论文设计方案范例6篇

前言:中文期刊网精心挑选了论文设计方案范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

论文设计方案

论文设计方案范文1

通过抽样调查估计总量与平均值是森林调查中的常用方法。森林抽样调查以概率分布为理论基础。主要特点是通过分析所得数据取得估计误差,提出精确的调查指标,同时注意抽样误差的影响因素,确保理论精度的正式。森林抽样调查方案设计的基本原则是保证设计方案是准确有效性的最佳方案,内容包括调查目的、任务和要求,样本组织及估计方法等。在森林调查中,它们的意义、特点有重要作用。满足所有要求的最佳设计方案,需要考虑到许多因素,甚至有时比较困难。因为森林经营需要各种调查因子的数据资料,在设计的方案中对某因子的调查可能最佳,而对另一因子可能就不是最佳的。例如,调查的某总体的森林蓄积量为最佳,但是对于森林生长量来说则不一定是最佳。一般来说,我们设计的最佳方案是对目的总体而言的。在调查设计中,不仅需要坚实的理论基础,还需要丰富的实践经验,才能取得理想的森林调查方案。在森林调查前,首先要制定出理想的森林调查设计方案,即使误差最小、成本最低。在成本和误差确定的条件下,可以确定最佳样本单元数和样本单元面积。

2森林调查的目的、任务、要求和现有资料

森林调查设计方案与目的密不可分,设定明确的调查目的,依照目的制定方案,调查目的主要在于确定森林质与量的变化趋势及特点以用于合理地组织林业生产、林业规划和采伐量调整等。保证调查工作的有序进行。森林调查目的不能只有专家依据相应的理论知识设定,而应结合调查结果使用者的意见共同确定。森林调查员应为设计者提供准确的相关资料。调查的详细程度决定于森林经营强度。在集约经营的调查中,需要取得小班资料和林相图,小班蓄积量精度要求90%以上,面积精度95%以上。在粗放的经营调查中,森林调查蓄积量精度不落实到小班,只有数字,且不要求绘林相图。调查结果所需要达到的精度由用户来确定。当前我国在Ⅱ类森林调查中,林业局这一级要求蓄积量精度为95%,林场为90%,林班为85%,小班为80%,设计的方案应保证这些精度指标,以满足规划需要。设计调查方案还要根据现有资料和调查地区的林况、地况和自然条件进行。如调查地区有新摄影的大比例尺航空像片,就可采用应用航空像片进行调查的方法;如无像片则要考虑不用像片调查的方案。调查方法因调查的林况、地况和森林种类不同而宜,某种方法在甲地区调查为最优,在乙地区并不一定适用。须知,没有任何的方法能够适合于所有地区的调查,都是要根据调查地区的具体情况、目的和任务要求,确定适合于某一地区的调查方案。

3合理的森林调查设计方案

3.1为确保森林调查的准确性,应不断引入先进的科学技术和设备,开拓思路,勇于创新。在过去传统的森林调查中,最重要的一项工作即是绘制森林平面图。工作人员需要随身携带分度仪,缩尺等工具进行实地探测,通过人工测量得到距离、角度等数据,再逐一将所得信息绘入平面图内,消耗大量的人力物力,浪费大量时间的同时还无法保证绘制的准确程度。随着计算机的推广使用,电脑作图逐渐代替了繁琐的手工制图,提高效率的同时也伴随着更高的准确度。卫星探测技术的应用更免去了工作人员野外作业的工作强度,方便快捷的进行森林探测工作。

3.2对于名贵树种以及蓄积量较低的树种,应在小范围进行择伐。总之,采伐强度应根据具体情况合理制定,不能生搬硬套。在选用调查方法时应结合实际情况,因地制宜,注意当地的气候和地形,选择恰当的调查方法。如调查地区有新摄影的大比例尺航空图片,就可以直接应用图片调查。如果没有,则应考虑不用航空图片的调查。调查方法也因地况,林况的不同,而有所不同,不能将一种调查方法硬套到多个地区的调查当中。在抽样设计中还应正确划分总体和单元。总体是单元的集合体,单元是观测或调查的单位。森林调查是以调查对象为总体,把每个地块作为一个观测单位,但在不同情况下,单元和总体也会根据调查目的的不同而有所变化。采伐前蓄积量的调查是森林调查设计的重要内容之一,蓄积量的调查方法有全林每木调查,标准地调查,机械抽样调查等,这些方法如果得到合理利用,将准确快速的获得森林资源信息,但如果利用不合理,则会浪费人力物力和财力,增大工作强度,降低调查精度。此外,还应提高工作人员的素质。相关技术人员需不断学习相关知识技能,提高自己的技术水平和专业素养,充分掌握森林调查的相关法律法规,从而提高森林调查工作的效率。同时有效帮助提高调查设计团队的整体素质。此外,还应不断引入先进设备,减少调查过程中伴随的误差,使调查结果更加准确。建立合理科学的森林调查设计方案,真正做到经济建设和生态建设的协调发展,在保护环境,保护森林资源的同时,也要满足经济利益的最大化,满足人们对林业产品的日常需要,合理利用森林资源,建设生态和谐的社会。

论文设计方案范文2

根据海启高速公路工程可行性研究报告,项目路线终点在启东市与通启高速及崇启过江通道衔接,终点位置的选择应考虑与崇启过江通道、通启高速衔接顺畅,解决好各高速之间的交通转化及与地方道路的连接问题,避免过境交通穿越城市,既保证高速公路网总体布局的合理,又使地方道路与高速系统可以合理衔接,同时还应与启东市城市总体规划相协调。综合考虑终点段区域路网布局和启东市域城镇体系规划特点,本项目终点存在3个路线走廊。

(1)启东西走廊(工可A线)

路线在启东市吕四港镇东南与K线分离,路线转向南经合作镇西侧至启东市城市规划区西北侧的新义村南侧,距崇启高速启东北互通6km处设置枢纽互通与通启高速衔接。

(2)启东中走廊(工可K线)

路线起自启东市吕四港镇东南,向东南至南阳镇西南设置枢纽互通与崇启高速对接,与崇启高速启东北互通组成复合式互通。

(3)启东东走廊(工可F线)

路线在启东市吕四港镇东南与K线分离,向东南经海复镇以西,至南阳镇以东至启东市城区东北侧,距崇启高速启东北互通3km处设置枢纽互通与崇启高速衔接。工可报告从路网结构布局的合理性、对沿海经济发展的影响、交通量与运营里程、崇启长江过江通道衔接性、利用通启高速段交通适应性分析、启东城区对外出行便利性、工程建设规模、与启东市地方路网的衔接、规划吕四港铁路的影响、建设条件、环保、占用土地资源影响分析、地方政府意见等方面进行比较,最终推荐中走廊K线方案。该方案启东北枢纽所连接的通启与海启高速均为4车道。初设互通位置选择初步设计在工可研究路线走廊的基础上,结合现场已变化的主要控制因素及终点枢纽设置条件,布设了K线(工可K线、A线之间,启东中走廊与西走廊之间)、A8线(工可K线,启东中走廊)、A9线(工可K线,启东中走廊,终点接近东走廊)3个线位,并从交通量适应情况、功能性、工程规模、预期经济社会效益等方面对线位进行比选。经比选,对应互通位置点位3的A9线与通启、崇启高速公路、宁启铁路改建工程相互交叉,干扰较大,不利于启东北枢纽的布设,且需要改造刚刚运营2年的启东北互通和征用江苏神通阀门股份有限公司(上市公司)土地,代价很大,因此否定A9方案。对应互通位置点位2的A8线需多次跨越航道,不利于对沿线新安、合作等中心城镇的发展,无法弥补启东西部路网较为薄弱的缺陷,且路线长度较长(较K线造价多约1.9亿元),因此,否定A8线方案。经比较,K线具备以下优势:

(1)显著缩短路线长度(900m),减少主线绕行及地方利用绕行的经济成本(约1.45亿);

(2)改善终点启东北枢纽建设条件,避免与启东北互通组合成复合式互通群设计,对启东腹地经济起到更大的带动作用;

(3)减少跨越航道次数,降低总体工程规模(降低造价约0.46亿);

(4)避让启东市祖杰小学。鉴于上述因素,初步设计方案互通位置推荐对应K线的点位1(启东北互通西侧净距约1.2km处)。

2互通设计原则

2.1交通量预测分析

(1)工可阶段预测交通量分析

本项目工程可行性研究始于2005年,根据工可研究交通量预测结果,启东北枢纽在远景设计年限2037年转向交通量为49360pcu/d,主流向为上海—海安,为48274pcu/d。

(2)互通功能定位分析

由于交通量预测成果较早,2009年以来,受国家沿海开发战略等政策的推动,项目区域城镇化快速推进,经济发展迅速,居民交通出行需求大幅增加。由于沿长江经济带高速发展,崇启大桥(2011年通车)作为接入上海的过江通道所产生的集中效应,导致南通—启东—上海方向的交通量增长迅速。通启高速公路作为南通—启东方向的交通主干道,交通量的增长已经超过较早前的预测。因此,由于早期工可阶段预测的枢纽转向交通量与预计实际交通量增长情况存在一定差异,在设计中应充分考虑外部环境、交通量变化的情况进行甄别和调整,使得枢纽设计更加合理,更符合实际需求。通启高速公路为沪陕高速公路和宁通高速公路共线段,属于国高网一段,为了满足快速增长的通行需求,目前扬州江都至泰兴广陵段4车道改8车道改扩建工程初步设计已经完成,计划2014年开工,广陵至南通段的改扩建也已列入计划,因此,通启高速公路作为苏中地区横向交通主骨架的交通功能定位明确。海启高速公路属于江苏省网高速公路一段,主要服务对象为南通沿海港口和开发区,影响区域和范围主要是如东、启东和规划的经济园区,经济发展及地理位置等因素决定了海启高速公路的交通功能定位为区域次骨架。因此,综合考虑功能定位及交通量发展等因素,在启东北枢纽互通方案设计中,采用以通启高速公路为主,海启高速公路次之的互通形式更为合理。

2.2互通设计原则

综合考虑各项因素,启东北枢纽主要设计原则如下:

(1)通启高速公路为国高网路网主骨架,海启高速公路为区域路网次骨架;启东北枢纽方案应适应路网功能定位分析。

(2)为保证终点段2条高速公路的通行能力和服务水平,启东北枢纽、启东北互通(位于通启高速公路)不宜做成复合式互通式立交。

(3)通启高速公路应保持其习惯性和连续性,不产生突变的线形,不宜大幅度降低2条高速公路的平纵面线形。

(4)尽可能满足启东市城市规划和便利沿海开发区发展要求。

(5)在满足“安全环保、主流畅通”功能前提下,尽可能降低工程造价。

(6)海启、通启高速公路主线设计速度均为120km/h,启东北枢纽的主要功能为2条高速公路之间的交通快速转换,因此匝道设计速度和指标尽可能采用较高的指标。

3互通方案

考虑海启作为匝道、通启作为主线;海启、通启均作为主线;海启作为主线、通启作为匝道的3种情况分别布设了5个方案。

(1)方案1:海启作为匝道(80km/h),通启作为主线(120km/h)。通启作为主线、海启作为匝道(分离式路基形式),海启高速以T型枢纽接通启高速(见图4)。在上海—海安方向内侧布设单向双车道的半定向匝道(Rmin=480m),设计速度为80km/h,路基宽度为13.75m。交通量小的海安—南通方向半定向匝道(Rmin=150m)布设在外侧,设计速度采用60km/h,路基宽度分别为8.5m与10.5m。该方案的优点是满足初步设计阶段通启主骨架、海启次之的路网功能定位,总体工程规模最小,不废弃通启高速原有工程,只对老路拼宽改造,对现状高速影响小;缺点是海启平纵面指标较低。

(2)方案2:海启作为主线(120km/h)、通启作为匝道(80km/h)。海启作为主线、通启作为匝道,在保证主流向服务水平的情况下降低通启高速启东—南通方向的设计速度(80km/h)。海安—南通方向匝道采用的设计速度为60km/h,路基宽度分别为8.5m与10.5m。上海—南通方向匝道速度为80km/h(南通至上海方向仍利用通启半幅),路基宽度为13.75m。方案2平面图见图5。该方案的优点是海启高速公路平纵面指标高,通启交通流右进右出,服务水平高,总体工程规模较小。缺点是不符合通启主骨架、海启次之的路网功能定位,通启高速启东—南通方向设计速度低,原通启高速半幅废弃约1.3km,社会负面影响较大。

(3)方案3:海启、通启均作为主线(120km/h)。海启、通启均作为主线,在海安—上海方向布设一对分离式路基(Rmin=1600m),设计速度为120km/h,路基宽度为13.75m;海安—南通方向布设一对半定向匝道,设计速度均为60km/h,路基宽度分别为8.5m与10.5m。该方案的优点是不废弃通启高速原有工程,只对老路拼宽改造,对现状高速影响小。缺点是海启上跨通启桥梁交角20°太小,桥梁设置难度大;占地较大,工程规模较大。

(4)方案4:海启、通启均作为主线。由于海安—南通方向交通量较小(1086pcu/d),在方案3基础上将南通至海安方向的半定向匝道改为指标较低的环形匝道(R=60m)以减小工程规模。南通—海安方向匝道采用的设计速度为40km/h,路基宽度为8.5m。方案的优点是不废弃通启高速原有工程,只对老路拼宽改造。缺点是南通—海安方向环形匝道指标偏低,减速车道出口属于大半径曲线接小半径曲线,安全有隐患,绕行较远;占地最大,工程规模最大。

4结语

通过对启东北枢纽互通设计方案的研究,在互通设置位置、交通量预测、互通功能定位分析、方案的综合比选等方面,提出以下建议,供类似工程设计参考。

(1)枢纽互通方案应与路线方案进行综合分析研究,互为一体,不能单独割裂;

(2)枢纽互通与前后的一般互通应保持合理距离,不宜距离过近组成复合式互通;

(3)应重视枢纽互通的路网功能分析定位;

(4)在初步设计中,建议对上阶段预测交通量的变化情况进行核查分析;

(5)当新建与已建高速公路通过互通相接时,改建不应大规模破坏、废弃原有工程;

(6)方案比选中,安全是首先考虑的因素,同时应满足互通功能定位及适应发展要求,此外,施工方便、造价合理也是要考虑的重要因素;

论文设计方案范文3

注塑模具制造时,一般先用数控机床对工件毛坯进行切削加工,当模具结构复杂时,有些部位数控加工刀具很难加工到位,或者说若要加工到位,费时费力,效果不好,例如注塑模具的型腔尖角、深腔、筋和窄槽等部位。对于这类部位的加工,就需要进行电火花成型加工。该后模对应于塑件加强筋位置便是多条窄槽,这些窄槽的加工就需要电火花成型加工来完成。电火花放电的原理是由脉冲电源输出的电压加在液体介质中的工件和工具电极(亦称电极)上,当电压升高时,会在某一间隙最小处或绝缘强度最低处击穿介质,产生火花放电,瞬时高温使电极和工件表面都被蚀除掉一部分材料。电火花加工实际就是电极和工件间的连续不断的火花放电的过程,工件不断产生电腐蚀,电极不断地向工件进给,最终可将电极的形状复制在工件上,加工出所需要的形状。因此,在对模具进行电火花放电加工之前,必须设计并制造出适合的电极方能进行放电加工。按照目前的模具制造水平,结构复杂的注塑模具在加工过程中,往往需要几个、几十个,甚至上百个电极。所以,电极的设计制造是模具制造中非常重要的环节,控制电极的制作成本也是控制整套模具生产成本的关键因素之一。

2注塑模具筋位电极常规设计方案

根据电极在模具制造过程中的作用可将其分为产品外形成型电极、清角电极、筋位电极、“铜打铜”电极(即用来对电极进行电加工的电极)等。按电极组合方式可分为整体电极、组合电极及一极多用电极(也称跑位电极)。按电极制造材料又可分为普通紫铜电极、石墨电极和特种铜电极等。对于一般电极,其结构主要包括成型部位和电极基准部位等组成。对于前文所述的塑料盒零件的注塑模具后模制造,电极材料选用普通紫铜电极即可。如果模具尺寸不大,筋位电极一般会采用整体电极,如图3所示;如果尺寸比较大,通常会采用跑位电极,只做一条筋位的放电电极,即类似于图3所示的整体电极的1/8,通过对后模上加强筋位置的逐一放电来完成放电加工任务。相比之下,整体放电电加工用间短,电极制作成本偏高,成型误差小;跑位放电电极制作成本低,放电耗时长,成型误差受电极自身损耗较大。

3注塑模具筋位电极设计方案优化

结合上述情况,在保证生产效率的前提下,本着最大程度降低生产成本的目的,笔者将本塑料盒筋位电极的制作方案进行了创新性优化设计。放弃原来的切削加工方式,同时将电极基准部位由紫铜材料改用普通钢材,电极成型部位仍采用紫铜材料,将电极制作成镶拼结构。筋位电极基准部分投影示意图,示意图中间又以局部放大视图的形式对镶拼位置的结构进行了表示这两部分均采用电火花线切割方式进行加工,在普通钢板上割出电极成型部分镶拼框,并加工电极吊装螺丝孔或其他吊装结构,同时用铜板割出8件同样的电极成型部分,切割路径如图5、图6的投影轮廓所示。由于加强筋一般情况下对形状精度要求较低,因此,电极成型部分的拔模角度采用手工打磨的方式即可满足要求。最后将打磨后的电极成型部分按要求拼装到电极基准部分的镶拼框里,保证两部分的垂直度和各成型部分底面的共面度,便可进行下一步的放电加工了。另外由于放电加工基本没有切削力,因此直接镶拼或进行涂胶固定后镶拼结构是能够满足放电要求的。

4结束语

论文设计方案范文4

(1)信息采集:通过视频监控、交通数据信息采集系统,为交通管理人员提供各路段区域的交通路段状况。

(2)数据处理:系统通过对信息采集系统采集信息进行交通状况监测的模型算法,能够检测拥挤与确认拥挤类型,提高系统的自动化程度。

(3)信息:通过可变信息标志等外场信息设备及网络等多种方式交通信息,将实时交通信息传递给车辆,以便驾驶员安全、及时地适应交通变化,有利于交通流在时空上得以合理分布,充分发挥道路运行能力和交通服务水平。

(4)信息共享:形成以路段监控分中心为道路交通信息源头,以存储与共享平台为枢纽的信息共享与交换体系。

2监控系统需发挥的作用

(1)重点做好立交区、长下坡、易多雾积雪结冰路段、隧道及沿线设施的交通运行状况的监测,并注意长下坡路段降雨、横风的情况,做好该气象条件下的交通流疏导提示。

(2)能够实现在大监控业务量中,快速、准确的提取出交通隐患和交通事故信息,并在第一时间发出警报,使交通管控人员能够快速做出相应,并通过联网监控,迅速通知监控中心,开展联动救援,在最短时间内采取有效措施,控制住事态的范围和规模,保证整个高速公路运营的安全有序。

(3)如果路段所在区内存在冻雨、大雾、冰凌等季节性气象灾害,运营管理宜作两个工况考虑:①晴好天气等条件下的正常交通;②冻雨、大雾、雪、结冰等条件下的非正常交通。

3监控外场设备布设方案

(1)摄像机

路段监控采用视频全程监控的模式,在重点区域(连续长下坡、服务区、特大桥、小半径路段、自救助匝道、季节性多雾及结冰路段)设置摄像机,实现无盲区覆盖。其余一般路段每间隔2km设置1套摄像机,均采用激光夜视高清摄像机,隧道作为重点监控区域已由隧道机电专业设置了摄像机。

(2)气象检测系统

云南境内的重要路段,某些高速公路路线途径的地区群山连绵,山地、沟谷、丘陵、河谷平原和山间盆地相互交错,桥隧比极高,冬季易出现雨、雾、雪、冰等情况,再加上连续长下坡等因素,会对道路行车安全产生不利影响。按照交通运输部及中国气象局《公路交通气象观测站网建设暂行技术要求》的相关规定,结合地域气候特点,干线公路需要设置两种类型的气象观测站:局地站和普通站。局地站代表的是较短路段、特殊地形地物处或桥梁结构物的特定交通天气状况,如低能见度大雾频发路段、易结冰桥梁、易发生水淹水毁路段等,主要针对局地恶劣天气频发且严重影响交通的气象条件。普通站代表的是较大范围或较长路段的一般天气状况,主要是为满足路线、路网层次的气象信息需求,起到加密和补充气象观测网的作用,支持公路及其沿线天气状况的监测与预报,有利于提高天气预报的准确性和精细程度。普通站尽可能选取在相对开阔无遮挡的地方。局地站:在同样低温的情况下,隧道洞口路面及特大桥桥面相对路基段更易结冰。桥隧比超高,路基段少,桥隧相连的情况十分普遍,特别是海拔2000m以上的地区冬季气温较低,易出现大雾,上述问题将更加突出。针对上述情况,结合特大桥、隧道的分布情况,需在桥隧相连的特大桥、超过500米的单独特大桥附近均设置了遥感式路面状态及能见度检测器作为局地站,使运管部门及时掌握路面状态(干燥、湿滑、水冰雪等覆盖物)、能见度(雨、雾、霾、沙尘等造成能见度降低的原因),对外提供实时准确地公众服务信息,对内及时有效地调用相应的人力物力资源,采取路面处理等措施消除危险隐患。普通站:气候具有垂直分带明显、水平变化不大的特点,按照布设间距,根据海拔分布,在具有典型区域气候特点地区均设置全要素气象检测器作为普通站,与路段或桥梁摄像机合并设置,配合摄像机的视频检测功能,及时掌握区域气象条件,采取有效的交通控制措施,实现异常气候条件的安全管理。

(3)信息标志

某些路段桥隧相连的情况普遍,路基段较少,上述区域发生异常事件时,车辆无法掉头或掉头困难,这就更加增大了紧急情况下交通组织和事故救援的难度,只有互通立交是高速公路向区域路网进行交通疏散的唯一手段,因此根据构造物的分布特点,需要砸在交通管控的重要位置设置情报板用以路况信息,引导车辆行驶,辅助完成交通组织。结合立交分布特点,立交附近设置F型情报板,在交通量较大的立交设置门架式可变情报板。服务区两侧均设置服务区信息标志,用以向驾乘人员提供路况消息,隧道洞口作为交通组织的重点区域已由隧道机电专业设置情报板。

(4)车辆检测器

根据规范,在各立交、主线站附近均设置车辆检测器用以反映路段内交通流分布情况,采用在云南省已广泛使用并且效果较好的双波长微波车检器。

(5)交通量调查站

按照《国家高速公路网交通量调查观测点布局规划》的要求,属国高网项目路段需要设置一类调查站和二类调查站。一类调查站的调查数据以反映路网宏观交通量特征为主,主要为宏观决策提供支撑,在功能上兼容二类调查站;二类调查站的调查数据以反映道路运行状态和运行质量为主,主要为路网监控、应急处置、公众出行信息服务提供信息支撑。具体设置方案如下:一类调查站:根据里程长度,设置于交通量平稳路段,与全程监控摄像机合并设置。

4传输模式

(1)外场设备

监控数据与视频图像均采用全数字的传输方式,所有外场监控设备通过工业以太网交换机接入收费站内的视频传输交换机,再由通信系统提供的以太网电路上传至监控分中心。各交换机之间利用主干光缆组成千兆光纤自愈环网,保证数据、图像传输的稳定可靠性。

(2)隧道监控设施

各隧道视频图像、控制信号先传输至隧道管理所视频传输交换机,再由隧管所上传至站内通信点,最后经通信系统汇总至监控分中心。

(3)网络性能要求

路段分中心内部网络及外场设备至路段分中心互联的IP网络性能指标满足《IP网络技术要求-网络性能参数与指标》(YD/T1171-2001)所规定的1级(交互式)或1级以上服务质量(QoS)等级要求。具体指标如下:网络时延上限值为400ms;时延抖动上限值为50ms;丢包率上限值为1×10-3。

5高清摄像机的应用

论文设计方案范文5

目前智能手机品牌型号繁多,我们无法将所有的产品都纳入到比较试验的范围内,因此需要对参与比较试验的样品进行筛选。样本的选择则应能覆盖相对较高的市场份额。应当选取消费者认知程度较高的品牌参与试验,可以通过消费者问卷调查的方式选取品牌,并参考互联网上的品牌关注度和一些数据调查机构的市场占有率排行,以及京东、淘宝等电子商务网站的产品销量信息以决定每个品牌的备选机型。在样品的获取方面,应模拟普通消费者随机购买,不应接受企业提供的样品或从其他特殊渠道获取样品,比较试验应全程独立于生产商、销售商等利益各方。

2质量要素与权重

产品质量是一个整体性的要素,通常包含了若干个不同的方面,如安全、功能、性能、耐久性等,要获得整个产品的整体质量评价,就需要将尽可能多的质量要素都囊括进测试中。因此,我们通过以下几种方式搜集智能手机产品的质量要素并根据消费者的重视程度确定权重:互联网上对消费者意见的征集;消委会对产品质量问题投诉的统计分析:对电子商务网站上针对各个产品“差评”信息的整理。行业专家建议;

3试验项目

我们采用了主观评价和客观试验相结合的方式来进行试验。客观试验,即采用标准方法或自行设计的试验方法,对手机的某个参数、指标进行检测,例如,手机的耐久性试验中,跌落和防水可以采用标准方法,屏幕耐划痕可以自行设计实验进行检测。但是部分项目无法采用客观测试的方法,例如多媒体功能中的拍照功能,照片的分辨率、色彩还原能力等客观指标固然重要,但测试人员对照片效果进行主观评判得到的结果更加具有说服力,因此我们采用主观对比评价的方式进行打分。我们建立了一只由8名普通消费者和2名专业工程师共10人组成的主观评价团队。为了更好的完成主观评价的内容,我们通过新闻媒体公开征集了8名参与比较试验的消费者,并对参与者进行严格审查和挑选,以确保其公正性。消费者由4男4女组成,年龄最小18岁,最大51岁,涵盖每个年龄段的消费者,消费者代表的职业背景包括了学生、教师、公司白领、私营业主等,覆盖了不同的消费者群体。为了保证比较试验的公正性,我们对参与主观评价的人员进行比较试验前的培训和纪律要求,并将样品的机身和充电器LOGO和厂商信息部分进行覆盖处理,并对样品进行编号,全程“盲检”。

4结果展示

对于消费者来说,实验室本身的测试结果通常是难于理解的,因此,为了使消费者对比较试验结果更易于理解,更好地满足消费者多样性、个性化的选择,实验室的测试数据将按照事先讨论确定的评分规则转化为评级。首先,我们在报告中列出我们进行的所有试验项目,并为每一个项目加上简单的描述,以便使消费者能够认识到,这个项目反映了智能手机哪一方面的质量因素,然后,我们将试验结果转化为个单项项目的分数。报告中同时体现总体评分和单项评分,消费者可以根据评价结果结合自身情况和需求,选择适合自己的产品。

5结论

论文设计方案范文6

1.1顶板局部凿除方案

顶板局部凿除方案即凿除崩裂的顶板(顺桥向凿除范围为墩顶两侧各6m),顺直预应力管道,然后浇筑顶板,恢复凿除截面。凿除截面横向位置如图3阴影部分所示。该方案施工顺序为:①放张凿除区域内已张拉的31根顶板钢束,凿除顶板;②顺直预应力管道,恢复凿除截面,张拉凿除截面预应力;③在支架上张拉剩余全部钢束;④脱架,转体就位;⑤合龙成桥;⑥收缩徐变完成;⑦运营阶段。采用MIDAS有限元软件计算该方案各施工阶段及运营阶段主梁顶、底板最大及最小正应力,计算结果如表1所示。由于后恢复的顶板顺桥向位于墩顶,在预应力作用下各阶段均承受压应力,本文仅给出最小应力数值。由计算结果可以看出维修各施工阶段顶、底板截面均未出现拉应力,最大压应力为15.3MPa,小于C45混凝土施工阶段压应力限值20.72MPa;运营阶段顶、底板各截面未出现拉应力,未凿除顶板的最大压应力为18.3MPa,超过了C45混凝土运营阶段压应力限值14.8MPa,且后恢复的顶板混凝土没能充分发挥作用,运营阶段最大压应力仅为9.8MPa。

1.2顶板局部补强方案

顶板局部补强方案即在崩裂的顶板处新增横隔板进行局部补强。顶板局部补强方案纵断面示意如图4所示。该方案施工顺序为:①已张拉的钢束灌浆,凿除崩裂、破损的混凝土,在图4阴影区域箱室内增加横隔板;②在支架上张拉剩余全部钢束;③脱架,转体就位;④合龙成桥;⑤收缩徐变完成;⑥运营阶段。采用MIDAS有限元软件计算该方案各施工阶段及运营阶段主梁顶、底板最大及最小正应力,计算结果如表2所示。由计算结果可以看出维修各施工阶段顶、底板截面均未出现拉应力,最大压应力为15.0MPa,小于C45混凝土施工阶段压应力限值20.72MPa;运营阶段顶、底板各截面未出现拉应力,顶板的最大压应力为15.7MPa,超过了C45混凝土运营阶段压应力限值14.8MPa。

1.3方案比选结果

若采用顶板局部凿除方案,结构外观与原设计一致,但施工难度大;运营阶段后补顶板最大压应力仅9.8MPa,顶板混凝土未能充分发挥作用,导致未凿除的混凝土运营阶段标准组合压应力达到18.3MPa,比C45混凝土的压应力限值大3.5MPa。若采用顶板局部补强方案,结构外观与原设计有一定的出入,但新增横隔板工程量小,施工难度小;与顶板局部凿除方案相比,采用该方案成桥后结构压应力较小,顶板最大压应力15.7MPa,比C45混凝土的压应力限值大0.9MPa。综合2种方案的优、缺点,决定将顶板局部补强方案作为推荐方案。

2推荐方案的优化

2.1运营阶段结构应力的优化

按照顶板局部补强方案,如采用原设计的预应力数量,标准组合下距离主墩中心线约12m处的箱梁顶缘应力达到15.7MPa,超过了C45混凝土的应力限值14.8MPa。考虑原设计偏于保守,提出减少箱梁预应力的方法以减小箱梁顶缘应力。具体的预应力调整方案如下。(1)合龙前减少张拉:2束ZT06、2束BT10、2束ZT05、2束BT11、4束ZT11、2束BT12、2束BT12′每束分别由原设计的22根减为15根,2束ZT04每束分别由原设计的19根减为15根。其中2束ZT06、1束BT10为已张拉钢束,施工时实际为放松7~15根,其余钢束均为未张拉钢束,按15根张拉即可。(2)合龙后减小张拉:所有合龙底板束的张拉控制应力均由0.75fpk减为0.68fpk,fpk为钢绞线抗拉强度标准值。经计算,采用该预应力调整方案,标准组合下距离主墩中心线约12m处的箱梁顶缘应力降到14.77MPa,满足规范要求。

2.2成桥状态主梁线形的优化

采用原设计方案施工时,拆除主梁支架后,梁端发生4.2cm的竖向下挠变形。按该方案施工时,拆除主梁支架后,梁端发生7.1cm的竖向下挠变形,比原设计方案大2.9cm。由于支架施工转体梁段时预拱度是根据原设计方案设置的。因此,为了保证主梁线形,通过增加铺装层的厚度对主梁线形进行调整:转体梁段端部铺装层厚度增加2.9cm,主墩中心和主梁端部不增加,中间部分按直线拟合。进行结构计算时将增加的铺装计入二期恒载。

3结构计算分析

采用MIDAS有限元软件,按照优化后的顶板局部补强方案对结构进行计算分析,计算时考虑预应力偏位的影响。有限元模型如图5所示。

3.1施工阶段结构计算结果及分析

优化的顶板局部补强方案下箱梁顶、底板最大及最小正应力如表3所示。由表3可以看出维修各施工阶段顶、底板截面均未出现拉应力,最大压应力为13.7MPa,小于C45混凝土施工阶段压应力限值20.72MPa,施工过程应力满足规范[7]要求。

3.2成桥状态结构计算结果及分析

(1)承载能力基本组合下,主梁的最大正弯矩出现在距离墩顶55.5m处,弯矩值为166413.7kN•m,对应的抗力为401212.8kN•m,主梁的最大负弯矩出现在距离墩顶4m处,弯矩值为-1807370.0kN•m,对应的抗力为-2196755.8kN•m,内力的绝对值均小于相应截面的抗力值,主梁承载能力满足规范要求。(2)短期组合下,箱梁截面上缘墩顶附近出现了拉应力,最大值为0.57MPa;箱梁截面下缘最大正应力均为压应力,未出现拉应力。墩顶的拉应力是由于计算的失真导致的,且应力数值很小,主梁正截面抗裂满足全预应力结构要求。短期组合下,箱梁截面最大主拉应力出现在主墩两侧附近,最大值为0.92MPa,小于C45主拉应力限值1.004MPa,主梁斜截面抗裂验算满足规范要求。(3)标准组合下,箱梁截面上缘最大压应力出现在距离主墩中心线12m附近,最大值为14.71MPa,小于正截面压应力限值14.8MPa;箱梁截面下缘最大压应力出现在合龙段附近,最大值为12.66MPa,小于正截面压应力限值14.8MPa,主梁正截面压应力验算满足规范要求。标准组合下,箱梁截面最大主压应力出现在距离主墩中心线12m附近,最大值为14.71MPa,小于C45主压应力限值17.76MPa,主梁斜截面主压应力验算满足规范要求。(4)按短期组合计算结构挠度,消除结构自重产生的挠度为22.4mm,考虑长期效应系数1.4375,挠度为22.4mm×1.4375=32.2mm,主梁挠度限值L/600=73000mm/600=121.7mm,主梁刚度满足规范要求。

4结语