仿真电路设计总结范例6篇

前言:中文期刊网精心挑选了仿真电路设计总结范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

仿真电路设计总结

仿真电路设计总结范文1

关键词:电子设计自动化技术 数字电子技术试验 应用

随着时代与科技的不断发展,新形势下各大高校数字电子技术实验教学也随之发生改变,数字电子技术属于一门实用性强的综合型学科,只有学好数字电子技术才能为接下来电子信息后续课程打好基础。电子设计自动化设计是计算机结合集成电路下衍生的产物,现今可编程逻辑器应用范围越来越广,运用计算机编程技术可对电子设计产品进行更大程度上的优化和控制,可编程逻辑器为电子电路实验提供了新的设计方法,提高了设计电子产品硬件的便捷性,使原有的系统设计方式、核心技术得到转变,促进了电子设计自动化的发展,使其具备更加广阔的前景。

一、EDA技术在数字电子技术实验教学的优势

现阶段大部分高等院校数字电子技术实验通过使用多种实验箱,让学生自行连接电路,运用仪器对连接的电路做出检验,对其验证结果进行总结和分析。此种集成芯片设计电路连接的过程中存在较多的问题,例如电路复杂、芯片短缺、查找故障难度高、仪器及其附属设施易破坏、缺乏实验设备等,致使连接电路难度较高,学生对数字电子技术实验兴趣不高,实验效果不够理想。随着时代的发展,传统的数字电子技术实验教学也应作出与时俱进的改变,为了加大学生的学习兴趣,提高连接电路的成功率,在以往的数字电子技术实验中引进电子设计自动化技术,改变原有电路设计方法,使EDA技术下的电路设计变得更加可靠而有效。以往的数字电路设计方法只能设计出完整电路的一部分,在实际连接数字电路时会因为零件不足、性能与电路设计性能不相符等问题,致使需要重复实验,再次设计完整的数字电路并操作、验证等,此种方法过于费时,对学生而言学习兴趣不高。使EDA技术下的电路设计方法是分阶段进行,首先将整体的电路划分为多个模块,然后再设计各模块,此种方法适用性强、干扰性小,从而能够进一步保证电路连接的准确性、可靠性,EDA技术有利于推动电子产品的发展。

二、EDA技术设计的步骤

EDA技术设计数字电路首先要对系统进行全面的分析,将完整的系统分为多个独立存在的模块,然后逐一设计各个模块,对应不同模块采用不同的输入方式,在系统中就可对设计模块进行仿真模拟,验证其电路连接的正确性,待验证合格后,将设计电路图下载至存储介质。

综合是指运用电子设计自动化系统中的综合器将VHDL软件设计与硬件联系在一起,形成可行的硬件电路。综合器具备源文件整合功能,可保证综合硬件的可操作性,电子设计自动化具有逻辑综合功能,并能对设计出的数字电路进行优化,可将逻辑级电路图转变为门级电路,自动生成分析文件、网表文件及其附属报告。

综合完成之后还需运用相关适配器将网表文件对目标元件作逻辑映射,此种操作方式叫做布线布局,也叫做适配,这个过程涉及到逻辑分割、布局布线、底层器件配置、逻辑优化等内容的实施,当适配通过后系统就会自动生成时序仿真网表文件、时序仿真下载文件,大部分文件格式为JEDEC、Jam,适配对象与相关元件结构细节形成直接的对应关系。

再通过电子设计自动化系统对适配生成结果测试完成后,才能作编程下载处理,这个过程就叫做仿真。在EDA设计中最关键的步骤就是仿真,仿真是整个数字电路设计的重要阶段,运用电子设计自动化系统进行时序仿真、功能门级仿真,可从两种级别分别作仿真测试。时序仿真是指对适配通过之后生成的网表文件作仿真处理,模拟各级元件在实际运作的过程中,其元件性能的仿真实验,考虑到元件、硬件性能的特点,获得仿真结果精度较高,由系统生成的时序仿真网表文件中对数字电路各元件的延迟做出了具体说明。功能仿真主要是对设计中的逻辑功能进行仿真,分析和观测仿真结果与原有的数字电路设计功能要求是否相符,功能仿真对任意一项具体元件硬件性能、延迟等均不介绍。

经仿真验证数字电路成功后,将适配通过的下载文件、配置文件下载至存储介质,将以设计成功的文件下载至FPGA 、CPLD工具当中,便于对设计硬件进行调整及验证,再将其输入系统中作统一测试,验证设计电路在实际应用中潜在的问题,减少使用电路的差错性,不断改进问题电路,优化设计。

三、在数字电子技术实验中的应用实例

将EDA设计技术应用在数字电子技术实验教学中,以设计计数译码电路为例,通过混合输入的设计方式,具体说明自动化电子设计在数字电子技术实验中的应用。首先按照原理图设计模6计数器,其编码方式为BCD码,采用通用型集成芯片将模6计数器的编码方式转变为8421BCD码,使其成为可作十进制处理的计数工具,运用计数工具中的异步清零端,将十进制改变为六进制计数工具,具体设计电路及其仿真波形如下图1,这种方式是构建数字电路实验设计的基本设想。

在系统中运用VHDL方法来设计驱动共阴极数码管七段并将其显示出来,生成完整的、不可逆的译码电路,具体方法如下,采用VHDL语言描述出译码器,将d3、d2、d1、d0看作是显示译码器的输入口,其中X为显示译码器的输出口,假设输出口X是矢量形式,可有七个不同的数量关系值,这七个数量关系值即表示为七个不同的输出设备数码管的段码。当d3、d2、d1、d0分别对应不同的8421BCD码,译码器就会自动生成与连接外端的输出数码及其不同的对应段码,最终统一由驱动数码管将其反映出来,按照原理图输入方法设计的六进制计数工具、VHDL语言输入方法共同设计的七段显示译码器成功之后,就可利用数字电路生成系统,生成顶层功能模块,运用相应的原理图文件、VHDL语言文件对其作出调整和使用,计数译码电路层次原理图见下图2。

结束语

综上所述,自动化电子设计有利于提高数字电子技术的实验效果,此种方法设计电路灵活性较高、干扰性小,不存在硬件、仪器等相关设施的影响。将整体的电路设计划分为多个模块并进行设计,此种方式适用性较强,即使在面对复杂的数字电路设计的情况下,也能将其变得简单。

参考文献:

[1]王彩凤,胡波,李卫兵.EDA技术在数字电子技术实验中的应用[J].实验科学与技术,2011(1)

仿真电路设计总结范文2

关键词:创新实践;项目设计型;教学改革

近年来,河南科技大学电气工程学院有计划地进行了一系列教学改革活动,探索创新教育与专业教育深度融合的具体方法,初步构建了贯通课内、课外,融汇主要教学环节的地方高校工科大学生创新实践教育模式,以求切实加深学生对课程理论知识理解、提高动手应用知识能力。其中,电气工程学院提出项目设计型实验教学模式改革的方案,电工电子实验中心以电路实验课程为依托进行改革,要求学生自主完成实验电路设计,课下进行仿真软件验证;实验中自选元件、芯片,在面包板上进行电路调试,使用数字示波器、万用表等测取实验结果。以实验形式、实验指导方式的改变,实现学生创新实践能力的培养。

1电路实验教学改革的必要性

传统的电路实验通常是教师进行实验原理、实验电路的讲解,告知实验数据结果如何测量验证、实验仪器设备的使用方法以及实验过程中需要注意的安全问题;学生在外购的实验台上进行接线、验证,完成实验报告。该教学方式存在诸多的弊端,学生在整个过程中被动接受,按部就班地完成实验过程,避开了实验过程中可能出现的问题,缺少自主发现问题、解决问题的过程,不能充分调动其进行独立思考和创新的积极性,也就无法达到通过实验来加深对所学知识理解、锻炼动手能力,在实验中获得满足感,进而主动研究、接受挑战,增强其实践创新能力的目的。项目设计型实验教学模式,基本思路是部分或者全部抛开实验台,实验采用在面包板上插接电子元件的形式进行。电工电子实验中心针对电路实验课程中“二阶电路响应”“双口网络”为例进行改革创新。要求学生在实验前自行完成实验电路设计,并使用Multisim仿真软件进行验证,获得相应测量波形及数据,自我评估实验方案是否合适。实验中,学生根据实验前自主设计的电路,选取合适的电子元件、芯片,最后插接在面包板上进行电路调试,使用数字示波器、万用表等测取实验结果,与仿真结果进行比较,自我判断实验结果是否正确。实验结束后自我梳理,完成整个实验设计报告。项目设计型实验教学模式,学生首先需要利用所学的知识进行电路设计,再通过实验验证发现设计中的缺陷或者漏洞,结合实验数据进行分析,解决问题,最终通过设计报告、实验报告的撰写进行总结反思,提炼成文。相比传统的接线、验证实验方式,项目设计型实验教学模式,学生从自己设计电路开始,能力培养目标转变为电路设计、知识运用、自主分析问题、解决问题的能力和实践动手能力。

2二阶电路的响应

在二阶电路的响应实验进行改革之前,采取PSpice软件仿真的形式进行,目的在于学习PSpice软件的基本使用方法,同时理解二阶电路的三种暂态过程,结合学生已掌握软件和工具的使用情况,将实验形式改革为“软件仿真+面包板插接”。提前实验任务,提出要求,限定元件范围,要求学生课下使用Multisim软件进行仿真设计,选取RLC二阶电路的参数,查看仿真结果,列元件清单;既定实验时间,完成PSpice仿真任务后,领取元件,进行面包板插接,自主操作完成对应结果的测量。

2.1使用Multisim软件进行二阶电路设计

完成参数选取、暂态过程波形记录在电路实验的课程设置中,RLC串联谐振电路的分析是使用Multisim软件完成的,故学生已掌握软件的基本使用方法,可以使用虚拟函数信号发生器、示波器及基础的电阻电容电感搭建仿真原理电路,并观察实验现象;一阶RC电路的响应在实验台上完成,故学生已掌握由实物的函数信号发生器、示波器及分立元件组装调试电路,观察记录测试结果的能力,且二阶电路的响应在周期性重现操作时与一阶电路是相通的,均可将方波或者矩形波的跳变边沿视为换路时刻,进而观察暂态响应过程,适合作为一阶响应的进阶实验。基于以上两点,在二阶电路的整个实验过程中,可以弱化任课教师的指导作用,放手让学生自主设计并调试完成测试任务。任课教师提前二阶电路的实验任务,限定电阻、电位器、电感、电容的参数范围,要求学生课下借助Multisim软件选择合适的电感、电容参数及恰当的方波频率,计算电阻值,使暂态过程分别为过阻尼、临界阻尼、欠阻尼,用示波器观察记录各暂态响应曲线并估读暂态持续时间。

2.2使用PSpice仿真工具进行仿真实验

既定实验时间,学生提交Multisim软件仿真实验电路图、仿真结果及元件清单,任课教师审核通过后方可进入实验室。为了实现让学生熟悉并掌握PSpice工具使用方法的目的,教师演示搭建二阶电路原理图及获取仿真波形的示例后,预留一定时间如半个小时,供学生完成其自主设计二阶原理图的输入,并截图几个暂态响应过程,比较分析三种暂态响应过程的不同点、变化条件、时间长短,课下完成总结。若不能在限定时间内完成实验任务,可在实验室开放时间自由补做。

2.3硬件面包板插接完成

PSpice仿真或者预留限定时间倒计时结束后,学生2人一组自由组合,凭元件清单领取元件及工具。自主操作,进行面包板插接,在面包板上搭建由分立元件组成的电路,用函数信号发生器给出合适频率的输入方波,使衰减或振荡有足够的时间减小到0,用数字示波器测量相应波形,改变电位器或者电阻值的大小,完成对应整个暂态过程波形的测量。在整个面包板硬件插接过程中,教师只负责元件工具的发放,讲解仪器设备的使用。电路搭建、调试,制定测试方案,判断实验现象是否正确等由学生自主设计完成,达到预期实验目标后,由教师负责验收,并根据学生演示及问题回答情况给出实验操作分数。

2.4评分标准

评分标准依据RLC二阶串联电路的设计电路图、元件清单、电路三种暂态过程的Multisim软件仿真波形,即设计环节占实验成绩的30%,实验操作环节占实验成绩的30%,PSpice仿真波形及硬件插接实验波形结果占实验成绩的20%,实验设计报告完成情况占实验成绩的20%。

3双口网络

双口网络实验在改革之前在实验台上直接完成,且实验台已经封装好现成的T网络和π网络,学生只需简单连线给定输入电压,连接测量仪表即可完成实验数据的测量,课后计算T参数。为了进一步提高学生电路设计、知识运用能力,将双口网络的实验形式改革为面包板插接。

3.1使用Multisim软件进行双口网路电路设计

并测量数据完成T参数理论值计算任课教师提前双口网路的实验任务,并限定电阻元件的选择范围,要求学生课下自主选择电阻元件搭建T网络、π网络及二者级联网络的电路,并根据选取的电阻阻值及电路网络结构计算相应的T参数矩阵的理论值。之后,使用Multisim软件进行仿真,根据实验指导书上的内容,给定直流稳压电压源10V。利用同时测量法测量输出端开路、短路条件下T网络、π网络的输入端、输出端的电压、电流值。用分别测量法测量T网络和π网络级联后网络输出端开路、短路条件下,输入端的电流值;以及输入端开路、短路条件下,输出端的电流值。要求有仿真测量电路图、T参数矩阵的计算值及仿真数据表格。

3.2硬件面包板插接

既定实验时间,学生提交其设计的T网络、π网络及二者级联网络的电路图、各网络的理论T参数、Multisim仿真测试数据及元件清单,任课教师审核通过后方可进入实验室。凭元件清单领取元件及工具,在面包板搭建由电阻组成的网络,根据仿真数据测量的方法,利用实验台的直流稳压电源作为输入,直流电压表、直流电流表或者万用表测量相应的电压电流,完成T网络、π网络、二者级联等效网络对应实测数据的测定。由教师负责验收,并根据学生操作及问题回答情况给出实验操作分数。

3.3评分标准

双口网络的设计电路图、元件清单、T参数矩阵理论计算结果、仿真数据测量正确与否占实验成绩的30%;实验操作环节及实验测量数据正确与否占实验成绩的50%;根据实验测量数据及实验方法计算的T参数正确与否、实验设计报告完成情况占实验成绩的20%。

4实验教学改革效果与改进

4.1实验教学改革效果

通过课前布置实验任务,课下设计实验电路,再通过面包板插接环节搭建调试电路,很好地锻炼了学生的自主设计电路、发现问题解决问题的能力。在实验过程中,弱化教师的主动指导作用,发挥学生的主观能动性,变学生的被动学习为主动思考,极大地提高了学生的积极主动性。同时,在实操环节,利用函数信号发生器、数字示波器等设备仪器,承接后续电子技术实验课程的学习。俗话说:“兵马未动,粮草先行。”设备、工具、软件环境的熟练运用,可为以后的专业课学习、研究打下坚实的基础。更重要的是在整个“学而思,思而做,做而乐,乐而学”的良性循环学习过程中,学生学习习惯和综合创新能力的培养,将使其受益无穷。

4.2进一步改进的方向

脚踏实地,进一步细化电路实验课程改革过程中存在的问题,找准下一步的努力方向。二阶电路的响应实验,在实验时要完成PSpice软件仿真和面包板插接,耗时较长,可尝试将PSpice二阶电路示例做成视频,供学生课下学习,或让其寻找网络资源,符合当下流行的学习趋势,且提高效率。双口网路实验,实际搭接电路时,电流的测量值在十几毫安至几十毫安时可减小测量误差,这就要求电阻取值合适,否则直接影响测量数据的准确性,故可适当地修改电阻参数的选择范围。双口网络中电阻参数选取不同,T参数、测量的电压电流值也各异,放手让学生自主设计电路的同时,也给检查学生数据带来了一系列不便。可以根据双口网路的一般结构,推导T参数的通式,将要测量的数据表示成T参数的表达式,借助数据处理软件,减少数据比对过程中的计算量。

仿真电路设计总结范文3

[关键词]低噪声放大器;射频识别;噪声系数;增益;稳定系数

中图分类号:TN722.3 文献标识码:A 文章编号:1009-914X(2015)44-0072-02

1 引言

射频识别(RFID)是一种利用射频通信实现非接触的自动识别技术,LNA作为RFID系统的关键器件之一, 主要功能是放大从天线接收到的信号,用于后级电路处理,同时抑制噪声干扰,提高系统的灵敏度,在实现数据无线传输过程中起重要作用。为了减少射频前端电路及天线的体积,目前针对RFID系统的研究主要集中于5.8GHz的高频段。本文采用ATF-541m4晶体管,利用ADS软件通过电路级以及版图级联合仿真,设计了一种可用于RFID系统的5.8GHz单级低噪声放大器。

2 电路设计

设计LNA电路时,需要综合考虑放大器的增益、噪声系数与输入输出匹配等参数。本文采用ATF-541m4晶体管实现低噪声放大器的设计,放大器晶体管的静态工作点将决定所设计的放大器的工作状态,偏置状态不同,晶体管的阻抗特性差别会很大,需要在选定器件后根据设计指标来获得偏置电压信息,设置ATF-541m4晶体管的直流工作点为。所设计的LNA电路原理如图1所示。

其中,R1、R2、R3为直流偏置电阻,Vdc为工作电压,C1、C2为隔直电容,L1、L2为扼流电感,C3、C4为旁路电容,C5、C6、C7为去耦电容。TL1、TL2和Tee1组成了输入端的微带线匹配电路,Tee2、Tee3、TL3、TL4和TL5组成了输出端的微带线匹配电路。电路的稳定性是放大器能够正常工作的前提,因此需要对晶体管进行增强稳定性的设计。仿真结果表明在3GHz-8GHz频带内,稳定性因子k=1.004,大于1,放大器保持绝对稳定。偏置电路是射频电路的设计中不可缺少的一部分,其主要作用是为放大器等有源器件提供合适的静态工作点,以保证整个电路能够正常工作。根据晶体管的直流工作点可以计算出,R1=28Ω,R2=222Ω,R3=33Ω。输入、输出匹配网络的作用是减小信号反射。若电路不匹配,则会形成反射,降低效率。对于低噪声放大器而言首先需要考虑的是最小噪声,再根据最佳噪声匹配来设计输入端的匹配电路。输出匹配网络的设计主要考虑LNA的驻波比和增益,输出端一般采用共轭匹配以获得最小驻波比和最大增益。通过仿真优化得出本文设计的LNA输出阻抗ZL=73.17-j16.719Ω。

3 电路及版图级联合仿真结果

针对图1所示的电路原理图,利用计算出的各元件参数进行ADS仿真,得出LNA的增益、噪声系数、输入/输出反射系数等的电路仿真结果。再根据原理图生成版图,在版图设计中,需增加一定数量的接地过孔,如果缺少接地过孔,会导致无法得到S参数理想结果。优化后得到的电路版图如图2所示。

图3所示为利用版图进行的联合仿真以及原理图级仿真结果对比。当工作频率为5.8GHz时,联合仿真中增益为10.25dB,满足大于10dB的设计指标,与电路仿真结果相比略有减小;联合仿真中放大器的噪声系数与电路仿真结果良好吻合,约为0.95dB;联合仿真的输入反射系数S11 = -30.16dB,输出反射系数S22 = -15.72dB,说明该放大器的输入匹配较好,但由于输出匹配中微带线的长度较长等原因,输出匹配没有输入匹配的效果好,但满足设计要求。

4 总结

本文以ATF-541m4晶体管为核心,通过设计静态工作点、增益反馈、输入/输出匹配等电路,仿真实现了一种单级低噪声放大器,利用ADS进行了电路级、版图级联合仿真优化,结果表明在5.8 GHz处,放大器增益为10.25dB,噪声系数为0.95 dB,输入与输出的反射系数分别为-30.16 dB和-15.72 dB,稳定系数大于1。

参考文献

[1] 刘祖华, 刘斌, 黄亮等. 应用于 WLAN 的低噪声放大器及射频前端的设计 [J]. 电子技术应用, 2014, 40(1): 42 - 44.

[2] Zhihong Dai, Yongzhong Hu, ?Kunzhi Xu. Two-stage Low Noise Amplifier for BD-II receiver application [C]. Millimeter Waves (GSMM), 2012: 303-306

[3] Gupta,S.K. Garg,A. Singh,N.P. Design and simulation of an improved dual band?LNA for WLAN applications [C]. Computer and Communication Technology (ICCCT), 2010: 678-682.

[4] 张萌, 王志功, 李智群等. 应用于无线传感器网络的低噪声放大器设计 [J]. 电子器件, 2010, 33(1): 32 - 36.

[5] 刘轶, 严伟. 射频电路设计原理 [M]. 北京: 清华大学出版社, 2014.

[6] 程 骏, 李海华. 一种 S 波段低噪声放大器的设计 [J]. 电子器件, 2013, 36(2): 206 - 210.

仿真电路设计总结范文4

关键词:职业技能课程;电路仿真软件;Multisim

1概述

1)Multisim仿真软件简介Multisim是美国InteractiveImageTechnologies(IIT)公司在20世纪末推出的一种以Windows为平台的虚拟仿真平台,其最大的优点是软件界面操作方便、直观形象、易学易懂、学生可以很快地掌握它的基本操作[1,2],所以,Multisim仿真软件在电子信息类的相关课程教学中得到了广泛的应用。Multisim仿真软件可以对模拟电路、数字电路和模拟数字混合电路进行设计和仿真。它提供的元器件库非常丰富,而且还有部分三维实物,对于初学者来说,非常逼真和形象。虚拟仪器仪表非常齐全,提供的仪器仪表有:万用表、信号发生器、瓦特表、示波器、波特图仪、字信号发生器、逻辑分析仪、逻辑转换仪等。电路分析功能和作图功能非常强大,可以应用Multi⁃sim对模拟电路进行静态分析、动态分析和瞬态分析等十几种分析。同时,应用逻辑转换仪可以实现数字电路中的真值表、逻辑电路图和逻辑函数表达式两两之间的互换。为学生的学习和老师的教学带来了非常直观的视觉效果。而且,相对于其它的EDA软件,它更加形象和直观,而且,它能进行模数混合电路的仿真,几乎能够100%地仿真出真实电路的结果[3,4],为广大的电子电路的学习者提供了非常方便和实用的电路设计平台。2)电子产品设计与开发根据应用电子技术专业和电子信息工程技术专业的人才培养目标可知,《电子产品设计与开发》是电子信息类专业的职业技能课程,是一门实践性和综合性都很强的课程,对于学生以前所学知识有着更高的要求,但是,这门课程对于学生进行毕业设计、顶岗实习以及将来出去工作都有着非常重要的作用,所以,在电子信息类专业中占有非常重要的地位[5]。为了提高教学效果,我们采用“教、学、做”合一的模式,将理论教学和实践教学融合为一体中,这样处理即可以提高学生的学习积极性,同时,又可以将复杂的知识点以简单明了的形式展示给学生,学生可以在实训室边教、边学、边演示、边实践,可以大大提高教学的效果。由于直接用实物操作进行设计和实训,有可能会造成大量实训耗材的浪费,同时,也存在一定的安全隐患[6],所以,这门课程采取了一种虚拟和实践相结合的方式,非常实用。在教学过程中引入Multisim等仿真软件,使学生在学习硬件的同时,学会仿真软件验证相关原理及电路,从而丰富教学内容,更新课程的教学思路,提高课程的实践性与应用性。将学生置身于一个“提出问题——解决问题——实践验证”的情景之中,使教学方式由“知识传授”向“知识发现和知识创造型”转变[7,8],大大提高了学生的兴趣和学习的积极性。

2Multisim在《电子产品设计与开发》课程中的应用

在《电子产品设计与开发》课程学习的初期,特别是小型电子产品设计的初期,先用Multisim仿真软件进行分析和设计,设计好合适的思路,选取好合适的元件和参数,并且在仿真软件上调试出较好的实验现象以后再进行实物制作。这样不仅大大节约了实训耗材的浪费,更重要的是可以让学生们大胆地进行尝试设计电路,不用担心安全事故的发生。而且,学生进行设计和探索的积极性也大大提高。《电子产品设计与开发》是学生们学习了模电、数电、电子设计自动化、单片机等主体课程之后所开设的一门综合性很强的课程,对于学生来说,这也是前段整个学习过程的一个总结,是检验学生两年的学习过程中所掌握专业知识的真实情况。对于本门课程,主要是采用“教、学、做”一体化的模式,以项目任务为载体,让学生们在学中做,做中学。主要是要制作一个小型电子产品,在整个的教学过程中,以学生为主体,重点在于激发学生学习的积极性和主动性,让每一个学生都亲手制作一个小型电子产品,从制作的过程中体会到成功制作电子产品的快乐,从而,获得学习的信心和一定的满足感。首先,根据学生们的具体情况,对于设计和制作的电路可以进行合适的选择,所以,可以每个同学都可以找到适合自己的电路,这样,学生参与《电子产品设计与开发》的积极性和兴趣就大大加强了。学生在选择好自己的任务之后,就亲手将产品制作出来,整个过程包括:Multisim仿真设计电路原理图原理图的绘制封装的测量和绘制PCB图的布线和绘制PCB板的制作程序的编写和调试产品的调试产品制作完成。应用Multisim仿真软件设计电路,是整个《电子产品设计与开发》课程的关键环节,只有首先仿真设计出具体电路、具体参数并且有良好的仿真效果后,才能进行具体硬件电路的制作。比如:学生们想设计一个50秒的定时器电路,并且要用数码管显示出来。学生们首先想到的是先在Multisim仿真软件上仿真出效果出来,再进行硬件电路的制作。如下图1所示,是某位学生利用Multisim仿真软件设计出的一个50秒的定时器电路。首先通过Multisim仿真软件进行电路的分析和设计,可以为学生提供非常方便、快捷的电路设计的效果,每一个元件的参数和型号学生都可以根据输出效果的不同来进行分析和判断,比如,如上图2中,如果,要将电路的定时时间定为30秒,在仿真电路中只要变换一根线的连接就可以实现,而且,还很容易就能看到效果,如下图2所示:通过这种学生自主尝试的学习方式,不仅可以帮助学生提高学习的积极性和主动性,更重要的是学生能够非常安全、快捷地进行电路的分析和设计,大大提高了学习的效果,也节省了大量的实训耗材的浪费。

3结束语

仿真电路设计总结范文5

古人云“活到老,学到老”。学习伴随人的一生,一个学习者具备的基本素质是其自主学习能力。最早引入“自主学习”的Holec将其定义为“负责自己学习的能力”[1]。通俗讲,自主学习能力是由学习者自觉确定学习目标,制订学习计划,选择学习方法,调控学习过程,评价学习结果的过程或能力[2]。自主学习需要做到“四学”,即“想学”“能学”“会学”“恒学”。基于信息化条件的自主学习是指借助现代化技术及工具完成自主学习。信息化条件包括互联网、电子图书馆、学习软件(如Multisim,EWB,CAD)、音频视频、Flash等。信息化条件下的自主学习改变了以往的师生学习模式,学员成为学习的主体,教员主要以问题引导、知识顾问、技术支持、效果评价为主要任务,引导学员充分利用和开发信息化资源,将先进的信息技术和学习过程优化整合,开展自主性学习,提高教育的质和量,更好地适应新时代的要求。

2信息化条件

2.1互联网

随着信息技术的飞速发展,互联网在现代生活中越来越普及。互联网具有信息资源海量、不受时间和空间限制的特点,因此它为自主学习提供了便捷条件。利用互联网强大的搜索引擎功能,搜索学习内容、疑难问题、模拟考题等。计算机网络平台提供了一个友好的交互界面,图文并茂,静动结合,生动有趣。由于院校的特殊性,我院学员除了可以在特定地点及方便时间上互联网外,还可以查阅军网内部丰富资源。互联网改变了传统的学习方式,提高了学习兴趣,提高了学员发现问题、解决问题的能力,使学习成为一种主动、积极的过程,自主学习意识进一步加强,学员真正成为学习的主人。

2.2电子图书馆

电子图书馆以互联网为平台,主要由实地图书馆和虚拟图书馆两部分构成。实地图书馆是与传统图书馆具有一样的馆藏图书功能,资源归本单位共享;虚拟图书馆是指本馆没有收藏但是从网络系统、数据库中可以获得信息的图书馆,例如维普、万方、CNKI等电子期刊,超星、国图、阿帕比、中国军事等数字图书以及硕博论文、外文数据库等等。学习者在相应数据库进行文献搜索、下载需要的论文、书籍完成知识的自主学习与深化,多角度、多维度的学习理论,广范围、广视角的了解应用。我院电子图书馆馆藏丰富,既有实地图书馆又有虚拟数据库,为学员学习提供了资源保障。

2.3软件工具

软件工具是指能够辅助学习的工具软件,例如绘图工具AutoCAD,ProE,3DMAX等,仿真工具simulink,EWB,Multisim,ansys等,不同领域选择不同的软件工具。以数字电子技术中常用的Multisim和EWB为例(如图1和2所示),它具有丰富的元器件库和仪表库,当学完电路理论之后,学员大部分直观认识不深入,对电路是否能够实现所讲述的功能持怀疑态度,仿真软件恰好解决了这个问题。利用仿真软件构建虚拟的电路,通过仪表及指示装置,直观形象地看到电路现象,加深对理论的理解。同时,在实际搭建电路时,为了避免资源浪费及烦琐的调试,可利用仿真软件先验证设计电路的正确性,之后再去实际搭建。目前学员具有电脑使用条件,只需安装软件即可使用,软件工具的出现为自学提供了又一个有力的条件。

2.4自主学习平台

自主学习平台可以是远程教育学习平台,也可以是根据不同科目搭建的学习平台。其作用是学员在教员的辅导和帮助下,自主使用网络学习平台,有针对性地选择各种学习资源,调整学习时间,控制学习过程,以达到学习目标。自主学习平台具有辅、开放性、自主性、重复性、交互性的特点[3]。为方便学员数字电子技术课程学习,教研室设计了数字电子技术网络课程(如图3所示)。主要包含教案、视频、教案、习题、作业、答疑、测验以及参考资料等内容。

3以组合电路设计为例,借助信息化条件培养学员自主学习能力

3.1组织流程

组合电路设计内容丰富,方法多样。课本中讲述多以分立元件设计为例讲述,为拓展学员思路,本课程安排时笔者并未加以限定,只布置了任务,学员自行完成。教员布置任务,学员以小组形式开展学习。各小组实行组长负责制,针对任务组织学员讨论、确定方案,针对不同的方案安排组员提前查阅互联网、电子图书馆、网络课程等资料;课上分工协作,不同学员按照不同方案设计实现;学员自学仿真软件Multisim或者EWB,并借助软件仿真验证设计的正确性;设计报告由专人撰写,汇总各种方案及方法并进行描述;由于时间限制,并非所有奇思妙想都能一一设计实现,因此附加了拓展环节,集思广益,学员只需描述出新思路新创意即可;最后为检验学习效果,加入答辩环节,从小组中任意抽取一名组员,回答其他学员和教员提出的问题。

3.1.1设计任务

1个主评委和3个副评委共4人鉴定某项目,当主评委不赞同,但3个副评委全部赞同项目时,裁定项目通过鉴定;当主评委赞同并且3个副评委中多数赞同项目时,也裁定项目通过鉴定。试设计满足要求的逻辑电路。你还能想到哪些器件设计方法?

3.1.2小组分配

本教学班次共计43人,4~5人为一小组。组长负责分工,一般2人设计方案,1人学习仿真软件,1人撰写设计报告,最终集思广益,拓展创新方法。

3.1.3丰富的设计方案,多样化的仿真实现

借助分立元件实现电路设计组合电路是课本中主要讲述的方法,其他方法课本中并没有专门提及。另外,仿真软件使用方法,如何仿真电路都需要学员自行摸索。但从效果分析,学员都能够通过自学或者小组互助学习方式解决上述问题。现列举几种学员的设计方案及仿真电路。

3.1.4答辩环节

为保障学习效果,笔者设计了答辩形式的督促机制。要求在设计完成后,小组内每位成员都要掌握本组设计的电路方案,随机抽取某位学员上台讲解,一旦答辩不顺利,将会影响本组学员的整体成绩。在这种指导思想下,每位学员都参与其中,组内互助,使得方案形成时,每位学员也都掌握了知识。本次课程笔者提问了第一组的一位学员,答辩过程中每当出现思路断档,整组学员的精神都跟着紧张起来,但经过思考他顺利完成此环节,并且将创新性的设计思路也一同与大家分享。从答辩过程可以看出,第一组学员的团结与协作,看到了传统课堂上无法发现的闪光点。

3.1.5设计报告

第一项设计任务,第二项设计方案,第三项拓展及心得体会。前两项旨在对整个知识的梳理,第三项作用有两点,一是学员方面,总结收获及不足,创新新思路,例如第九组写到“电路设计注意布局,图纸与虚拟实验有着本质差距”,第一组写到“一个好的团队不光有一个好的带头人,还要有一群踏实肯干认真听话、积极进言的成员”。二是教员方面,便于发现学员学习中存在的问题,调查学员对教学实施的满意度,为后续教学提供宝贵经验。例如第五组写到”开关的选择开始由单刀开关接入不工作,后经小组讨论和教员指导换为单刀双掷开关完成电路仿真”。第二组写到“课程使我们认识到数电并非纯粹的理论学习,而是课堂发挥、试验动手等综合能力的培养”“增强了我们的发散性思维,是一种能力的提升”。

4效果分析

按照传统讲授组合逻辑电路设计方法,一般学员比较容易想到教员或者课本上讲述的方法,思路禁锢到此无法跳出。时序电路设计与组合电路设计课程形成了鲜明的对比,时序电路设计任务是课后习题,教员只讲授了一种设计方法,因此学员在设计过程中多数应用了这种方法,很难扩展思路,开拓创新。而此次组合电路设计是学员没有见过的任务,教员对其没有过多的限制,因此设计方案多种多样,学员自学的潜力此刻淋漓尽致地表现出来。在网络、仿真软件等信息化条件下,学员顺利完成了本讲内容的学习。学员不仅掌握了组合逻辑电路设计的多种方法和仿真软件的使用方法,还提升了自身的综合能力。从期末考试成绩上分析,平均分79.44,其中良好及以上24人。通过设计报告的心得体会及期末成绩分析采取自主学习模式学员多数比较赞同,收获颇丰。上述事实证明只要给予适合的条件,学员有能力并且能够出色完成自主学习,同时锻炼了学员的提出问题、分析问题、解决问题、语言表达等多种能力,强化了团队协作意识,激发了创新思维。

5结束语

仿真电路设计总结范文6

关键词:“95后”大学生;电路教学;对分课堂;电路仿真软件;电路设计竞赛

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)15-0215-02

一直以来,在传统的电路教学过程中,教师采用“填鸭式”的方法进行讲授,学生被动式的接受知识,并配合课后作业的形式进行。但是,我们在实际的教学过程中,特别是当教学对象变为伴着电脑手机长大的“95后”一代,传统的教学方法存在着诸多问题,并不完全适应新时代学生的特点。课堂中的重点是电路概念的灌输、定理的记忆和反复的习题训练,忽略了电路和实际生活的联系,最终导致很多学生对大学电路课程感觉到枯燥和抽象,沉迷于在课堂上玩手机,即便学过本课程依然完全不懂实际生活中的电路,等等问题。因此,我们在电路教学的实践过程中进行教学方法的改进和教学模式的改革,探讨有效的电路教学方法改革策略,以适应“95后”学生学习方式和思维方式的改变。

一、从生活实际入手,激发学生的学习兴趣

目前的电路教学通常开篇就直接告诉学生“电路理论研究的是电路模型,而电路模型是对实际电路的简化”,接下来就开始讲授电路定理和电路化简,求解电路中的电流和电压量。在这种教学引入模式下,最大的问题就在于没有讲授我们为什么要进行电路化简、为什么要分析电路并求出电路中的电旱缌髁俊R簿褪撬担通常我们的教师并没有提出电路课程学习的意义,一件没有说明意义的事情难以提起学生的兴趣。从心理学的角度分析,“兴趣是人们力求认识某种事物或爱好、某种行为的倾向,它的有效功能之一就是能对正在进行的行为起到推动作用。”告诉学生学习电路的意义,无疑更加能够激发学生的兴趣,形成课堂电路教学的重要基础。特别是对于“95后”学生,由于其受到手机等移动设备的诱惑更大,如果一门课程不能引起他们的兴趣,那么将很难让他们把目光从手机转移到黑板。因此,教师在电路教学中,从生活实际入手,着眼于电路学习的意义以及生活工作中所遇到的电路问题,将学生的注意力从手机转移到课堂,这是非常重要的。

二、对分课堂,提高学生的积极性和参与感

由于电路课程的难度高,电路的形式变换多样,理论的应用灵活,学生的基础参差不齐,正常课堂上师生的互动少,导致学生在一段时间的听课后,特别是“95后”学生,可能会被手机吸引,这时如果没有有效的方式将学生从手机等设备吸引回课堂,那么将导致学生学得少,教师也非常有挫败感,因此我们尝试部分课程的教学采用对分课堂的形式,提高学生的积极性和参与感。

对分课堂的定义是将一半的课堂时间分配给教师讲授课堂知识,另一半的时间分配给学生进行课堂讨论与自我学习。首先,通过教师提纲挈领地讲授本节课的知识点,并举一些例子进行论证和应用;接下来,提出问题和任务,安排学生以小组形式进行讨论分析;最后,请学生互相提问,教师回答学生讨论过程中不能解决的问题,并进行课堂总结。接下来我们详细介绍对分课堂的每一个部分是如何在我们的电路课堂教学中应用的。

1.教师讲授。在对分课堂上教师首先介绍了基本框架和基本概念,特别是本节课程的重点和难点,但是教师并不将每一个定理应用的特例全部讲出来,而是通过提出问题和让学生自己发现问题的方式将这部分课堂上未讲的内容留给学生课后学习。

2.课后复习。在结束了教师的课堂讲解后,教师安排学生进行课后的复习与思考,并布置下一节课讨论的任务。例如,教师可以要求学生根据学习的内容和个人的特点,完成学习笔记的制定,对学习内容进行提炼与总结,据此教师可以了解学生对课程的消化吸收以及学生的学习态度。此外,教师还要要求学生完成下次讨论课程中讨论和相互提问环节中问题的准备,问题可以分为两个部分:(1)学生通过阅读书籍、查询资料和自我思考得到答案的问题;(2)学生没办法解决的问题。

3.分组讨论。学生带着课后复习模块的问题来到分组讨论的课堂。第一类问题在课堂讨论中学生可以向其他学生发问,第二类问题需要在课堂讨论中通过学生和教师的共同探讨学习得到结论和解答。

4.教师总结。经过教师讲授、课后复习和分组讨论等几个模块对同一教学内容的学习后,教师针对课后复习和分组讨论中学生暴露的问题进行进一步的总结。那么,同一内容,经过几个模块的学习,加深了学生的理解程度,夯实了学生的基础。

三、运用电路仿真软件,实现电路定理的直接验证

目前我校的电路课程是由电气系的教师负责,而相对应的实验课程是由实验中心的教师负责。理论课过多讲授公式、定理,比较枯燥,学生接受效率低。而实验课设置验证性实验多,学生在实验过程中,步骤机械,缺乏思考。这造成了理论和实际的严重脱节,针对这一类问题,我们考虑运用电路仿真软件,引导学生搭建电路模型,观察电路中电压、电流的变化,使抽象的电路特征变成形象的图像显示,直观的验证我们所学到的电路定理。通过观察发现,“95后”伴着手机电脑长大的这一代大学生,并不喜欢单纯的听取比较枯燥的知识讲解。这种通过自己设计思考发现问题再学习的方法,更为他们所喜爱。也就是说,仿真平台的引入使学生充分运用了所学知识,发挥了主观能动性,达到良好的教学效果,这是提高电路教学质量的一种有效措施。

四、举办电路设计竞赛,升华电路定理在实践中应用的能力

一个知识点如果仅仅是通过做题和电路仿真并不能够使学生得到深刻的理解,因此在电路理论的学习中,我们举办小规模的电路设计竞赛,组织学生通过仿真软件设计电路、实际元器件搭建电路等步骤将所学到的电路知识应用到实际。在实际电路设计竞赛中,学生将不同内容的知识综合利用,促进知识的融合,形成触类旁通的开放性思维能力和理论应用于实际的科学素养。

五、结论

总之,针对伴着电脑和手机长大的“95后”大学生,如何有效提高他们对电路学习的兴趣,形成良好的教学效果,这是一个具有重要理论与实现意义的课题。本文提出将理论联系实际、对分课堂教学、电路仿真软件辅助教学以及电路设计竞赛等手段应用于电路教学的课堂,增加学生的积极性和参与感,增强“95后”电气工程学生的电路知识和综合素养,达到更优的教学效果。

参考文献:

[1]曾庆国.电路教学改革与优化探索[J].教育教学论坛,2016,(18):113-114.