采集到的数字图像进行分析、处理和识别,实现对特定目标的检测、评价等[14]。
2 基于机器视觉技术的大米粒形检测
大米的粒形是实现大米分级和质量检测的最基本参数。根据《GB1345-1986大米》中的规定,评价大米质量的检测指标主要有加工精度、不完善粒、杂质、碎米等,这些检测指标与大米的粒形直接或间接相关。由于人工评价是通过肉眼观察对大米粒形进行评价,因此受检测环境、视觉生理、视觉心理等诸多因素以及评价人员对大米标准理解程度不同的影响,即便是同一份大米样品,很难保证大米粒形检测结果的稳定,而采用计算机视觉技术进行检测则可以有效避免主观因素的影响,保证大米粒形检测结果的准确性[9,15]。
中国农业大学孙明等[16]借助于MATLAB图像处理工具箱对大米粒形进行测定。首先定义单粒大米子粒的粒长(A)与粒宽(B)的比值为粒形,检测时先求出大米粒的椭圆离心率R,通过公式:
■=sqrt■
将大米子粒的椭圆离心率转变为长宽比A/B,即求出大米子粒的粒形。试验结果表明,该方法具有操作简单、检测速度快、重复性好的优点。
武汉工业学院张聪等[17]提出了一种基于计算机图像分析识别大米破碎粒的方法,即先采用数码相机获取大米图片,再对大米图片进行分析处理。识别时先将大米图像的边缘曲线变换为极坐标形式,再结合大米粒形的一般形状,用椭圆模板定位米粒,获得一组与米粒平移、旋转和尺度无关的形状描述数据,再运用小波变换提取奇异点及特征参数。试验结果表明,该方法简单有效,用于米粒定位与识别时的可信度高。同时,刘光蓉等[18]也研究了通过扫描仪获取大米的图像,再采用计算机图像处理技术将彩色图像转化成灰度图像并进行进一步的处理,最后获得大米子粒的二值图像,然后利用八邻域分析法提取大米图像的轮廓。试验结果表明,这种方法的检测效果良好。
此外,袁佐云等[19]还提出了采用最小外接矩形计算大米粒形的方法。包晓敏等[20]分析了采用Roberts算子、Sobel算子、Prewitt算子、模板匹配法和快速模糊边缘检测法对大米粒形进行边缘检测,并通过对大米图像的分割试验验证了快速模糊边缘检测法最为有效。
3 基于机器视觉技术的大米加工精度检测
大米加工精度是指大米背沟和粒面留皮程度,即糙米皮层被碾去的程度。大米的加工精度是决定大米外观质量的主要因素,加工精度越高,米粒表面残留糠皮量就越少,胚乳表面光洁度、口感、外观品质也就越好。我国国家标准规定各类大米按加工精度分等级[9]。因此,大米加工精度的检测具有十分重要的意义。传统大米加工精度的测定有多种方法,国标中规定大米加工精度的判定采用试剂染色法[21],通过染色剂使米粒胚乳和胚乳表面残留糠皮呈现不同的颜色差异便于肉眼观测,该方法受到光照条件、视力、情绪等诸多因素以及各种染色参数的影响,操作繁琐、效率低、误差大,不能满足快速、客观检测的需要。
河南工业大学张浩等[22]研究了机器视觉技术结合数字图像处理技术检测大米加工精度的方法,首先获取大米的图像,利用米粒区域和背景区域的亮度差异将大米图像转化为灰度图像,再利用边缘检测函数求出分割阈值,将米粒从背景中分割出来,并计算米粒区域的面积;然后利用米粒区域中糠皮部分和胚乳部分R-B特征值差异,将大米图像分解为R、G、B分量图,以R-B矩阵代替大米图像,再将R-B矩阵转化为灰度图,用边缘检测函数求出分割阈值把糠皮部分分割出来,计算糠皮部分面积。最后测得大米留皮率为米粒糠皮部分面积与米粒区域面积之比。
江苏理工大学许俐等[23]将计算机图像处理技术与色度学理论相结合研究了大米加工精度的自动检测方法。检测时先将大米染色,然后采用机器视觉系统获取大米图像,再根据染色后大米的胚乳、皮层以及胚芽所呈现的不同颜色特征,采用不同的区分方法获取米粒不同部位的面积即像素的个数,然后根据胚乳面积与大米图像总面积的百分比计算大米的加工精度。
此外,无锡轻工大学田庆国[24]根据色度学原理,采用图像处理技术对染色后的大米进行检测,识别大米的加工精度,并建立了大米染色后的颜色值与加工精度之间的数据库。西华大学的刘建伟与日本岐阜大学的三轮精博[25]合作研究大米加工精度与碾白程度之间的关系时,采用改良后的大米精度鉴定NMG溶液,按照品红石碳酸溶液染色法(GB 5502-85)对大米进行染色获得米粒表皮呈绿色、糊粉层呈蓝色、胚乳呈蓝红色的大米样品,米粒干燥后采用测差计检测样品的颜色计算大米的加工精度。
4 基于机器视觉技术的大米垩白检测
垩白是指稻米粒胚乳中不透明的部分。垩白之所以不透明是因为稻米子粒中淀粉粒排列疏松,颗粒间充气引起光线折射所致。按其发生部位可将垩白区分为腹白、心白和背白等类型。通常用垩白粒率、垩白大小和垩白度等概念描述稻米的垩白状况。垩白是衡量稻米品质的重要性状之一,不仅直接影响稻米的外观品质和商品品质,而且还影响稻米的加工品质和蒸煮食味品质[9,26]。
黑龙江农业工程职业学院于润伟等[27]研究了采用机器视觉技术和图像处理技术检测稻米垩白的方法。先用机器视觉装置获取大米的原始图像,再采用图像处理方法对大米图像进行预处理,然后应用大津算法自动选取分割阈值对稻米图像进行两次分割,分别得到大米子粒的二值图像和垩白区域的二值图像,再根据区域内部像素点的联通性,将不同区域分别进行标记,计算出子粒数和垩白粒数,同时计算出二者对应的面积(像素点个数)。研究结果表明,该算法的自动检测结果与人工检测相关性大于90%。
中国农业大学侯彩云、日本东京大学Seiichi等[28]采用微切片三维图像处理系统对大米的品质特性进行探索性研究,结果表明借助于三维可视化技术分析大米的微切片,不仅可以观察大米垩白部分内部的组织结构以及在蒸煮过程中的变化,还可以利用灰度直方图定量计算出垩白米粒中各部分垩白的面积和体积。同时,侯彩云等[29]还利用自行研制开发的机器视觉图像处理系统对大米的垩白度及垩白粒率进行检测,试验结果表明所研制的装置具有客观、准确、快速和重现性好等特点,在大米的快速分等定级中具有良好的应用前景。
江苏大学黄星奕等[30]研究了采用遗传神经网络计算大米垩白度的方法。先采用机器视觉系统提取垩白米的图片,然后采用数字图像处理技术提取米粒的垩白区域与胚乳非垩白区域的交界区域内的像素,再采用遗传算法建立一个人工神经网络识别系统对这部分交界区域内的像素进行识别。试验结果表明,采用机器视觉系统的检测结果与人工检测结果的误差小于0.05。
此外,凌云等[31]提出了一种基于分形维数的垩白米检测算法。孙明等[32]采用了MATLAB软件开发平台构造了基于计算机视觉的大米垩白检测算法,完成了对大米垩白参数、垩白度以及垩白粒率的测定。吴建国等[33]从实际应用出发,采用计算机和扫描仪结合开发了机器视觉系统的垩白测定软件。而曾大力等[34]利用视频显微镜对大米粒进行扫描,结合计算机图形分析,直接计算大米的垩白大小和透明度,初步探讨了视频显微扫描技术在大米垩白分析中的应用。湖南农业大学萧浪涛等[35]开发了基于微软Windows 98平台的大米垩白度测定软件Chalkiness 1.0,该软件与计算机和图像扫描仪相结合能够组成一套高效的大米垩白度测定系统。
5 基于机器视觉技术的整精米率检测
整精米是指糙米碾磨成国家标准一级大米时米粒产生破碎,其中的完整米粒以及长度达到完整精米粒平均长度4/5以上(含4/5)的米粒。整精米率是指整精米占净稻谷试样质量的百分率,它是稻米加工品质优劣的指标,是稻米贸易中商家最关注的内容,与碾米厂的经济效益密切相关。正确识别整精米是检测整精米率的关键。目前整精米率主要采用人工方法进行检测,该方法难以满足对稻米品质快速、准确的检测要求[9,36]。
中国农业大学尚艳芬等[37]开发了一套基于机器视觉技术的整精米检测系统用于识别整精米和碎米。该方法通过提取并分析稻米的粒长、粒形等特征参数,提出了同一品种并在同一生长条件下生长的大米粒形具有相似性的前提假设,据此求得标准米,再通过偏差计算、粒长、粒形分析等对整精米和碎米进行识别。采用该方法开发的整精米识别系统对整精米和碎米识别的准确率与人工检测结果的相关系数可到达0.99。
于润伟等[38]首先通过图像识别系统采集大米的原始图像,再采取动态阈值分割等图像处理方法把米粒图像变成二值图像,然后根据区域内部像素的连通性计算出单个米粒的像素个数;再根据先期计算的整精米长度/面积比换算出米粒长度,最后根据米粒长度判断整精米和碎米。研究结果表明,该算法的自动检测与人工检测的相关性大于99%,可用于整精米的自动检测。
6 问题和展望
机器视觉技术在农产品的品质检测方面具有广泛的应用,国内外的学者在此领域进行过广泛研究。但机器视觉技术在大米品质检测领域的应用尚处于起步阶段,仍有许多等待解决的技术问题,需要进一步深入研究。
1)目前的大米品质检测装置多为静态检测装置,即将大米放于检测箱中通过机器视觉系统获取图片或通过扫描仪获取图片,大米相对于摄像头静止不动;获取图像之后再采用计算机软件系统对图像进行分析处理。这种检测方法效率低下,因此,动态地获取大米图像并进行分析检测是下一个要解决的难题。
2)采用机器视觉系统检测大米品质时,多采用的是串行化算法,即先获取大米图像,然后采用某种算法对大米图像进行处理,再检测大米的某项品质指标;之后再采用某种算法对大米图像处理大米的另一项品质指标,这种检测方法在处理群体米粒图像时极大地影响了检测速度,因此开发并行处理算法对大米图像进行分析检测可以有效提高机器视觉系统的工作效率。
3)目前对大米品质指标进行检测分析时缺少统一的检测装置,有的研究者采用CCD摄像头获取大米的图像进行分析检测,而有的研究者采用扫描仪获取图像进行分析检测,检测装置不同、检测条件不一致难以达到相同的检测结果,因此有必要研制具有实用价值的大米品质检测装置,使基于机器视觉技术的大米品质检测能够具有统一的标准。
总之,伴随着计算机科学技术的迅速发展,机器视觉技术在大米品质检测中的应用将越来越广泛。
参考文献:
[1] 庞乾林.稻米知识纵览[J].中国稻米,2004(3):44-47.
[2] 刘月好.陈米产生的原因与处理方法[J].粮食加工,2004(1):30-31.
[3] 庄丽娟,刁慕容.中国谷物外贸格局与发展趋向分析[J].中国农垦经济,2004(8):25-26.
[4] 山世英,彭玉珊.我国农产品出口遭遇技术性贸易壁垒的原因及对策[J].山东农业大学学报,2004,6(2):41-43.
[5] 李里特.粮油产品规格化、标准化是农业现代化的迫切任务[J].中国粮油学报,2001,16(5):1-5.
[6] 刘传才.图像处理与计算机视觉[M].厦门:厦门大学出版社,2002.
[7] 赵晓霞.计算机视觉技术在农业中的应用[J].科技情报开发与经济,2004,14(4):124-126.
[8] 熊利荣,陈 红,丁幼春.机器视觉技术在农产品破损检测上的应用[J].农机化研究,2005(5):204-205.
[9] 李天真,周柏清.基于计算机视觉技术的稻米检测研究[J].粮食与食品工业,2005,12(4):50-53,55.
[10] 凌 云,王一鸣,孙 明,等.基于机器视觉的大米外观品质检测装置[J].农业机械学报,2005,36(9):89-92.
[11] 张巧杰,王一鸣,凌 云,等.稻谷品质检测技术与装置研制[J].现代科学仪器,2006(1):128-130.
[12] 赵志强,熊元姣.计算机视觉检测系统的设计方案[J].工业控制计算机,2005,18(10):1-2.
[13] 唐向阳,张 勇,李江有,等.机器视觉关键技术的现状及应用展望[J].昆明理工大学学报(理工版),2004,29(2):36-39.
[14] 张纪明.基于PC的机器视觉系统研究[J].可编程控制器与工厂自动化,2006(11):107-110.
[15] 任宪忠,马小愚.农产品粒形识别研究进展及其在工程中应用现状[J].农业工程学报,2004,20(3):276-280.
[16] 孙 明,石庆兰,孙 红,等.基于计算机视觉的大米外观品质检测[J].沈阳农业大学学报,2005,36(6):659-662.
[17] 张 聪,管庶安.基于图像分析的大米形状识别[J].粮食与饲料工业,2006(6):5-7.
[18] 刘光蓉,周 红,管庶安.基于图像处理技术的大米轮廓检测[J].粮食与饲料工业,2004(6):14-15.
[19] 袁佐云,牛兴和,刘传云.基于最小外接矩形的稻米粒型检测方法[J].粮食与饲料工业,2006(9):7-8.
[20] 包晓敏,汪亚明,黄振.计算机视觉技术在大米轮廓检测上的应用[J].浙江工程学院学报,2003,20(2):104-107.
[21] 吕季璋,陈效贵,范慕蕙,等.GB/T 18105-2000米类加工精度异色相差分染色检验法[S].北京:国家质量技术监督局,2000.
[22] 张 浩,孟永成,周展明,等.基于图像处理技术大米加工精度的检测研究[J].中国粮油学报,2006,21(4):135-137.
[23] 许 俐,钱敏娟,方如明,等.大米加工精度的图象识别方法[J].农业工程学报,1996,12(3):172-175.
[24] 田庆国.图像处理技术在大米碾白精度测定中的应用[J].粮食与饲料工业,1997(10):10-11.
[25] 刘建伟,徐润琪,三轮精博,等.大米加工精度与碾白程度检测的研究[J].中国粮油学报,2004,19(3):5-8,61.
[26] 周新桥,邹冬生.稻米垩白研究综述[J].作物研究,2001(3):52-58.
[27] 于润伟,朱晓慧.基于图像处理的稻米垩白自动检测研究[J].中国粮油学报,2007,22(1):122-125.
[28] 侯彩云,SEIICHI O,YASUHISA S,等.三维图像处理系统在稻米品质检测中的应用研究[J].农业工程学报,2001,17(3):92-95.
[29] 侯彩云,王一鸣,凌 云,等.垩白米粒的计算机图像识别[J].农业工程学报,2002,18(5):165-168.
[30] 黄星奕,吴守一,方如明,等.遗传神经网络在稻米垩白度检测中的应用研究[J].农业工程学报,2003,19(3):137-139.
[31] 凌 云,王一鸣,孙 明,等.基于分形维数的垩白米图像检测方法[J].农业机械学报,2005,36(7):92-95,91.
[32] 孙 明,凌 云,王一鸣.在MATLAB环境中基于计算机视觉技术的大米垩白检测[J].农业工程学报,2002,18(4):146-149.
[33] 吴建国,刘长东,杨国花,等.基于计算机视觉的稻米垩白指标快速测定方法研究[J].作物学报,2005,31(5):670-672.
[34] 曾大力,藤 胜,钱 前,等.视频显微扫描技术在稻米垩白研究中的应用[J].中国农业科学,2001,34(4):451-453.
[35] 萧浪涛,李东晖,蔺万煌,等.一种测定稻米垩白性状的客观方法[J].中国水稻科学,2001,15(3):206-208.
[36] 郭英群.对国家标准中整精米率定义及检测方法的探讨[J].粮油仓储科技通讯,2005(6):52-53.
计算机视觉开发范文6
【关键词】自动控制技术;农业自动化
由于历史、观念和技术等方面的原因, 我国传统农业机械与发达国家相比有很大差距,已远远不能适应农业的科技进步。近些年来, 自动化的研究逐渐被人们所认识, 自动控制在农业上的应用越来越受到重视。例如,把计算机技术、微处理技术、传感与检测技术、信息处理技术结合起来, 应用于传统农业机械, 极大地促进了产品性能的提高。我国农业部门总结了一些地区的农业自动化先进经验(如台湾地区的农业生产自动化、渔业生产自动化、畜牧业生产自动化及农产品贸易自动化)的开发与应用情况, 同时也汲取了国外一些国家的先进经验、技术,如日本的四行半喂人联合收割机是计算机控制的自动化装置在半喂人联合收割机中的应用,英国通过对施肥机散播肥料的动力测量来控制肥料的精确使用量。这些技术和方法是我国农业机械的自动化装置得到了补充和新的发展,从而形成了一系列适合我国农业特点的自动化控制技术。
1.已有的农业机械及装置的部分自动化控制
自动化技术提高了已有农业机械及装置的作业性能和操作性能。浙江省把自动化技术应用于茶叶机械上,成功研制出6CRK-55型可编程控制加压茶叶揉捻机,它利用计算机控制电功加压机构,能根据茶叶的具体情况编制最佳揉捻程序实现揉捻过程的自动控制,是机电一体化技术在茶叶机械上的首次成功应用。
1.1应用于拖拉机
在农用拖拉机上已广泛使用了机械油压式三点联结的位调节和力调节系统装置, 现又在开发和采用性能更完善的电子油压式三点联结装置。
1.2应用于施肥播种机
根据行驶速度和检测种子粒数来确定播种量是否符合要求的装置, 以及将马铃薯种子割成瓣后播种的装置等。
1.3应用于谷物干燥机
不受外界条件干扰, 能自动维持热风温度的装置停电或干燥机过热引起火灾时,自动掐断燃料供给的装置。
2.微灌自动控制技术
我国从20世纪年50代就开始进行节水灌溉的研究与推广据统计。到1992年,全国共有节水灌溉工程面积0.133亿m2,其中喷灌面积80万m2, 农业节水工程取得了巨大的进展。灌溉管理自动化是发展高效农业的重要手段,高效农业和精细农业要求必须实现水资源的高效利用。采用遥感遥测等新技术监测土壤墒性和作物生长情况,对灌溉用水进行动态监测预报,实现灌溉用水管理的自动化和动态管理。在微灌技术领域,我国先后研制和改进了等流量滴灌设备、微喷灌设备、微灌带、孔口滴头、压力补偿式滴头、折射式和旋转式微喷头、过滤器和进排气阀等设备,总结出了一套基本适合我国国情的微灌设计参数和计算方法,建立了一批新的试验示范基地。在一些地区实现了自动化灌溉系统,可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。这种系统中应用了灌水器、土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器、电线等。
3.自动控制技术在精准农业中的应用