前言:中文期刊网精心挑选了测控电路设计与应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
测控电路设计与应用范文1
关键词:单片机;教学;实践
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0181-02
单片机具有体积小、控制功能强、可靠性高、性价比高等特点,得到越来越广泛的应用。目前,很多工科高校都开展了《单片机原理及应用》课程,并且在各相关专业中占有重要地位。《单片机原理及应用》是一门实践性、综合性很强的课程,可以综合学生所学的电路、数字电路、模拟电路、可编程逻辑器件、编程语言、控制系统设计、传感器等多门基础课和专业基础课的知识,主要培养学生进行智能化电子系统整体设计能力。《单片机原理及应用》必须加强实践教学才能取得好的效果。但是,目前在实践教学过程中所使用的教学设备主要是实验箱,其主要元件一般是目前已经淘汰的插接式器件,同时由于实验时间场地的限制,学生很难有足够的实践时间。为此,本文设计了单片机教学实践系统,主要元件均采用贴片元件,体积小、成本低,可直接使用计算机的USB接口供电和下载程序,并且采用了目前单片机应用领域最流行的多种总线技术,CPLD技术等,使学生可以从认识元件开始,到设计、加工、调试、设计较复杂测控系统,全面培养学生的设计、实践能力。
一、单片机实践教学系统组成
为使学生在学生使用过程中,尽可能学生更新的知识,并且与教学过程相匹配,同学又要留有足够的扩展空间供学有余力的学生有更多深入学习的机会,因此在设计过程中,既保留的目前教学课本中最经典的教学内容,同时,又引入了目前实际应用领域中广泛使用的新技术。系统主要组成如图1所示。
教学系统以AT89S52单片机为核心,设计了CPLD扩展电路、人机接口、模拟信号输入输出电路、数字量输入输出电路、存储器扩展电路及几种比较典型的应用电路。
二、单片机实践教学系统电路设计
1.CPU及CPLD扩展电路设计。CPU选择AT89S52作为主控CPU,可以在线编程,内部8K的Flash存储器,不需要扩展程序存储器,内带看门狗,最大工作频率33MHz。扩展8K数据存储器(62624),可以满足学习需要。数字量的输入、输出罗辑均由CPLD实现,CPLD采用EPM7128,它带有2500门,128个宏单元,8个逻辑阵列,可用输入输出引脚100个。CPLD输出实现数字量的输入、输出外,还实现单片机总线扩展的锁存器、译码器等需要的数字逻辑单元。为学生使用方便,为学生提供输入、输出接口、计数器、数值比较器等基本数字电路的程序示例及单片机控制程序示例,以保证没有学过CPLD的同学无障碍的学习使用单片机。
2.模拟信号输入输出电路设计。模拟信号输出采用目前教学过程中普遍采用的8位逐次逼近型A/D转换器ADC0809,带8个模拟通道,芯片内带通道地址译码锁存器,输出带三态数据锁存器,启动方式为脉冲启动方式,每一通道的转换时间大约100微秒。模拟信号输出通道采用DAC0832,它由8位输入寄存器、8位DAC寄存器和8位D/A转换器组成。模拟信号的参考电压均采用REF195设计,输出5V标准信号。地址译码及选通信号等逻辑信号均在CPLD中编程实现,可以使学生充分灵活的实现自己的接口设计。
3.人机接口电路。人机接口电路采用了单片机电路最常用的键盘、数码管管理器件HD7279作为核心电路,设计了3×4的小键盘及四位数码管,可以满足测控的基本需要,同时可以满足学生对于人机接口程序设计联系的需要。
4.USB下载电路及供电电路设计。单片机实践教学系统采用USB供电,即可以保证学生可以充分自由的使用教学系统,同时也保证使用安全。单片机程序下载采用USB下载,提供给学生上位机的下载程序,方便学生使用。下载电路采用AVR的单片机Atmeg8为核心,Atmeg8是一个简指令单片机,是一款功能强、可靠性高的工业级单片机,内带Flaseh、SRAM、EEPROM等典型存储器,A/D转换器等实用的单元。电路设计中除了将它用于程序下载外,还提供了一路数字量和一路模拟量的输入,以使学有余力的学生可以学习到一种新的单片机,扩展单片机知识。
5.典型应用电路设计。为保证学生不仅学到单片机的基础知识,还要兼顾目前流行的新技术,同时又要提高学生的学习效率,在尽可能短的时间内学习到更多的知识,选择了三种典型的新器件,既具有实用性,又具有代表性。其中DS18B20是基本于单总线的温度传感器,DS1302是基于SPI总线的日历时钟芯片,AT24C02是基于二线串行总线的EEPROM芯片,三种芯片采用了三种不同的总线,基本涵盖了单片机测控领域最常用的串行总线方式。
测控电路设计与应用范文2
[关键词]实验教学;创新能力;实践能力;研究生教育
[中图分类号] G643 [文献标识码] A [文章编号] 2095-3437(2017)01-0168-02
研究生教育属于国民教育序列中的高等教育,对国家创新人才培养以及提高国家科技竞争力具有决定性意义。研究生教育不仅要求学生在本门学科内掌握坚实的基础理论和系统的专门知识,而且要求具备从事科学研究和教学工作或独立承担专门技术工作的能力和创新能力。因此,与本科及其之前的教育不同,研究生教育的核心是培养学生的科研能力、工程实践能力以及创新能力。为更好地实现培养目标,提高培养质量,当前国内外很多工科类大专院校在研究生阶段的课程系统中开设有实验课程。大量的事实证明,研究生实验能力的高低,决定其科技创新水平的高低。而创新是研究生培养质量的标志和灵魂,离开了创新,就谈不上高质量高素质的研究生教育。
一、优化教学内容
“测控电路与装置”是我院仪器科学与技术学科研究生选修课,主要介绍测控系统常用硬件电路与装置的原理及实现技术,其完整的教学体系包括信号运算与处理电路、信号转换与模拟电路、信号激励与检测电路、测控系统设计以及新型集成电路的应用等,内容涵盖了基本的原理电路和大规模集成芯片的应用。
为了培养研究生的实验能力,我们摒弃了传统的以教员讲授为主、学生被动接受知识为辅的教学模式,对教学内容进行优化,体现由“学科系统式”向“应用系统式”的转变、由“微观局布式”向“宏观整体式”的转变、由“面面俱到式”向“精选式”的转变,将教学内容用若干个基础验证实验、综合设计实验和创新型实验贯穿起来。我们利用基础验证实验培养学生掌握坚实的基础知识,培养和激发学生创新意识,利用综合设计实验培养学生的知识综合应用能力,利用创新型实验培养学生的创新和解决实际问题的能力。
实验内容的划分可用图1表示。基础验证实验包括:运算放大器的特性与参数、运算电路的特性与参数调整、信号变换电路的特性与调整等;综合设计实验包括:基本信号处理电路设计与调整、函数发生器电路设计与调整、直流稳压电路的设计与调整、滤波电路的设计与调整等;创新性实验包括:信号产生电路设计与应用、数据采集电路设计与应用、线性系统性能分析、CPLD和FPGA芯片的应用等实验。实际教学过程中,这些实验的具体内容、要求,以及使用的器件或芯片等会根据研究生的知识掌握程度和技术的发展进行更新或调整,并鼓励研究生自主设计,自己动手,自由探索,开设创新性实验。
二、创新教学实施方法
教学过程由基础讲授、实验、撰写报告、汇报交流或检查评估等环节组成。教员在基础内容讲授的基础上,布置实验内容、要求及注意事项。研究生根据实验内容和要求进行仿真实验或实际实验,仿真实验利用Multisim软件在计算机上进行,实际实验内容利用具体的元器件和电路实验。实验由研究生一人一组进行,实验完成后要写出实验报告并制作PPT课件,在课堂进行交流。对于综合性和创新性实验,还要由教员和全体学员共同评估项目的完成情况,作为课程考核平时成绩的评定依据。2015年研究生“测控电路与装置”课程教学实施计划,我们安排了运算放大器的特性与参数、运算电路的特性与参数调整、信号变换电路的特性与调整3个基础验证性实验,综合实验安排了RC有源滤波器设计与调整、信号处理电路调试与仿真,最后以信号产生电路的设计、仿真与调试为创新性实验,鼓励研究生自主设计与创新。
创新过程可能发生在设计过程,也可能发生在仿真和调试过程中。例如,在DDS仿真电路中,U1似乎是多余的,因为它没有任何连接,而且从原理上讲DDS电路也是不需要MCU的,那么U1在电路中的作用是什么呢?在进行DDS仿真实验时,我们发现MultiSim不支持ROM的设置,即利用MultiSim无法直接设置正弦数据存储器的值,但是研究发现,在进行MCU仿真时,MultiSim允许将程序编译下载到MCU的外部程序存储器,于是我们可以将整个DDS电路看作MCU的电路,并利用MCU的程序编译过程实现对U2的加载,进而实现DDS电路的仿真。
三、完善实验环境
培养研究生的实验能力对教员的素质和教学的实验条件提出了更高的要求。教员不仅要熟练掌握教学内容,还要具有丰富的相关学科知识,能正确解答研究生在实验过程中提出的问题。同时,实验条件也应满足教学要求,包括虚拟仿真实验所需的计算机和电路仿真软件,以及实际实验中用到的实验平台、仪器仪表、元件器件等。
虚拟仿真实验利用计算机和电路仿真软件MultiSim进行。针对实际电路实验,我们建立了相应的实验平台。该实验平台除了可完成热电偶、光敏电阻、霍尔器件等基本元器件测试以及基本的模拟、数字电路实验外,还可对实验内容三个层次完成运算放大器特性与参数调整、差动放大器性能分析、波形转换电路实验、信号产生电路实验、滤波电路实验、数据采集系统设计与分析、线性系统的频域响应分析、典型环节时域响应分析、电工电子创新设计、机电一体化综合创新设计以及智能飞行器创新系统设计等实验项目。
四、构建综合考核评价体系
实验教学考核评价体系的构建应该将鼓励创新放在首位。“测控电路与装置”课程考核成绩主要由实验设计与操作的成绩、平时成绩、创新设计成绩三部分构成。其中,实验设计与操作成绩包括实验方案设计报告、实验操作情况、实验报告等三部分成绩,主要考核研究生的工程实践能力、团队协作能力和创新能力;平时成绩主要包括课堂专题讨论情况、答疑讨论情况、定期汇报报告情况等几部分,主要考核学员的理论知识综合应用能力和总结表达能力;设立创新设计成绩,支持和鼓励有创新意识的研究生积极进行创新实验活动。通过这种综合性的考核方法能够尽可能地考核学员的各种能力,督促研究生学员有意识地加强创新实践能力的锻炼。
五、教学效果分析
采用实验教学为“测控电路与装置”课程教学带来了生机和活力,提高了课程的教学效果和研究生的实验能力。主要体现在:
1.实验教学实现了以研究生为主体的良好教学环境,使研究生在主动完成实验内容的过程中积极探索,主体意识明显增强,学习积极性大大提高;
2.转变了研究生的学习观念,激发了研究生的学习主动性,提高了动手实践能力、协调能力及解决问题和应变的能力,自我探究能力也在不断提高;
3.在完成实验的过程中,有很多问题需要讨论和相互协作,研究生之间、教员与研究生之间沟通加强,增强了团队的合作意识;
4.通过实验结果的总结和讨论,提高了研究生的语言和文字表达能力,最大限度地开发了研究生的独立思考能力,提升了研究生对于科研创新的信心。
从几年的教学效果和研究生的反馈信息来看,研究生乐意接受这种以实验能力培养为主的教学形式,课程取得了很好的实效,同时,也为理工科课程的研究生创新实践能力培养提供了一些有益的借鉴经验:
首先,要加强课程体系建设,从课程体系上深化研究生实验能力的培养。
其次,在基础实验的框架下,针对不同专业背景或不同知识掌握程度的研究生,制订深度不同、程度合理的实验内容,因材施教,让能者在专业上得到长足发展。
另外,随着高校实验教学改革的深入开展,创新和改革实验教学方式和考试方式更有待深入细致的探索和实践,尤其需要采用多元化方式激励研究生投入更多的创新思维到实验设计中去,并且不断在实践教学中检验和发展改革效果与运行机制。
[ 参 考 文 献 ]
测控电路设计与应用范文3
测控技术作为新兴产业,是电子技术中的重要内容。测控技术无论是在科学研究领域,还是在工业领域,都起到了技术支撑作用。测控电路在实际的应用领域中,可以保证多种电子设备和产品正常运行。为了保证电子设备和产品能够安全稳定地运行,本论文针对电子技术中测控技术的应用展开研究。
关键词:
测控电路;电子技术;应用
科学技术的进步让人们感受到时展越来越快。特别是电子技术已经深深地渗入到人们的生活中,是人们赖以生存的专业技术。随着工业自动化方向发展,电子技术中的测控技术在工业领域中得以广泛应用。但是电子设备实际运行中会出现各种干扰源而导致测控系统的运行难以满足技术要求。为了确保测控系统能够处于运行可靠,就要采用相关的抗干扰技术将抗干扰措施制定出来。
一、测控系统干扰源的分析
(一)电磁干扰
当电子设备处于运行状态的时候,就必然会在电子设备的周围产生电磁场。其中的主要原因就在于,电子设备运行中必然会使得电压和电流产生变化。但是,这种变化或者是连续发生的,或者是间歇性的,如果电压和电流的变化速度过快,就会有电磁场产生[1]。电磁场中的电磁能量并不仅仅在有限的磁场范围内,而是会以电路为主体,不断地扩展活动范围,由此而影响了测控电路的正常运行。
(二)地线干扰
地线具有一定的抗阻性。当电流沿着接地线流动的时候,就会使地线上有电压产生。电流受到阻抗的影响而不断增大,电压也会随之增大而导致地线的负载增加。当测控系统对电子设备进行测试的时候,如果电子设备为大功率设备,在地线中就会有强电流通过,随之,连接电子设备的电缆上也会有电流通过,而且电缆中所流通的电流缺乏稳定性,导致每一根电缆中所流经的电流都会有所不同,这些电缆中的电压也会各有不同。缺乏稳定性的电流和电压的大量存在,就会产生差模电压而影响电路的正常运行。因此,应在测控电路中增加相应的过压保护电路,以保证整个测控电路以及测控系统的正常运行。(图1:过压保护电路)
(三)湿度干扰
电路处于运行中如果环境湿度过低,就会在电路周围产生静电效应从而对电子设备造成干扰,特别是在静电干扰下使得测控电路中的检测信号受到干扰而导致元器件失效,最终造成整个测控系统无法正常运行;如果环境湿度过高,就会引起元器件间的短路和PCB的焊点锈蚀,在高湿度环境的影响下则这些焊点的接触电阻就会有所提升,而影响了使用性能的发挥。如果这些焊点处已经被锈蚀,就会导致电子元器件功能减退而引发电路短路。
二、电子测控技术的应用
(一)合理的电路设计
所有的元器件在使用之前都要做好测试,并根据实际应用需要而经过技术处理,调试合格之后方可使用。如果是逻辑元器件,要采用接地技术,以提高电路的抗干扰能力,确保电路处于正常的运行状态。在电路的设计上,注意逻辑电路与数字电路要分别单独使用,且要对电源线进行加粗处理。接地线要尽量选择网状的接地线或者环形的接地线,并在连接接地线之前,要做好加粗处理工作,以确保逻辑电路和数字电路在数据的传输和走向能的传递上保持方向上的一致[2]。在进行布线的时候,折线的角度不可以超过90度,以在电路运行中能够对频率很高的噪音产生抑制作用。为了避免来自噪声的干扰,还要采用接入旁路电容的方法,即将旁路电容接入到PCB板上面的IC点。所有接入的引线都要与接受旁路处理的端口相靠近,注意接入的引线长度要合适,避免由于过长而影响技术处理效果。
(二)屏蔽技术的应用
如果是对电磁场屏蔽,就要对噪声骚扰源使用接地导体将其包围起来,可以对电路以有效保护。屏蔽体所使用的导线要以铜或者铝等具有良好的导电性能的材料为主,控制好中心导线的长度,以避免其从屏蔽体中伸出过长。如果屏蔽体是网状的,网孔要尽量小,且要采用单端接地的方式,以保证屏蔽体有效地发挥屏蔽作用。如果既具有干扰能力的电磁场具有很高的干扰强度,在设计屏蔽电路的时候,就需要采用双层屏蔽技术。但是,这种双层屏蔽技术在使用中需要注意要加装滤波电路,且内屏蔽盒与外屏蔽盒之间不能够多处连接,一点连接即可。双层屏蔽的两个屏蔽体之间所间隔的距离不可以太大,以确保获得最好的屏蔽效果,而且屏蔽层之间不可以有间隙,间隙的厚度与单层屏蔽材料的厚度等同[3]。如果干扰电磁波为空间电磁波,很容易对具有较高灵敏度的信号接受设备造成干扰。对这种空间电磁波可以采用金属网屏蔽室进行屏蔽,屏蔽效能可以达到45dB至50dB。如果金属网屏蔽室为双层的,且有绝缘衬垫安装在其中,所能够获得的屏蔽效能就可以达到75dB至95dB。屏蔽室的连接要正确,以在发挥屏蔽作用的同时,还确保屏蔽体本身能够安全运行。此外,可同时根据电子产品的不同特性在测控电路中增加不同类型的滤波电路,可以将骚扰电磁过滤掉。(图2:滤波电路)
(三)接地技术的应用
测控系统的接地多会采用三条地线,其一为信号地线,用于低电平电路接地;其二为噪声地线,包括电动机的地线、继电保护装置的地线等等;其三为外接地线,连接在交流电源的接地线上,用于外壳、机架等接地使用。虽然接地技术可以单独使用,但是要获得良好的抗干扰效果,则需要与屏蔽体结合使用。如果电路处于运行状态时,工作频率没有超过1兆赫,就可以将屏蔽体的接线用于一点接地设计,地线的长度要局限于信号波长的1/20[4]。如果工作频率超过10兆赫,就可以将屏蔽体的接线用于多点接地设计。所选用的接地线要加粗,特别是连接印刷板上的接地线,要确保接电线所流过的电流要达到印刷板上所流过的电流的3倍之多。如果印刷板上为数字电路,就需要接地线的线路为闭环线路。
三、总结
综上所述,电子技术中,测控技术属于是新型的技术,而且随着电子技术的发展,测控技术也在不断地更新。各种电子设备中的测控系统往往会受到各种因素的干扰而导致系统无法可靠运行。特别是电子设备的使用功能不同,对使用环境也具有不同的要求,当然,其中的测控电路受到干扰的原因也会有所不同。这就需要提高测控电路的抗干扰能力,在测控电路的设计中加入相应的抗干扰电路,以确保测控系统处于良性运行状态。
参考文献:
[1]彭捷.电子技术中测控技术的应用[J].应用技术,2014(08):235-236.
[2]刘志刚.现代测控技术的发展及其应用探析[J].机电信息,2012(12):114-115.
[3]冯嘉鑫.电子技术中测控技术的应用[J].基本建设经济,2014(03):197-198.
测控电路设计与应用范文4
关键词: 信号完整性; OMAPL138; 反射; 串扰; 电源完整性
中图分类号: TN911.6?34 文献标识码: A 文章编号: 1004?373X(2013)12?0089?03
0 引 言
当今的数字电路设计中,随着用户需求的提高、半导体工艺的不断发展,处理器芯片的速度越来越快、密度越来越大、面积越来越小[1]。与低速数字电路设计相比,高速数字电路设计不仅要保证电路原理图设计的正确性,还要考虑当数字信号的上升时间减小到一定程度时,无源元件的电容、电感特性所导致的信号完整性问题。如果信号完整性问题在电路设计中被忽略,将会导致系统不稳定或无法运行,甚至整个设计都要被,极大地降低了设计效率[2]。
所以,为了提高高速数字电路设计的首次成功率,信号完整性问题得到了越来越普遍的关注。这里结合OMAPL138的高速信号处理系统,对如何解决高速数字电路中的信号完整性问题进行了具体的阐述。
1 系统简介
该系统是基于OMAPL138的高速信号处理系统, OMAPL138是整个系统的核心。OMAPL138是美国德州仪器(TI)新推出的DSP+ARM双核架构的高性能处理器,其主频最高可达456 MHz,支持浮点运算,不仅具有DSP超强的数字信号处理能力,又面向应用,具备ARM的丰富外设接口的特点,其外设接口包括EMIFA、EMIFB,UART,EMAC等[3]。DSP核和ARM核通过片内共享内存区域进行相互通信[4]。
系统硬件结构图如图1所示。系统包括NAND FLASH模块、DDRⅡ模块、VME总线模块、串口模块和网口模块。除了VME总线模块需要通过FPGA进行EMIFA到VME的接口转换外,其他模块都与OMAPL138相应的外设接口直接连接。其中,NAND FLASH模块用于存放引导程序、内核和文件系统;DDRⅡ模块用于系统运行时过程文件和临时数据的存储[5];VME总线模块和网口模块用于与其他系统的数据通信;串口模块用于连接上位机,系统调试时,可以打印调试信息。
该系统应用在光刻机的物镜控制箱中。系统工作时,首先通过网口接收数据采集卡发送的物镜中镜片的位置、温度等信息,然后经由OMAPL138进行高速数据处理,最后通过VME总线向驱动板卡发送处理后的数据,由驱动板卡对镜片的位置、温度等进行调整。
2 信号完整性分析与仿真
常见的信号完整性问题主要包括:单条传输线的信号反射、相邻传输线之间的信号串扰、时序控制以及电源完整性问题等。
在该系统中,高速信号的信号完整性特性主要表现在OMAPL138与DDRⅡ的接口上,DDRⅡ的时钟最高可达312 MHz,地址、数据和控制信号频率为时钟的[12],即156 MHz。下面主要以此接口为例,对信号完整性进行分析,并在Cadence软件环境下进行仿真说明。
2.1 单条传输线的信号反射
对于单条信号线来说,几乎所有的信号完整性问题都来源于信号传输路径上的阻抗不连续性所导致的反射。解决信号反射问题有三种方法:降低系统时钟频率、缩短PCB走线和端接阻抗匹配。第一种降低了系统的运行效率,第二种需要增加PCB板的层数,提高了设计成本,显然这两种方法都不可取,第三种是最有效的解决方法。端接阻抗匹配包括源端端接和终端端接,源端端接主要应用于消除二次反射;终端端接又可分为并联匹配、戴维宁匹配、交流中断匹配、二极管匹配和串联匹配[6]。几种匹配方式中,只有串联匹配最适用于大规模并行总线的的阻抗匹配应用,所以对于DDRⅡ的地址、数据和控制总线都采用串联端接阻抗匹配。
2.2 相邻传输线间的信号串扰
形成串扰的原因有两种,分别是电感性耦合和电容性耦合,它们会导致向前、向后两种类型的串扰。串扰的产生和强度大小取决于传输线中电流的变化和走线的距离,电流变化的越快、走线距离越近,耦合就越强,串扰就越严重。因此,解决串扰问题的方法有两种,分别是降低信号速率和增加走线间距。由于降低信号速率会影响系统的性能,所以应采用增加走线间距的方式来减小相邻传输线间的信号串扰。
2.3 时序控制
在高速数字电路设计中,对时序的要求非常严格,具体时序要求包括信号发送端的时序、传输路径上的延时和信号接收端的时序。在PCB的实际设计中,就要通过控制传输线的阻抗和传播延时满足信号发送端和接收端对信号建立时间和保持时间的要求[7]。
2.4 电源完整性
关于电源完整性,在高速数字电路设计中,旁路电容和去耦电容的使用也非常重要。其作用主要包括:为各种噪声提供流通到地平面的低阻抗通路;当电源波动较大时,通过储能为器件供电,保证电源的稳定性。在本系统中,有源器件的每个电源引脚与地之间都布置了0.1 μF的电容,同时整个电路板上布置了若干大容量钽电容。需要注意的是,电容的位置要尽量靠近器件的电源引脚;电容引脚走线尽可能短,因为引线越长,电感性的越强,电容的作用就越小。
3 结 语
现代高速数字电路设计中,信号完整性问题扮演着越来越不可忽视的角色。基于OMAPL138的高速信号处理系统,在测试中,没有发现因为信号完整性问题而使系统运行不稳定的情况。实践证明,分析信号完整性问题的产生原因,通过仿真得到解决信号完整性问题的方案,可以有效地防止反射、串扰等信号完整性问题对高速数字电路系统的运行产生影响,极大的提高了高速数字电路设计的一次成功率。
参考文献
[1] 王剑宇,苏颖.高速电路设计实践[M].北京:电子工业出版社,2011.
[2] 霍尔.高速数字系统设计[M].北京:机械工业出版社,2005.
[3] 李心阳,唐厚君.基于OMAPL138的电能质量监测系统的设计[J].微计算机信息,2011,27(6):78?80.
[4] 栾小飞.OMAPL138双核系统的调试方案设计[J].单片机与嵌入式系统应用,2012(1):16?19.
[5] 赵海舜,王志平,季晓燕.基于Cadence的DDRⅡ仿真设计[J].电子科技,2010,23(8):5?8.
[6] 邱燕军,申功勋.基于DSP+FPGA的高速信号采集与处理系统的信号完整性分析[J].测控技术,2007,26(12):8?10.
[7] 覃婕,阎波,林水生.基于Cadence_Allegro的高速PCB设计信号完整性分析与仿真[J].现代电子技术,2011,34(10):169?171.
测控电路设计与应用范文5
通过参考成熟的CAN/LIN总线设计电路,经过基础测试及单元电路测试,应用电路设计软件Alti-umDesigner10.0设计了电路原理图,如图1所示.本设计采用SiliconLaboratories公司生产的汽车级控制芯片C8051F500Q作为整个硬件系统核心控制芯片;恩智浦半导体(NXP)公司生产的TJA1040、TJA1020收发器分别作为控制局域网CAN物理总线与协议控制器之间的硬件接口,LIN主机从机协议控制器和LIN传输媒体之间的接口;采用AT24C04作为存储扩展,并结合JTAG调试烧写电路和12V转5V转压电路共同构成一个独立完整的工作电路[3-4].
2中央控制器硬件
电路中央控制电路如图2所示,由于数字电路的频率高、模拟电路的敏感度强的特点,针对通信信号线,高频的信号线要尽可能远离敏感的模拟电路器件,因此,本设计将模拟地与数字地进行隔离.C8051F500芯片内部提供了稳定的24M内部晶振,因而电路中未设置外部晶振电路.SiliconLabs公司C8051F500芯片内部集成博世CAN控制器,采用CAN协议进行串行通信.CAN控制器包含一个CAN核、控制寄存器、消息RAM及消息处理状态机.控制器符合博世2.0A基本CAN标准和2.0B全功能CAN标准,方便在CAN网络上的通信.
3电源电路设计
采用了LM2937IMP-5.0的12V转5V转压芯片;为保护转压电路的安全性,防止回流,采用二极管N5817;输入及输出两端的电容起到稳定两端电压的作用.CAN/LIN总线接口芯片电路设计CAN总线接口电路如图4所示,其中P0口的P0.6和P0.7分别为CAN总线收发器TJA1040与主控制器C8051F500Q的发送接口和接收接口.TJA1040作为CAN物理总线和控制器之间的硬件接口,能提高对CAN总线的差动发送与差动接收能力[5].LIN总线接口电路如图5所示,LIN总线通信需要12V外部供电,P1口的P1.0和P1.1分别作为LIN总线收发器TJA1020与主控制器C8051F500Q的发送接口和接收接口,P1.2作为LIN的启动引脚.TJA1020是LIN物理总线和主———从协议控制器之间的硬件接口,工作波特率在2.4kbits/s~20kbits/s之间.TXD管脚输入的发送数据通过LIN收发器转换成LIN总线信号,通过收发器控制转换速率与波形,这样能够减少EME.通过一个内部终端电阻LIN总线的输出管脚被拉成高电平.通过LIN总线的输入管脚,收发器检测到的数据流通过RXD管脚发送至微控制器[6-7].
4系统调试
测控电路设计与应用范文6
关键词:自动调节 单片机 检测系统
中图分类号:G642 文献标识码: A 文章编号:1672-1578(2014)4-0093-02
1 引言
随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。本文介绍的温湿度测控系统就是基于单总线技术及其器件组建的。该系统能够对大棚内的温湿度进行采集,利用温湿度传感器将温室大棚内温湿度的变化,变换成数字量,其值由单片机处理,最后由单片机去控制液晶显示器,显示温室大棚内的实际温湿度,同时通过与预设量比较,对大棚内的温度进行自动调节,如果超过我们预先设定的湿度限制,湿度报警模块将进行报警。该系统抗干扰能力强,具有较高的测量精度,安装简单方便,性价比高,可维护性好。
系统分为两个部分,一个是由温湿度传感器组成的检测部分,另一个是由单片机和显示模块组成的主控与显示部分。温、湿度传感器将检测到的数据送到单片机,单片机对接收到的数据进行处理并送到显示模块显示,5V稳压电源给各部分供电。
2 系统硬件设计
2.1单片机及接口电路设计
单片机主控模块包括了振荡电路、复位电路,同时接入了各个模块的接口,保证了整个系统的灵活性。单片机是整个系统的控制中枢,它指挥器件协调工作,从而完成特定的功能。硬件实现上采用模块化设计,每一模块只实现一个特定功能,最后再将各个模块搭接在一起。这种设计方法可以降低系统设计的复杂性。
控制电路的核心器件AT89C52是一种低功耗、高性能CMOS八位微控制器,具有8K在系统可编程Flash存储器,使用ATMEL公司高密度非易失性存储器技术制造,片上Flash允许ROM在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使其为众多嵌入式控制应用系统提供灵活的解决方案;价格低廉、性能可靠、抗干扰能力强。因此广泛应用于工业控制和嵌入式系统中。
2.2温度传感器及接口电路设计
DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。DS18B20温度传感器工作原理框图如图1所示。
2.3 湿度传感器及接口电路设计
HS1101电容传感器,在电路构成中等效于一个电容器件,其电容量随着所测空气湿度的增大而增大。涉及如何将电容的变化量准确地转变为计算机易于接受的信号时,常用两种方法:一是将HS1101置于运放与阻容组成的桥式振荡电路中,所产生的正弦波电压信号经整流、直流放大、再A/D转换为数字信号;另一种是将HS1101置于555振荡电路中,将电容值的变化转为与之呈反比的电压频率信号,可直接被计算机所采集。
2.4串口通讯电路
STC89C52单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。串口通讯的硬件电路如下图所示。
3 基于单片机的大棚温、湿度的检测系统的软件设计
3.1 控制系统的软件流程
3.2 温度传感器数据读取的程序编写
DS18B20的读写时序和测温原理与DS1820 相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器 2 的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
3.3湿度传感器数据读取的程序编写
4 结语
通过单片机对大棚温、湿度的检测系统的设计,克服了传统的温湿度控制精度低及耗费大量的人力物力的缺点,实现了温湿度实时测量、显示和控制。该系统抗干扰能力强,具有较高的测量精度,安装简单方便,性价比高,可维护性好。这种温湿度测控系统可应用于农业生产的温室大棚,通过网络的支持,实现对温度的实时控制,是一种比较智能、经济的方案,适于大力推广,以便促进农作物的生长,从而提高温室大棚的亩产量,以带来很好的经济效益和社会效益。
参考文献:
[1]康华光等.电子技术基础[M]. 北京:高等教育出版社.
[2]彭介华.电子技术课程设计指导[M]. 北京:高等教育出版社.