前言:中文期刊网精心挑选了电源电路设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
电源电路设计范文1
(1)供电电源链路取样点选择由于取样线路比较远,因要监测整个供电链路的实际工作情况,电源取样点分为两级。一级:市电、机电三相取样在低压柜输出端,分别是市电三相取样1L1、1L2、1L3和机电三相取样2L1、2L2、2L3。二级:总电源三相取样在1P开关柜输出端3L1、3L2、3L3。取样点的选择能够有效监测市电、机电的运行情况和自动倒换柜ATS成功倒换某一供电体为总电源的工作情况(见图1)。
(2)供配电控制箱的灯光指示和远程控制供电设备如图2所示,电源部分:市电、机电、总电源的三相取样端,分别经一个保险丝连接到机房供配电控制箱内的空气开关,分别连接三相指示灯和电源故障报警取样继电器,例如市电三相取样1L1、1L2、1L3通过指示灯(1ZDY黄、1ZDG绿、1ZDR红)指示市电三相供电状态,同时连接到继电器(1KJ1、1KJ2、1KJ3)线包作为市电报警电路取样。机电、总电源的情况类似不再叙述。
(3)电源故障报警电路供配电控制电路的技术核心在于电源故障报警电路的设计。考虑到两路电源供电,各需三相监测的复杂性,我们采用数字逻辑技术分析了两路电源供电的状态逻辑关系,真值表如表1所示,控制原理如图3所示。整个逻辑有四种状态:当市电和机电同时停电(0,0)或同时供电(1,1)时,需要报警,值班人员需要做倒电处理工作;当两者为单一供电(0,1)或(1,0)时,属正常供电状态,不需要报警。由真值表1可知两者为同门逻辑关系。考虑到停电时,能够保障报警电源的供给,报警电路采用UPS电源(无间断电源~220V)供电,确保报警电路在任何供电状态下都能正常工作。报警电路以相为单位控制,分为三组,以a相为例进行介绍,如图2所示。通过市电a相取样继电器1KJ1和机电a相取样继电器2KJ1的常开、常闭接点的不同组合,构成同门逻辑电路。总电源a相取样继电器3KJ1常闭接点跨接在同门电路两端,与同门电路组成或门关系,完美地构成了电源a相支路报警控制电路。当两路电源满足表1报警条件时,即当市电和机电同时通或同时断时,同门逻辑电路接通报警电源进行报警;当总电源无电时,3KJ1常闭接点接通报警电源,直接报警。b、c相报警控制与a相完全相同。这样,报警电路不但可以监测到电源停电情况,而且也可以监测到电源缺相,ATS柜能否成功倒换负载,1P开关柜是否闭合等情况。稳压器ⅠⅡ本身自带报警功能,在其报警电路中,分别并接+12V继电器KJ10、KJ11,继电器KJ10、KJ11的常开接点跨接在电源故障报警电路两端(见图4)。当稳压器Ⅰ(Ⅱ)故障,其报警电路接通KJ10(KJ11)线包,KJ10或KJ11的常开接点接通,使报警电路直接进行报警。
(4)ATS柜负载指示灯、远程控制发电机电路如图5所示,利用ATS柜内一个继电器KJ6的接点(其线包连接机电电源),当ATS柜倒换市电工作时,KJ6线包为0V,其常闭点接通,“市电供电”指示灯被点亮;当ATS柜倒换机电工作时,KJ6线包~220V,其常开点接通,“机电供电”指示灯被点亮。此两灯均引至供配电控制箱的面板上,便于在值班机房直接观察ATS柜的工作状态。发电机的远程控制:由于ATS柜在低压房,供配电控制箱在机房,两者相距比较远。未能够人工远程控制发电机的启动,所以在供配电控制箱和ATS柜上分别安装了两个控制开关K2、K3,两者是并联关系,分别都可接通ATS柜内部电路,控制发电机的启动,K2可方便工作人员在机房对发电机操作。1P开关柜和稳压器ⅠⅡ的主要控制按钮,如合闸、分闸、启动、停止;主要工作状态,如合闸灯、分闸灯、稳压灯、电网灯等,需要在供配电控制箱集中控制和观察,方便对故障设备快速判断和恢复。根据设备开关按钮的特性,我们将常开按钮进行并接、常闭按钮进行串接至控制箱面板,可实行同步操作。
2小结
电源电路设计范文2
1.1欠压锁定电路与过电流保护电路
欠压锁定(UVLO)是指当输入电源电压低于欠压锁定电路的预设值时,电源芯片不工作,以保证芯片安全并降低不必要的功耗。LT3748通过连接在VIN和EN/UVLO引脚之间的分压电阻R1与R2设定芯片工作的阈值电压。当芯片EN/UVLO引脚上的电压达到1.223V时,LT3748芯片内部所有电路都将启动。过电流保护电路是指在电源过载或输出短路时保护电源装置,防止负载损坏。此芯片通过SENSE引脚端的电阻R5来设定过电流,SENSE引脚的电压VS需要在0.1V以下。
1.2开关变压器设定
单端反激式开关稳压电源在设计开关变压器参数时的计算极为关键,设计中应尽量使开关管导通期间变压器所储存能量等于功率开关管关闭期间变压器所释放的能量,提高开关变压器的利用率,从而提高电路的转化效率。开关变压器的设定主要取决于初级线圈电感量和线圈的饱和电流两方面。开关变压器初级绕组的电感值须大于临界电感值(即当功率开关管截止期结束时,功率开关变压器中存储的能量正好释放完毕时开关变压器初级绕组所对应的电感值)。此外,开关变压器还应满足其线圈中的电流不能超过线圈自身饱和电流,因为一旦造成线圈中电流饱和,能量将不能存储在变压器的铁芯中,进而传输到次级端,而会被消耗在铁芯中。本设计中开关变压器选取为VP-0047-R,它具有体积小、自身电阻低、低噪声和紧耦合性等优点。VP-0047-R有六个独立绕组,每个绕组的电感量和饱和电流分别为3.8μH和2.81A,并可以根据需求的不同而连接成初次级线圈比不同的变压器。设计中将此变压器设置为初、次级线圈比为4∶1。其中初级线圈为四个绕组的串联形式,则初级线圈的电感量是60.8μH。次级线圈为两个绕组的并联形式,这种连接可增大绕组的饱和电流,避免次级线圈在输出电流较大时饱和。
1.3功率开关管及钳位电路设计
开关管的选取主要由漏源之间的耐压值以及最大漏极电流决定。由于在开关管关断的瞬间,变压器产生的漏感将生成尖峰脉冲电压,并且在初级线圈上也会有感应电压生成,这些都会叠加在直流输入电压VIN上。而在开关管导通时,功率开关变压器初级绕组的充电电流将产生尖峰电流,所以功率开关管的漏极电流应大于该尖峰电流。设计中Q1选择Si7464DP。为了减少漏感对电路产生的影响,并吸收已经由漏感产生的尖峰电压,在开关管的漏极设计了钳位保护电路。通常钳位电路的形式有DZ、RCD以及RC等,考虑到电路的简单和小型化,本设计采用RC钳位电路,取值为66Ω和150pF。在Q1截止的瞬间,储存在漏感中的能量通过电容C6后,就被电阻R8消耗掉了。钳位电路的设计非常必要,尤其在输出电流较大的情况下,可通过钳位电路将漏感吸收,从而保证输出电压的稳定。
2测试结果与分析
由于输入电压为-48V,所以测试中将稳压电源的正端接在PCB电路板的地端,稳压电源的负端接到PCB上的电源输入端,此时在PCB的电源和地之间就能得到负的电压。测试前应注意以下两点:首先由于开关电源在供电初始会产生较大的浪涌电流,所以在测试时对稳压电源限流值的设定要比实际输出电流值稍大一些。其次单端隔离反激式开关电源测试时不能空载。从测试结果可以看出,此电源电路不仅实现了电源从负到正的极性变换,并且电路最大输出电流为3.245A,输出电压接近8V,证明本电路设计已经达到了最初要求输出8V/2A电源的目的。将电源的电压输出端接4Ω、50W的固定负载电阻,输入端接到可调稳压电源输出端。调整输入稳压电源在36V~54V之间变化时,测量输出端电压。根据电压调整率的公式,可计算出电路的电压调整率为0.7%。当输入电压变为20V时,输出电压有0.06V的变化,可看出输出电压波动不大。
3结论
电源电路设计范文3
关键词:SCT,逆变,电源
Abstract: This paper introduces a single-chip microcomputer as the core controller, to the output voltage of the inverter power supply system, and the realization of frequency change, providing convenience for different voltage requirements for electrical equipment.
Keywords: SCT, inverter, power supply
中图分类号: TN86文献标识码:A文章编号:
一、系统总体方案设计
本系统是以STC12C5A60S2单片机作为主控制芯片而实现的逆变电源,驱动元件使用的是IR2110,,单片机产生SPWM波的方法是采用等面积法,采用此方法可以实现正弦波的输出,频率可以调节是通过对程序的控制来实现的,进而最终可以设计出直流到交流的逆变过程。
1.1、脉宽调制器(SPWM)
用STC12C5A60S单片机,此单片机为新一代的51单片机,它的flash为64k,具有两路的PWM输出,脉宽可以通过软件的方式来调节,优点是:不仅具有较高的精度,而且具有不复杂,价格不高的电路。
1.2、SPWM控制方案
有两种SPWM控制的方案:单极性与双极性调制法。在单极性法中生成的SPWM信号有正、负和0三种电平,在双极性法中生成的却仅有正、负两种电平。通过对比二者产生的SPWM波可以得知:当二者的载波比相同时,双极性SPWM所生成的波中所含谐波量较单极性的要大;而且在正弦逆变电源控制当中,双极性SPWM波控制不够简单。所以最终选择了单极性SPWM波的控制方案。
1.3、驱动方案的选取
驱动MOS管的方式可以选择简单的电路,在简化电路的同时,稳定性也加强了。IR公司的IR2112芯片驱动能力较强,高边驱动电源可以通过非常简单的电路来获得,所以设计选取IR2112。
二、系统硬件电路方案设计
2.1、主控电路的硬件设计
本设计的主要控制芯片是STC12C5A60S2单片机, 通过控制逆变电路的关断导通来实现SPWM波的产生。
2.2、驱动电路的方案设计
使用IR公司的IR2110芯片来对功率管进行驱动。因为一个IR2110驱动一个半桥,所以全桥逆变器选用2片IR2110来进行驱动。采用MOSFET来作为输出侧逆变电路中开关管,它的耐压为100V,要重视自举电容跟自举二极管的选取,选取好之后,输出逆变的电路如下图所示:
2.3、逆变电路的方案设计
为了稳定的输出交流电压,设计选用了全桥逆变电路,此电路由双半桥组成,通过对比之后,发现该系统较为稳定的同时也易于控制,基于IR2112控制的全桥驱动电路,两片IR2112芯片组成全桥逆变电路如下图所示:
三、系统软件电路方案设计
3.1、逆变电源软件程序设计
本设计的电源软件选用模块化设计。单片机内部ROM 中固定了系统程序,也有一些子程序在里面。这些子程序具有时钟、初始化系统等的功能。
在主程序模块中,需要完成的工作有:初始化各芯片、设计中断向量等。
3.2、SPWM波生成方案软件设计
3.2.1、正弦脉宽调制技术SPWM
依据软件化方法的不同由单片机实现SPWM控制的方法有:自然、规则采样法等。规则采样法相比于其它方法在理论上谐波偏小,有较强的对谐波的抑制能力的同时实时控制也不复杂,这样对于软件的实现就很有利。综上,本设计实现SPWM控制的方法选用的是规则采样法。
为了达到采样法的效果与自然采样法的效果相接近的目的,所以选取规则采样法。选取的目的是能够使得SPWM波形的每个脉冲都与三角波中心线相对称,所以这样就大大简化了计算。在图中,三角波就是载波,要想使得输出的正弦波为调制波,那么每半个正弦波的载波数就得为a,载波的周期就得为。控制逆变电路的关断可以在在载波与正弦波的交点处实现,设导通时间为,依据公式:,其中正弦调制信号波为=,正弦波幅 值与载波幅值的比值为调制度b, SPWM脉宽表的特点是正弦表,它是通过上式计算得出的,对输出交流电压有效值的控制可以通过改变调制度b的值来实现。
3.2.2、驱动电路设计STC12C5A60S2单片机生成SPWM波软件设计
选用单片机产生SPWM波原理是:PCA模块l的16位捕获/比较模块寄存器CCAPlH和CCAPlL来获得载波周期的数值,通过将PCA定时器的值CH、CL与模块捕获寄存器的值进行对比之后,如果二者相等,那么PCA就会产生中断。在中断当中,脉宽调节模式将下一个SPWM波的脉宽装载到了CCAPOL中,无干扰的更新PWM就可以通过此方法来实现。具体的流程图如下:
不同的脉宽数值在每个固定的载波周期内形成了一个类似于正弦表格的形式。如果此路SPWM的输出采用模块O,那么应该先将模块0的PCA模块工作模式寄存器定义为8位的PWM模式,清零16位计数器定时器CH、CL,清零PCA PWM模式辅助寄存器O ,当然了前提是要能确保捕获的寄存器EPCOH、EPC0L为零,与PCA模块0的捕获寄存器CCAPOH、CC2APOL有关的仅仅是PWM波比较的数值,载波周期的高八位和低八位数值通过模块l的捕获寄存器CCAPlH、CCAPlL来获得,PCA比较/捕获模块寄存器1定义为使能比较功能,匹配产生中断是可以被允许的。在第一个脉宽值sin[0]装入CCAP0H之后, PCA模块中断打开以及低压检测中断也可以打开,开总的中断,将PCA计数启动。在16位计数器/定时器的与模块1中捕获/比较寄存器的数值相等时,一个CCF中断将会产生;在中断的程序当中,中断标志位清零,模块1的捕获寄存器CCAPlH、CCAPlL的载波周期的高八位和第八位数值将被重新载入,清零16位计数器定时器CH、CL,中断的次数i加1,下一个脉宽的数值sin[i]被装入CCAPOH以进行比较。此时应当对是否到达最大数值N进行判断,如果达到了,那么就清零中断次数i的同时将脉宽数的sin[i]值送入CCAP0H,从而形成了一个循环。如此下去,一次又一次的循环,随着正弦规律变化不断产生的脉宽将发生在P1.3的引脚上,进而最终可以准确的得到SPWM波。通过软件来实时计算好的一路单极性SPWM波形的脉宽的表示图如下图所示。
四、结束语
本文所设计的电源具有诸如用户操作简单、比较容易上手、比较敏捷的有点的同时也具有方便安装、比较智能的优点,现代的电力电子正在迅猛发展,很多领域都需要逆变电源,再加上逆变电源的诸多优点,相信逆变电源以及相关产品在随着现代人类文明的进步的同时会在一些领域得到很好的应用。
参考文献
[1] 郭天祥.新概念51单片机C语言教程——入门、提高、开发、拓展[M].北京:电子工业出版社,2009
[2] 钟睿.MCS-51单片机原理及应用开发技术;北京:中国铁道出版社,2006.7
电源电路设计范文4
关键词:电子电路;单元电路;设计方法
1 前言
在我国,电子技术是随着我国的改革开放发展起来的,虽然起步晚,但是当今的发展也在世界发展水平之列。经过几十年的发展,电子技术从电路的设计和应用的领域都发生了翻天覆地的改变,应用范围越来越广,对于我国的电子电路的工程师和设计人员来说,合理的设计出一个符合要求的完整的电路图是非常重要的。
2 电子技术和单元电路的概念
所谓的电子技术,就是在我们解决实际的电路问题时,电路工程师根据电子学的原理,将电子的某种特性设计在一个实际的电子器件上的一门新兴的技术。电子技术主要分为电子信息技术和电子电路技术两大类。在电子信息技术中,从前只有电子模拟技术,但是最近几年又新发展出一门数字电子技术,后者处理电路的能力更强,因此,成为现今社会电子技术的主流。在电子电路中,组成电子电路系统的一个主要部分就是我们要分析的单元电路。单元电路很复杂,对电子工程师要求的技术严格,为了将电子电路设计的水平不断的进行提高,我们电子工程师就要对单元电路进行设计的研究,通过这些来增加单元电路的经验。
3 单元电路的设计步骤和方法
3.1 单元电路的设计步骤
在传统的电路设计时,一般的步骤有三步。单元电路在设计上也一样,都是明确设计任务、计算单元电路的参数以及画出最后的单元电路图。
在单元电路设计前,一定要明确设计的目的和任务。主要考虑的是设计出的单元电路的性能,在单元电路设计时,我们要将电压、电阻、电流设计为最佳的状态,以使设计出的单元电路的性能达到最好,当然,在设计时,还要考虑到设计出的电路体积要小,成本要低,结构要简单,方便使用和维护、
在计算单元电路参数时,我们一定要运用我们电子工程师的专业知识,将设计的参数计算准确,保证设计出的单元电路功能达到预期的目标。举例说明,当我们在设计单元电路中的放大器电路时,我们一定要计算准确电阻值及其放大的倍率,这样才能保证放大器电路正常的工作。在参数计算时,我们要计算不止一次,将计算的结果进行比较,在误差范围内才能使用。
在单元电路设计参数计算出来后,接下来就是画单元电路图。画出完整的单元电路图主要是让我们能总体的了解单元电路和整机电路间的相互联系和转换。在画单元电路图时,要确保所画的电路图简单、明了、准确。尽可能的将电路图画在一张图纸上,这样方便电子工程师检查其中的问题和错误,单元电路的主要部分要在图纸上标明,有必要的还要画出主要部件的详细电路图。
3.2 单元电子电路的设计方法
前面详细的讲解到单元电路的设计步骤,这都是为单元电路的设计方法做准备,一个单元电子电路正常运行与否,根本还要看单元电路的设计是否合理,因此单元电子电路的设计方法尤为重要。下面主要讲三种实际生产中常用的设计方法。
第一种就是线性的集成运放组成的稳压电源的设计方法,在稳流网络,稳压电源中的电压变压器只有通过输入电压才能借助滤波网络进入最后的稳压网络中去,因此,在电子工程师设计电路时,要将电流的短路保护考虑在内,防止负载的电流超过额定电流,对电路产生损害,一般的稳压电路都是串联式,因此在设计时,要将负载区的纹波系数降低,保证电路的稳压效果,带动负载一定不能选用直流电,防止出现短路。
第二种就是单元电路的级联设计方法。在将各个分单元的电路设计好后,就要设计他们之间的级联图了,一些涉及的是模拟电路的联系,一些是数字电路的联系,更多的是两者结合的综合电路,这些电路总体是要提高电路的放大倍数和提高其负载能力,因此,我们设计时要综合考虑对电路进行匹配设计。在耦合信号的设计中,要考虑不同耦合种类的相互影响,对电路进行最优设计。对于电路中的时序配合,要总体的先对系统进行分析,确定电路系统的时序,在按照最简原则进行设计。
第三种就是对电路中的放大器的设计。放大器在电路中的作用主要是放大电路中的单元倍数,加强电路中某个模块的功能。放大器要考虑的因素主要是电源的单、双供电,电源的最优电流,最佳输入和输出电压等,在放大器设计中,一定要处理好各个参数的关系,在设计中要避免出现两级以上的放大级别,减少出现的消振问题。
4 结语
现在的电路中的单元电路种类很多,因此在设计方法上会有很多版本,随着科学技术的不断发展,集成电路逐渐成为电子市场的新宠,并且已经形成集成电路的新兴器件,这对电路的单元电路设计要求提出了更加严格的要求。这就需要我们电子工程师在电路的设计上要积极地积累设计经验,参考国外的先进技术,将我国的电子设计推向一个新的台阶。
[参考文献]
[1]徐雷.关于电子技术单元电路的级联问题[J].电子制作,2013,(9):17-19.
电源电路设计范文5
关键词:电路 延续教学 Multisim
中图分类号:G71 文献标识码:A 文章编号:1674-098X(2017)04(c)-0225-02
电路是高校电子与电气信息类的重要专业基础课。课程主要分析电路中的电磁现象,研究电路的基本规律和电路的分析方法。为学生学习后续的电子与电气信息类后续课程准备必要的电路知识,在整个课程体系中具有承前启后的重要作用。而随着课程教学改革的发展,在技术基础课程中也越来越强调对学生实验研究能力、动手操作能力、实践创新能力的培养。电路课程作为一门重要的技术基础课,在课程延续教学部分也应加强开展综合性复杂实验的教学。为此我们尝试将“多路直流电源设计”的综合性实验引入了电路课程延续教学中。
延续教学作为课程正常教学的有益补充,采用什么样的教学形式开展是教师们在设计教学方案时深深思考的问题。除了常规的通过习题课、答疑讲解加深对理论知识的理解,开展各种形式的实验教学也是十分有必要的。实验教学除了课内的基础实验、验证性实验,课后的延续教学部分进行一些电子设计制作,对锻炼学生的动手能力,提高学生的学习热情和积极性都是十分有好处的。
直流电源在原来的教学安排中我们是在模拟电子技术基础课程中介绍的。但实际上,学生对二极管的单向导电性在高中阶段就有所接触。在电路课程中学习过电容、电感特性,变压器原理后,向学生介绍直流电源的组成原理学生也比较容易接受。这时候在课后延续中引入多路直流电源设计的综合性实验,与实际联系紧密,在理论学习之后,将电路具体实现出来,学生兴趣比较大。电路课程与后续的模拟电子技术基础课程都属于电子电路,本就有着千丝万缕的联系。在电路课程中就开始学习Multisim软件仿真,对后续模电的学习也是十分有帮助的[1]。
1 原理介绍
在实验进行之前,教师需要对实验的理论基础即直流电压源的工作原理加以介绍。直流电压源通常由交流变压器、整流电路、滤波电路和稳压电路4部分组成,如图1所示。其中交流变压器负责降压,把220 V的交流电网电压降低到合适的交流电压值;整流电路的作用是将方向变化的交流电压变成方向单一的脉动直流电压;滤波电路则将脉动的直流电压转变为较为平滑的直流电压;最后的稳压电路负责清除电网波动及负载变化的影响,保持输出电压的稳定。教师可以重点讲解整流电路[2]。而整流电路的关键在于方向的变化,因此很容易引导学生想到利用二极管的单向导电性来实现整流。接下来主要介绍单相桥式整流电路的结构,讲解桥式整流电路4个二极管构成桥臂,两两交替导通的工作原理。滤波电路部分简单地使用电容元件进行滤波即可。稳压电路则采用三端集成稳压元件W7800和W7900系列来实现。
2 仿真
在学习完实验理论知识部分之后,学生还需要进一步熟悉实验使用的各种元器件,熟悉电路的工作原理和组成。电子分析的仿真软件在这里能够给我们带来极大的帮助。Multisim电路仿真软件是美国国家仪器(NI)有限公司推出的电路仿真软件,具有界面友好,元器件和测量仪器丰富,分析工具强大等优点,是进行电子设计分析的好帮手。学生通过在电脑上采用虚拟的电子元件连接电路,可以掌握常用电子元器件的功能作用、基本参数和测量方法。而且在软件中可以随时根据仿真结果调整电路参数,避免了实验失败带来元器件烧毁的风险。仿真软件提供了丰富的分析仪器,弥补了实验室可能缺少某些不常用仪器的不足。通过软件仿真,学生可以完成从电路设计、元件选取、测试优化、参数调整的一系列过程,锻炼了学生的动手能力和分析能力,也为实际电路的实现打下了良好的基础。多路直流电源的Multisim仿真电路如图2所示。
3 电路实现
学生在认真研究了电路原理并进行电路仿真之后,对每一个电路元件的作用、电路的组成结构都比较熟悉了,这时我们就可以进入实验室进行实物操作了。教师可以先向学生介绍一下面包板和各种电路元器件的使用注意事项。学生通过原理学习和电路仿真,对电路元件已经有了一个感性认识,通过实物操作,更增强了对电路的理性认识。电路逐级连接,逐级测试。遇到问题分析解决。哪一级电路不能出现仿真预计的结果,问题在哪里,需要通过学生自己动手分析解决,锻炼了学生分析问题解决问题的能力。而且由学生自己解决的问题,学生印象更为深刻。在解决各种繁琐问题的过程中,也培养了学生细致耐心的实验习惯。各种常用测量仪器,万用表、双踪示波器的使用,对学生后续电子课程会十分有帮助。原理学习、电路仿真、实物操作整个过程的完成,对培养学生的综合素质和创新意识、工程意识都会大有裨益。学生能够独立完成一个常用电路的制作,也是非常有成就满足感的,促进了学生对电路学习的兴趣。由学生自己连接的多路直流电源电路实物照片如图3所示。
4 结语
直流电源是模拟电子技术课程中很重要的一个知识点。我们在电路课程中开展多路直流电源设计的综合性实验,在电路课中就让学生对直流电源的基本原理和概念有所了解。而Multisim仿真的使用学习,早早接触电路仿真,对于学生后续课程模拟电子技术和数字电子技术课程的学习都很有好处。通过多路直流电源的综合性实验的原理学习、软件仿真、电路实现这样一个完整的过程,学生能够自己完成一个实用电路的制作,极大地激发了学生学习的热情和积极性,同时加深了学生对理论知识的理解,锻炼了学生的动手能力和操作能力,对理论教学也会起到良好的促进作用。
⒖嘉南
电源电路设计范文6
关键词:STM32 微气象 GPRS 输电线路
中图分类号:TM75 文献标识码:A 文章编号:1007-9416(2012)02-0081-02
Remote Monitoring System for the Micrometeorology of Transmission Lines
Abstract:In this paper, STM32 family of processors as the main chip, multiple sensors into a piece of equipment, so a device can simultaneously monitor monitoring of many micro-meteorological data. Through wireless GPRS DTU connected the control chip can achieve remote wireless data transmission, and on this basis to achieve a wide range of micro-meteorological monitoring of transmission lines.
Key word:STM32, micro-meteorology, GPRS, transmission lines
随着国民经济的快速发展及全国联网战略的实施,电网处于前所未有的快速发展时期,我国幅员辽阔,气候差异大,恶劣的气象条件对日益庞大的电网安全运行的影响程度也会随之增加。为此,电网企业应完善气象预警机制,设计电网电路的微气象监测系统,确保电网可以安全稳定的运行。
1、系统总体设计方案
微气象监测终端对输电线路区域微气象条件进行在线监测,监测的主要气象参数包括风向、风速、湿度、温度、大气压、降雨量、日照辐射,其中风向、温度、日照辐射为模拟量。图1为微气象监测终端原理图,主要包括以下几个部分:
1.1 采集模块
根据采集对象不同,数据采集模块也可划分为不同部分,如风向、风速、湿度、温度、日照辐射等模块。其中风向、日照辐射是模拟量,经16位的ADC进行模数转换,通过串口和主控模块相连接。其余的气象参数通过传感器得到的采集数据为数字量或为一定的频率脉冲。
1.2 以STM32F103C为核心的主控模块
主控模块驱动系统运行,负责数据存储、处理以及传输,并向采集模块以及通信模块提供数据接口。
1.3 通信模块
通信模块选用GPRS DTU(数据终端单元)为通信中继,以无线的方式接入移动GPRS,将采集到的数据传输到数据服务中心。其中,GPRS DTU通过USART2接口与主控芯片相连接,实现数据通信。
1.4 电源模块
根据检测系统的无线化的组网方案及环境需求,系统采用太阳能电池供电。
1.5 防雷设计
考虑到监测终端是安装在输电线路杆塔上的,环境可能较偏僻、恶劣,因此监测终端还采用了防雷设计。
2、MCU电路设计
2.1 STM32系列微控制器介绍
STM32系列微控制器兼有低功耗及多种省电工作模式,能够优化工业设备、医疗设备、物业控制设备和计算机外设等产品的性能。
在设计中,充分分析了MCU选择原则后,并对比STM32系列芯片特点,最终选用STM32系列中的STM32F103C8作为控芯片。ST提供了完整高效的开发工具(Keil MDK和IAR EWARM)及库函数。软件包所提供的驱动覆盖了从GPIO到定时器、CAN、I2C、SPI、USART等所有标准外设。STM32FI03C8性价比较高,具有3个USART接口、2个I2C接口、37个GPIO、3个16位定时器,片上丰富的存储器及外设资源能够很好的满足系统的功能实现,能够达到微气象控制系统的设计需求。
2.2 MCU电路设计
MCU电路主要包括传感器输入信号、通信接口、晶振电路、复位电路及BOOT选择电路。如图2所示:
参考文献
[1]魏洪兴主编.嵌入式系统设计师教程.北京:清华大学出版社,2006.
[2]意法半导体STM32系列STM32F10332位微控制器.今日电子.2008,2:61-62.