铁路通信技术范例6篇

前言:中文期刊网精心挑选了铁路通信技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

铁路通信技术

铁路通信技术范文1

    1.1有线通信技术。有线通信技术在铁路系统中主要是用在固定的站与站之间、固定的设施之间的通信,有着传输速度快、传输质量高、成本低、安全性好等特点。有线通信技术最常用的主要是基于SDH(SynchronousDigitalHierarchy,同步数字体系)进行组建,是一种较为成熟的光纤通信技术。通过这一技术,使得数据传输、图像传输及程控数字交换等及时而有效的传输,传输速度可达80Gbit/s甚至更高。另外随着通信技术的发展,采用ATM交换技术以及IP通信技术等建立主干网及接入网,使传输更加安全和高效。

    1.2无线通信技术。由于在铁路系统中列车是铁路运输的主体,而列车的通信主要是在行进过程中进行,所以无线网络技术在这一范围内得以广泛应用。常用的无线通信接入主要是在列车即将出站或行将进站的这一小区段,实现管辖区域内列车车长、司机与站内调度室管理人员之间的实时通话功能;而在列车行进区间基于节约资源和减少频率干扰的考虑则不进行无线通话。这就使得无线通信技术在铁路系统中的应用较为局限,随着时代的发展,已经不能满足铁路现代化建设的进程,这就要求必须建设更加先进的、与铁路快速发展相适应的无线通信系统。这一无线通信系统需要完成列车与调度室之间、调度室与指挥中心之间、指挥中心与列车之间的通话功能。

    1.3集群通信系统。集群通信系统是由具有信道共用和动态分配等技术特点的集群通信系统组成的集群通信共网,为多个部门、单位等集团用户提供的专用指挥调度等通信业务。集群通信系统结合了现代化的计算机技术、网络技术、通信与微处理技术、程控交换技术等,集通信、交换、控制于一体。在铁路系统中,采用集群通信技术可以最大程度地节约频率资源,降低损耗,弥补了传统无线通信技术的缺失,尤其适合应用在铁路车辆调度、指挥以及抢险应急灯的控制等,采用动态频率,因而很好地解决了通信频率的分配问题。但是这一技术不能与公共网络进行有效融合,容易受到干扰而使信号不强甚至有信息丢失现象,在指挥中心与列车之间的双向数据通信过程中很难做到数据的原真性和保密性,因此其应用有一定的局限性。

    2铁路通信技术的发展趋势

    2.1网络结构的优化。根据铁路信息化建设的要求,要使铁路通信实现通用化的要求,并提高信息容量和数据传输速度。要在有线通信网络、无线网络和集群通信网络的基础上,采用先进的网络技术如IP技术构建覆盖全国的通信网络,采用信息一体化技术,实现各指挥中心和调度室之间的信息共享。鉴于当前无线通信技术的缺点可以采用具有远程监控能力的光纤直放技术,这一技术是将传统的模拟信号转化为数字信号,然后进行光传输,由于数字信号的可靠性和传输信号的“零衰减”使得信号的可靠性得以提升,同时又具有节能模式,可降低运营成本,故可作为铁路通信技术发展的可靠性选择。

    2.2与公共网络系统融合。当前的铁路通信网络一般独立于公共网络而存在,这样不仅浪费资源,还使得铁路通信的速度提不上去。而如果铁路通信网与公共网络得到有效融合,则对铁路的通信领域的改变将是革命性的。因此,铁路通信网络与公共信息网络想融合应是一个发展趋势。当前的铁路通信技术不论是传统的无线技术还是集群技术都有自身的缺陷,不足以与公共网络融合在一起,因此必须开发新的通信技术才能实现这一目标。

铁路通信技术范文2

关键词:铁路通信;通信信号;通信系统

中图分类号:E965 文献标识码:A

引言

要适应现代信息社会的急速发展,现代的科技研究人员就必须要打破常规的铁路通信网的结构和模式,采用更加先进的、现代化的有线和无线通信的传输方式和接入方式,实现铁路通信的快速升级,从而使铁路通信网络在国民经济中创造更大的社会效益和经济效益。

一、现代通信技术在我国铁路中的应用

通常来说,我们将通信网络分为接入网、局域网和主干网三个部分,因此我们通常也将铁路通信网络按照上述方法划分。在这三个部分中,接入网占有非常大的比例,分为无线接入网和有线接入网两大部分。

1、无线接入网

高速运动是铁路列车的特点,所以无线接入网在铁路通信网络中占有很大的比重。当然,固定位置的单位、车站(场)和各种固定设施之间的通信方式,我们首选方案仍然是采用SDH光同步数字传输设备来进行组建,与此同时考虑采用数字环路载波设备和远端用户单元,使组网更加方便、灵活。组网的过程中要同时考虑效益与投资,可以使系统不仅能满足近几年内铁路通信的需求,而且还能够为出行的旅客和地面用户提供先进的电信业务。另外,采用网络IP通信以及ATM交换等先进技术来构成光纤用户接入网及通信主干网。比如,采用“双纤单向环”的接入方式,其不仅具有传输质量高、安全、高速、价格合理等光纤通信所特有的优点外,而且还具有设备备用、路由迂回等优点,而且具有自愈合的功能,从而使系统的可靠性大大地提高。

铁路通信网络还可以为旅客和铁路公务、行车维修、应急抢险等相关人员提供及时可靠的通信功能,从而提高服务等级和运输效率,保证列车的安全运行。所以,这是一套集区间移动作业通信和列车公务通信为一体的列车移动通信系统。但是由于铁路自身的特点,决定了该系统与区域性的专业移动通信网和公用移动通信网不同,这是一种属于线面结合、以线为主的链状网。

2、集群通信系统

铁路通信系统中的集群通信系统所涉及的技术层面很多,主要包括计算机网络技术、微处理机技术和程控交换技术等,该专用移动通信系统的功能非常强大,该通信系统具有控制、交换和通信等功能,其在将信号自动分配给系统内部用户时通常采用的是无线拨号的方式,这样在极大程度上实现了系统资源和频率资源的利用,降低了通信系统的内呼损耗,并提高了铁路通信系统的服务质量。此外,集群通信系统具有组呼、群呼、强插、强拆等特点,该系统在指挥调度和抢险应急场合应用广泛,并能及时解决通信频率的分配问题,因此,集群通信系统在我国现代铁路中应用广泛。但是,集群通信系统仍具有一定的缺陷,铁路集群通信系统在采用动态频率分配时没有充分考虑其余周围公共网络能否有效融合的问题,且在建立集群网络系统时很容易受到外界的干扰造成信息丢失,因此,该通信系统在对数据通信要求较高的铁路运输系统中并不适用。

二、通信信号一体化技术的基本特点

随着我国人口的不断增加,我国的铁路建设正在紧张且有序的进行着,我国现代铁路通信信号技术也在逐渐完善,朝着网络化和智能化的方向不断发展,现代通信技术在铁路信号系统中得到广泛应用,有效实现了通信信号一体化。随着科技的发展,通信技术也在进行不断地革新,独立光芯和无线数字通道逐渐取代了传统金属线、光通道等,信息技术成为控制信号系统信息传输的主要手段。在传统的铁路铜线系统中,通信和信号属于两个相对独立的专业,这种设计模式使得铁路部门正常运行出现了弊端,因此,只有采取科学有效的计算模式实现通信信号一体化,对通信、信号进行合理设计、统筹管理,才能使得铁路列车安全运行。通信信号一体化技术在我国现代铁路中应用广泛,其基本特点如下:

1、具有灵活性及通用性

系统支持双向运行,有利于线路故障或特殊需要时的反向运行控制,既不需要新增任何其他设备,也不会因为列车的反方向运行,而降低系统的性能和安全。

2、降低生存期成本和工程投资

因为缩短了列车的编组,也降低了行驶列车的高密度运行,可以缩短站台的长度和端站尾轨的长度。信息传输由以前主要依赖轨道电路,而现在逐渐转变为设备主要集中在室内和机车上,这样也就减少了投资。无线机车信号在车站跨越了轨道电路,摆脱了车站轨道电路电码化的约束,系统结构从而变得更加简洁。

3、具有较大的信息传输量

传统的铁路信号传输都是在轨道上进行的,其传输速度慢且信息传输量较小。随着现代科技的不断发展,列车密度增大且列车速度逐渐加快,这就使得列车控制信号大大增加,且日益繁琐。无线通信网系统在铁路中的广泛应用使得信息传输量增大,从而实现列车的良好控制。

4、具有较高的运输效率

铁路运输中的无线车载设备系统接收到的信息通畅具有很高的准确性和实时性,铁路运输中多采用无线通信方式实现移动自动闭塞的目的,移动自动闭塞分区会伴随着列车的运行而移动,此时闭塞分区无需应用地面信号,只通过无线车载系统就能很好接收相关信息,从而实现列车的有效控制,确保列车安全运行。

5、传输可靠性高

轨道电路中的信号传输是开环的,也就是说发送者只负责发送,并不能确切地知道接收者是否真正接收到信息,而在CBTC系统中可以做到双向的通信,并且同时还可以使用多种保证技术(如各类冗余技术、反馈纠错技术等)来提高其自身的可靠性,从而实现铁路信号通过无线网络的安全和实时的传输。

三、我国现代铁路通信技术的发展趋势

20世纪80年代,集群通信系统在铁路运输中得到应用,该通信系统的信道具有组网灵活、利用率高等特点,这就使得旅客的通话质量得到良好的保障,列车公务人员的业务通信也得以正常进行,铁路集群通信系统能基本上满足铁路通信的需求。虽然集群以通信系统已经基本满足了铁路通信的需求,但其无法实现列车的实时定位和追踪,因此,为优化和完善通信系统铁路部门对铁路通信网进行了重新改造和建立,先进的移动通信技术例如第三代移动通信系统和蜂窝移动通信技术都在我国现代铁路中应用广泛。

为充分满足未来铁路发展对通信的需求,铁路通信建设部门将采取有效措施,实现通信系统寿命周期内运输增加的目的。为有效确保铁路通信系统的可靠性和安全性,还要将其与其他系统有效的结合起来,以便必要时提供有效的备份。铁路通信系统的发展趋势一直是向着与公用网想融合的方向,采取有效措施对铁路通信系统进行完善,从而实现其与公用网的协调统一。这就使得旅客在运行的列车中和列路网覆盖区域都能通过铁路通信网进行正常的信息交流,实现了信息的及时性和可靠性。为满足这一铁路通信系统要求,第三代CDMA技术取代了传统的集群移动通信技术,但这并不是说死担待CDMA技术就可以充分满足铁路通信系统中的无线接入系统功能,只有将铁路通信必备的功能有效的融入到CDMA技术中,才能使得公用无线通信接入系统在铁路运输中充分发挥其通信作用,才能在极大程度上提高列车运行的安全性。

结束语

随着铁路建设的不断发展,铁路通信技术得到了进一步的发展,该技术发展所依托的新技术与通信技术的技术标准是一致的,属于技术发展前沿科学,可以说铁路通信技术是21世纪的一项热门科学,会得到进一步的广泛应用,目前客运专线建设和高速铁路的研究,也为铁路通信技术的发展提供了新的发展机遇。

参考文献

[1]王永刚.浅谈铁路通信信号一体化[J].工业技术,2010年.

铁路通信技术范文3

覆盖范围广中国地域广阔,共有31个省市自治区,部分省市之间相距几千多公里,并且列车在运行过程中要通过多个铁路局及集团公司的管辖区域,每个单位均有调度指挥及为车辆服务的部门及人员,所以通话对象不固定,这就需要一个统一的呼叫方式及规则,由联合控制中心根据列车运行区间及位置确定呼叫路由及地址。这也是符合我国铁路特得点的独特通信方式。需要具备数据的传输功能列车无线电台设备不仅需要语音传送,还需要有传输数据的能力,应具备多功能的数据接口,可以传输列车运行所需的各种数据,交换信息,确保列车通信及监控的实时性和有效性。综合性要求强铁路运营所需支撑体系庞大,车务、机务、工务、电务、车辆等单位各司其职,对通信的需求也存在差异,这就要求无线通信设备具备很好的适应性,结合各部门需要开发相应功能。设备要有良好的综合应用能力,一机多用,即能传递语音还能传送数据,将列车信息根据需求传递到不同单位,各取所需,便于部门间联动,提高统一协调能力。

铁路移动通信系统介绍

GSM-R(GSMforRailway)为铁路专用数字移动通信系统,和GSM网络标准相似,是从欧洲引进的铁路通信专用系统。GSM-R是基于GSM技术平台,针对铁路无线通信的特点,专门为铁路设计的数字移动通信系统,提供特色的附能的高效综合无线通信系统,并增加铁路移动通信所需业务(组呼、群呼、强插、强拆、优先级别等功能),构成整体的解决方案。GSM-R同时还具备数字集群的功能,满足列车高速运行时的无线通信要求,可以提供应急通信、无线列调等语音通信功能,安全可靠。GSM-R还是一个信息化的平台,使得用户可以在这个信息平台上轻松开发各种各样的铁路应用。GSM-R通信系统主要由基站系统(BSS)、网络系统(NSS)、管理系统(OSS)三大部分和移动终端设备组成。其中网络系统包括移动交换系统、移动智能网系统、和分组交换无线业务系统,是GSM-R系统的核心组成部分,实现了与其他网络的有机结合。GSM-R系统网络结构图4GSM-R技术的应用GSM-R系统不仅可以提供语音业务,还可以提供数据业务、智能业务。针对铁路通信需求,GSM-R系统还提供了组呼叫、寻址、广播呼叫、紧急呼叫等特殊方面的要求。

经过GSM-R网络组成的数据链路传送到车载无线通信设备,机车就能接收到调度下发的命令。调度命令是各级调度指挥人员向列车司机下达的书面指令,是列车运行指挥系统的重要组成部分。列车调度指挥:调度与司机之间的通话是行车通信系统的重要组成,负责指挥各种车辆的运行,保证机车司机、车站值班员、列车调度员之间以及车站值班员、机车司机、运转车长之间的通信畅通,确保安全。机车同步控制:有时列车需要多个机车牵引,在运行过程中,两台机车之间包括加速、减速和制动等一系列行为必需同步操纵,利用本业务可实现机车间信息的传递和交换。列车自动控制:通过GSM-R提供车地之间双向安全数据传输通道,接收由GPS或其他的定位工具提供的位置信息,控制列车运行,可代替以前的信号灯指示,保证列车运行安全。机车信号和监控信息传送:实现车载设备和地面间的数据传输,提供机车信号和监控信息传输,储存调车模式的相关信息,构成站场通信系统重要组成部分。列车停稳信息传送:利用数据采集传输应用系统,可传送列车是否停稳信息,提高车辆运行的安全性。车次号传输:车次号传送是实现车辆调度指挥的重要一环,通过对列车车次号的自动跟踪,实现调度中心对车辆运输业务的监控机办理。列车尾部监控数据传输:在列车行进当中,司机应当准时了解列车性能变化。列车监控系统可以提供车尾风压数值,电池电压情况,主风管风压情况等等,实现对车辆状态进行实时监控。区间无线通信:在区间作业可以使用GSM-R作业手持终端,包括机务、车务、工务、电务、公安等单位可根据需要进行内部的业务联系,在有特殊情况时可与列车调度人员或其他用户联系,在遇到突发状况时,还可通过无线终端直接与司机通话。旅客业务信息收集:每辆客车都与控制中心保持一条实时双向数据传输通道,作为数据通信业务使用,与旅客相关的所有移动信息通过此通道进行传输,为旅客提供各种信息,增加旅客的便利性,提供各种人性化服务。

铁路通信技术范文4

【关键词】无线通信;应急系统

一、铁路应急通信系统解决方案应遵循的原则

铁路应急通信系统是保证铁路运行安全和服务质量的重要手段,鉴于通信技术的发展趋势,采用合理化的解决方案非常重要,铁路应急通信系统解决方案应遵循的原则是:先进性、便利性、集成性、经济性、可扩展性和安全可靠性。1、先进性。传输网络采用光纤、数据网、无线承载,解决既有电缆带宽不足、速率低下等问题。2、便利性。现场部署简单、接入灵活、15分钟以内开通业务,解决既有接入设备多、接入操作繁琐以及因电缆质量不良造成的呼叫不通、不稳等问题。3、集成性。可提供光纤接口、百兆以太网接口、AV接口、Z接口,满足光纤、数据网网络的搭建,满足电话、图像等设备的接入,解决既有系统设备间不兼容的问题。4、经济性。利用现有光纤资源、数据网资源,避免重复性建设的投资。5、可扩展性。利用无线技术延伸话音、图像等业务到区间的任意地方,保证与现有自动电话网、调度电话网、动静图的互联互通;适应铁路区间复杂多变的环境下,在路肩遮挡、树木遮挡、单兵移动、隧道内部等各种情况下所有业务能够稳定运行;可扩展应用到大型施工的组织、盯控等多种领域。这里我们研究利用无线接入技术、光纤通信技术和铁路局现有的数据网和传输网络,实现区间内、站场各种应急通信履盖接入。通过对既有数据网资源、光纤资源进行整合,实现站点与中心的互联互通,解决既有电缆传输带宽窄、稳定性差等问题;引进无线接入技术,实现区间多种业务的接入,承载应急电话和直通电话等业务、传送可靠的动态图像,满足铁路区间多种通信业务传送技术、适应铁路区间复杂多变环境下的应急通信技术。

二、铁路应急通信系统主要运用技术

通过既有光纤和数据网实现站点与中心的互联互通,解决电缆传输带宽窄、稳定性差等问题;通过无线承载应急电话、直通电话、动静图业务,满足铁路区间多种通信业务的接入需要、适应铁路区间复杂多变环境下的通信需求。对现有数据网资源、光纤资源进行整合,同时既充分利用现有数据网资源和光纤资源、最大程度的节约了成本,又发挥了无线的灵活性,提高项目的可推广性。

三、铁路应急通信系统主要研究内容

1、利用无线技术来传送可靠的动态图像,以适应铁路无线通信技术在铁路应急系统中的应用田晓丹呼和浩特铁路局呼和浩特通信段区间复杂多变环境下的应急通信技术;2、利用无线技术来承载应急电话、直通电话等业务,满足铁路区间多种通信业务传送技术。3、利用各种灵活的接入手段,利用无线接入技术方案,满足铁路沿线各种应急通信、业务倒代、大型作业远程指挥的通信接入技术方案。

四、需要解决的关键技术包括

1、在各种铁路环境下的无线电非视距内传输技术;2、支持自动电话、调度电话、静图、动图等多种铁路应急通信业务的统一的无线传输平台技术;3、无线、光纤、数据网的融合技术。该系统在现网中进行测试及应用,可实现应急电话、直通电话、数据终端等多种业务的接入,满足大数据包传输的带宽要求,满足应急电话、直通电话等实时业务的稳定性要求,满足应急时限方面接入方便性的要求,满足区间移动性的要求。满足铁路区间多种通信业务传送技术、适应铁路区间复杂多变环境下的应急通信需求。

五、主要技术难点

1、在各种铁路环境下的无线电非视距内传输技术。近距离无线传输容易,远距离无线传输较难;视距内无线传输容易,非视距内无线传输较难;窄带无线传输容易,宽带无线传输较难。2、支持自动电话、调度电话、静图、动图等多种铁路应急通信业务的统一的无线传输平台技术。单独实现某一业务容易,实现综合业务较难;基于电路的2种电话业务和基于IP的数据(图像)业务,“尽力而为”的业务管理方式容易,而互不影响、优先有序的管理方式实现起来较难;改变铁路使用习惯和管理习惯实现上述业务容易,而顺从既有的铁路规范和使用及管理习惯实现上述业务则较难。3、无线、光纤、数据网的融合技术。采用无线技术进行区间覆盖,实现容易,但成本高;采用光纤技术的通话柱方案,成本太高,灵活性差;无线、光纤、数据网的融合方案,既充分利用已有的光纤资源,又发挥无线的灵活性,综合造价还是最低,项目的可推广性大大提高。

六、推广应用前景

铁路通信技术范文5

随科学技术的飞速发展以及人们生活水平的不断提高,乘客对于铁路运输的服务质量及运输速度都提出了更高的要求。当前高速铁路正以其服务质量好、运输速度快以及安全性能高等特点,引起了人们的广泛关注,然而人们更加关注的是当提高了列车的运行速度之后,其通信技术是否还能真正满足高速铁路的运行要求。本文就高速铁路运输中应用到的通信技术进行阐述,为相关研究者提供理论参考依据。

【关键词】

通信技术;高速铁路

高速铁路中所用的通信系统主要由两个部分组成,即有线通信部分和无线通信部分,有线通信部分基本上与普通铁路的通信系统相同,不同之处主要是无线通信部分。下面我们主要对应用于高速铁路中的现代通信技术进行阐述,让人们相信现代化的通信技术完全有实力为高速铁路的发展保驾护航。

一、高速铁路应用现代通信技术的重要性

在科技高速发展情况下,现代通信技术也朝着数字化、宽带化、智能化、高速化及个人化等各个方面发展,通过现代通信技术的有效应用,使用者能够在任何时间、地点通过视频、数据以及语音等实现信息交流,提升生活品质,提高工作效率。在高速铁路中应用现代通信技术,不但能够让列车上的乘客真正感受到现代化通信技术带来的方便与快捷,还能让乘客坐在车厢中犹如坐在办公室一样,完全不受任通信硬件设施的阻碍,正常的与外界进行信息传递,获取自己想要的信息资源,实现移动办公。高速铁路的重要特征之一就是运行速度高,不仅运行速度高,还要更安全、更方便,自然技术要求就更高。然而想要实现这些要求,必须要通过现代通信技术来支撑,只有构建出技术先进、功能完善的通信网络,并辅以界面友好的交互界面,才能够实现高速铁路的自动控制、提升运输速度及运输效率,给铁路系统提供出全方位通信业务。

二、高速铁路中应用现代通信技术

高速铁路应用现代通信技术范围比较多,本文就选择几个重要方面阐述其应用。

2.1将GSM-R应用于列车调度系统

GSM-R是GlobleSystenofMobileforRailway的缩写,意思为铁路移动全球系统。它是为了满足铁路在移动通信方面的特殊需求而设计的专用系统,在系统功能上已经超越了GSM,是一项比较成熟的实用性技术。近年来由于铁路的提速以及铁路运输的不断发展,为了能让运输过程变得更高效、更安全,列车调度系统针对那些运输压力大的铁路干线,都陆续开通了某些新的数据业务,以便缓解通信方面的压力。除此之外,还必须对原系统中的天线高度以及天线方向进行适当的调整,使沿线的场强能在覆盖范围上得到拓展;而弱场问题要想得到有效地改善,就应该添置相应的设备让地面与列车之间形成一个双向无线通信系统。采用了GSM-R列车调度系统,能够将列车运行经过地点以及沿途各个站点动态情况显示在大屏幕上,调度中心经过网络就可以发出各种指令。一旦出现突发事件,能够利用该网络平台通过无线通信业务,指挥人员能够实时掌握各个救援情况,掌握调度人员、助理值班员、车站值班员及机车司机等,能够及时指挥与控制事件。如今高速铁路上主要是采用无线列调为主,通过该网络平台能够轻松进行行车70InternetApplication互联网+应用调度,实现机车司机、调度员及车站值班人员间通信,以及机车司机、车站值班人员与运转车长间各种通信。

2.2应用于安全监控车辆系统中

随着科学技术的不断发展,铁路部分在其发展过程中,也提出了必须继续深化铁路信息化建设的要求,而要想真正达到这一要求,必须要采用通信传输技术与信息网络强化安全运行控制管理。主要是以动态图像监控货车运行故障、红外线探测轴温智能跟踪等,联合形成多专业、多层次及多部门安全运行监控体系,进而确保整个运行线的安全监控水平。尤其是应用了短距离WiMax及WiFi的无线传输技术有机结合的传感器,以及长距离的有线线路共同形成网络,给铁路安全监控提供移动装备条件。在红外线探测轴温系统中(THDS),每间隔30公里就需要安装上红外线探头,用来测试红外线的轴温,同时结合六十万辆的货车配备RFID标签,能够检测车辆号码及每一根轴轮温度,如今在这个方面已经逐渐实现了集中报警、分散检测、网络运行、信息共享及远程监控的防范预警体系,提升了车辆安全能力。同时还在机车与客运车辆上加设传感系统,能够静态和动态测定线路钢轨、隧道及桥梁的数据,进而实现了双重检测监控,有效提升了高速铁路运行中整体安全系数。除了THDS之外,还有TPDS(地面安全检测运行状态系统)、TADS(轨边诊断早期故障系统)等,这些系统形成铁路车辆监控安全系统,该系统主要是应用网络化、智能化及信息化技术,实现了对高速客货车进行数据集中、动态检测、联网运行、信息共享以及远程监控。如今所有货车车辆与机车上均安装上了电子标签,在各个编组站、区段站、分界站等都安装上了地面识别设备,还把车号识别信息传送到铁路总局。总局中建立有全路车辆的动态库,就能够计算出各个路局目前车辆的保有量,经过和确报信息匹配,就能够掌握车辆是空还是重状态,以及重车装置的内容与去向,掌握车辆的位置、机动车的位置等。同时安全监控系统中所用通信网络也在逐渐加强自身网络安全建设,其一是实行了外部访问服务网、生产服务网以及内部服务网三者分离,内外网间需要通过身份认证进行动态隔离与交换技术。主要涉及到了计算机控制平台、路由器、防火墙等各个系统的调试。现在如果有500个事情同时并发,隔离装置能够在两秒之内进行控制;并且采取统一IP地址,构建出身份认证体系,每一个铁路局与总局分别构建出IA,这样来构成身份认证体系。其二总局通过广域网和局域网实行公匙加密技术,就实现了信息加密传输等各种控制。

2.3将智能化应用到在线监测系统中

经过几次大提速之后,一些区段中货车行驶的速度已经达到了250公里每小时。随着列车的速度提升,自然对线路、配套设施以及车辆都提出了相应要求,所以必须要建立一个连续的及密集型的巡检工作。同时列车高速运行时,巡视检测一定要将人身安全作为第一要素。在进行作业时一定要密切观察来往车辆,及时到下道避让。因此使用智能化在线检测非常重要,也是解决运行装备的巡检工作合理方案。通过移动设备检测固定设备技术措施,极大满足了线路中密切巡检所需。比如机车上装上了轨道动态检测设备,能够检测轨道的线路状况,一种方法就是测出轨道的基本参数,这种装置大多数安装到机车的车体上,而机车的监控记录器就是记录里程错表与车速,一旦车体的振动速度超过了门限值,能够将测到的加速值和坐标信息、车速共同放进储存器中,再经过转储器将数据转送到微机打印检测结果。另外一种就是和高速摄像技术相结合,同时应用上GPS定位技术、图像处理技术等,能够高速拍摄出钢轨的表面,同时进行故障识别与故障定位。这种智能系统安装比较便利,可以安装到轨道车及行李车上,还可以安装到客车上,在行驶中不间断高速拍摄钢轨情况,自动将故障情况判断出来并且确定出精确里程。当然该检测功能并不单一,而是要包含自动识别擦伤、掉块、裂纹、错牙,还要自动检测轨缝等等,将这种智能化的在线检测系统使用到线路与客运专线上,就可以代替人工进行作业,而具备了高速度、高效率、全天候等各种作业特征,实现数字化检测结果,进而形成了线路的图像数据库。在线检测机车车辆的踏面擦伤系统属于检测车轮状况装置,主要是检测车轮的局部擦伤或者踏面损伤,一旦发生这些故障能够准确预报出超差车辆擦伤大小以及位置,避免因车轮和轨道之间碰撞造成轴承损坏或者钢轨毁坏,进而引发出列车事故,保证了高速铁路运行安全。这种检测系统是室内设备与室外设备两个部分共同组成。室外设备包含了振动传感器、车轮传感器、配管配线、室外分线箱以及相关附件;而室内设备主要包含信号采集电路、工业控制计算机以及信号预处理装置。事实上高速铁路许多地方都应用上了现代通信技术,比如车列尾部的风压无线传输监控系统、铁路智能运输系统等各个方面,这样实现了高速铁路现代化、高速化,同时也加大了安全性。

三、结束语

随着近些年科学技术高速发展,我国铁路发展到了跨时代阶段,并且客货列车都进入到了重载、高速的现代化水平。特别在高速铁路、货运专线、客运专线以及城际铁路大规模建设,都促进了我国铁路的网络化发展。在发展铁路同时应用现代通信技术在必然趋势,也是提速、确保安全的有力保障。

参考文献

[1]郑义军.铁路通信系统的接入网工艺及发展趋势[J].科技与生活,2010(6):13~16.

[2]徐言斌.谈铁路通信工程接入通信工程技术及应用[J].科海故事博览,2009(4):341~343.

[3]宋开启.铁路通车系统中新技术的应用与发展[J].中国新技术新产品,2009(21):92~94.

[4]王争花.接入网技术在铁路通信中的应用探讨[J].现代商贸工业,2009(10):270.

[5]洪挺屹.关于通信术在铁路通信中的应用探讨[J].科技信息,2011(8):34~36.

[6]苏玮.浅谈通信技术在铁路通信中的应用[J].科技创新导报,2011(21):10

铁路通信技术范文6

1 铁路通信及其分类

铁路通信按通达地区和范围可分为铁路长途通信、铁路地区通信、铁路区段通信和铁路站内通信等;按通信的业务性质可分为铁路公用和专用通信。铁路长途通信是经过长途传输设备连接的铁路电话、电报和数据通信,使用人工交换机和长途自动交换机,存储程序控制电子交换机也用于长途交换。铁路地区通信为同一地区的铁路系统用户间的通信,主要是采用电话通信,通过长途交换设备可接长途通信网,设置市话中继线可接入市话系统。地区通信一般使用电缆传输,将广泛采用存储程序控制数字交换机。铁路区段通信为铁路沿线各部门用于指挥、调度、行车、管理等公务的专用通信系统,包括调度电话、站间行车电话、基层业务电话、区间电话和列车预报确报电报等。铁路站内通信用于铁路站场各种作业指挥和生产联系,采用站场有线电话、站场无线电话、站内电报和电视,以及站场扩音和信息控制。

2 基于计算机铁路通信系统的优势

社会经济的快速发展为交通行业创造了诸多有利的条件,铁路运输作为现代交通的重要枢纽发挥了多方面的作用。从发达国家的铁路通信系统来看,计算机平台呈现出来的优势包括:

1)自动性。计算机平台自身配备了一体化操作流程,可对铁路运输期间的多种信息实施自动化处理。铁路运输环节涉及到客流信息、货物信息、交通信息等主要内容,若采用传统人工信息处理方式则会增大操作难度。利用计算机操作系统能够及时捕捉交通运输需要的信息,尽快对各类信息详细地处理。2)安全性。近年来铁路车辆行驶的速度大幅度加快,但国内铁路运输意外事故发生率也明显上升,这多数是由于信号系统传输信息的不及时而引起故障,破坏了完整的通信流程。利用计算机取代人员操控保证了信号传递的安全性,特别是监测系统发现异常信号后可在短时间内提示操控人员紧急制动处理。3)高效性。信息传递的“滞后性”是铁路通信工程普遍存在的问题,也是限制交通运输效率的关键因素。铁路运输车辆次序繁忙且客流量大增,原先设计的通信模块功能已适应不了信号处理的要求,铁路运输生产和工程建设期间的信息传输率大大降低。基于计算机的铁路通信模块优化了信息调控处理的速率。

3 基于计算本文由收集整理机的铁路传输技术

铁路运输生产和建设中,利用各种通信方式进行各种信息传送和处理的技术与设备。铁路通信是以运输生产为重点,主要功能是实现行车和机车车辆作业的统一调度与指挥。但因铁路线路分散,支叉繁多,业务种类多样化,组成统一通信的难度较大。为指挥运行中的列车必须用无线通信,常见的铁路传输技术如下:

1)sdh传输技术。sdh是取代pdh的新数字传输网体制,主要针对光纤传输,是在sonet的标准基础上形成的。它把信号固定在帧结构中,复用后以一定的速率在光纤上传送。sdh是在电路层上对信号进行复用和上下。当带着信号的光纤通odf(光纤分配架)进入adm时,信号必须通过o/e转换和设备上的支路卡才能下成2mb/s的基本电信号,并经过通信电缆和ddf(数字配线架)接到用户接口或基站bts(基站收发信机)。2)atm网络传输技术。atm是一种基于信元的交换和复用技术,即一种转换模式,在这一模式中信息被组织成信元。它采用固定长度的信元传输声音、数据和视频信号。每个信元有53个字节,开头的五个字节为信头,用以传输信元的地址和其他一些控制信息,后面的48个字节用以传输信息。利用标准长度的这种数据包,通过硬件实现数据转换,这比软件更快速、经济、便宜。同时,atmi作速度有很大的伸缩性,在光缆上可以超过2.5gbps。3)mstp传输技术。mstp依托于sdh平台,可基于sdh多种线路速率实现,包括155mb/s、622mb/s、2.5gb/s和10gb/s等。一方面,mstp保留了sdh固有的交叉能力和传统的pdh业务接口与低速sdh业务接口,继续满足tdm业务的需求;另一方面,mstp提供atm处理、以太网透传、以太网二层交换、rpr处理、mpls处理等功能来满足对数据业务的汇聚、梳理和整合的需求。4)rtk gps网络传输技术。随着gps无验潮测深技术应用的不断深入,传统电台数据链的传输模式已不能满足长距离rtk作业的需要。而网络rtk技术则是利用网络来取代uhf电台进行数据传输,它传输距离远,信号稳定,抗干扰性强,已成为数据链传输的新宠。通用分组无线业务gprs,是在gsm系统上发展出来的一种新的分组数据承载业务,gsm是一种使用拨号方式连接的电路交换数据传送方式。gprs利用现有通信网的设备,通过在gsm网络上增加一些硬件和软件升级,形成一个新的网络逻辑实体。5)wdm传输技术。wdm(或dwdm)是在光纤上同时传输不同波长信号的技术。其主要过程是将各种波长的信号用光发射机发送后,复用在一根光纤上,在节点处再对耦合的信号进行解复用。wdm(或dwdm)系统在信号的上下上既可以使用adm、dxc,也可以使用全光的oadm和oxc,wdm(或dwdm)是基于光层上的复用,它和sdh在电层上的复用有着很大的区别。同时,通过oadm进行光信号的直接上下,无需经过o/e转换。

4 通信系统的日常维护工作

基于计算机的铁路通信系统在功能上实现了巨大突破,但在实际使用阶段还需加强多方面的维护管理,不仅降低了系统故障的发生率,也提高了人员操作的便捷性。根据实际应用情况看,有线通信、无线通信、光纤通信等技术与计算机技术联用要从软硬件两方面采取维护措施。

1)软件维护。铁路通信软件维护的重点在于计算机网络安全的控制,结合必要的安全监控及操作控制方法限制非法者的入侵,以防故意破坏通信系统的安全性。如:对铁路通信网络设置访问权限,未经允许不得参与网络系统的操作控制,避免通信指令及数据信号改动带来的不便。2)硬件维护。硬件维护的关键是对通信设备的监管。一是定期检测故障,对正在使用的通信设备及网络设备综合检查,发现异常问题应尽快更换装置;二是定期更新设备,部分通信设备使用时间较久后应尽快更换新装置或元件,以免因长期使用造成故障率的提升。3)综合维护。除了从软硬件方面采取维护措施外,还应顾及到铁路通信工程的其它方面。综合维护方案的制定围绕技术、人员、设备等方面加强监督管理,如:从技术上引进国内外先进科技,提高通信系统的传输性能;从人员方面搞好专业培训,增强他们参与业务的能力。

5 结论