简单的电子电路设计范例6篇

前言:中文期刊网精心挑选了简单的电子电路设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

简单的电子电路设计

简单的电子电路设计范文1

电子电路设计是电类专业为绘制电子电路图所必需掌握的一门计算机综合性设计课程。然而,随着课程改革在各高校逐渐开展,一些课程的课时量也相应递减,比如笔者所在学校电气自动化专业的《电子电路设计》课程已由原36学时减至24学时。如何在减少的课时的课程中让学生掌握同样程度的技能水平以适应社会的需求,考验着每一位专业教师。以往传统的电路设计教学的方式大多是由教师先讲授知识点,然后将知识点所涉及到的图例向学生绘制演示,最后让学生依样画葫芦。在整个教学过程中,教师为主导,而学生仅限于单纯的模仿与记忆,并没有主动学习,导致学习效率低下。因此在教学中应该有意识到加入兴趣式教学,调动他们的求知欲,激发学生更积极主动的思考,学习甚至创新,打造优质课堂,全面提高教学质量与学习效率。

2任务驱动法

2.1任务驱动法原理

任务驱动法是近年来被广为应用的一种教学手法,它一改传统的灌输式教学,尝试采用任务驱动式的教学方法。需要教师将课程学习内容划分为多个特定任务,每个任务包含一定知识点,只要学生完成了课程中设定的任务,就可以掌握课程学习的内容。任务驱动法的核心内容就是由教师在教学过程中创设任务情境,教学任务必须融合学生所需要掌握的技能点和相关的知识点,同时又具有一定的生活性、探究性和创造性,让学生带着解决问题完成任务,激发他们的学习兴趣,让学生自主或协作性学习,使他们真正了解知识点在实际工程中的应用,学以致用。

2.2任务驱动法在电路设计实训中的应用

电路设计实训课程的教学目的为电子电路图形绘制,电路图形仅为简单的二维制版,因此在绘制电路原理图时较为简单易学。但无论多简单的图形,在绘制的过程中都要利用到基本绘图工具、图形编辑和图层管理各知识点综合才能完成。因而课程教授过程中不能简单的按书本章节顺序来讲,而是应该由教师将所有知识融会贯通后重新组织,将它们融入到一个个工程任务中再向学生展示,如向学生展示电动小车电路设计图纸,将其作为一个工程任务,让学生尝试用学过的知识来绘制,或让学生在绘制过程中遇到难题再提出并讲解。这样就更能增添学生的学习兴趣和在完成任务后的成就感,形成良性循环。因此电路设计实训课程非常适合采用任务驱动式教学法。

3微任务驱动法

3.1微任务驱动法原理

采用任务驱动法教学所提供的任务由于综合性较强所以工程量较大且难度较高,学生在一节课中难以完成,即使有些基础好,动手能力强的学生完成了任务,也会因为知识点过多过杂而难以消化。因此需要由教师把握学生素质和能力,将大任务进行科学性的分解,将之细化为中任务,小任务甚至微任务。让具有不同层次知识能力的学生都能被激发兴趣,在任务量合适的微任务环境中尝试和实践。以上所述即为微任务驱动教学法,它就是以任务驱动法为基础,将总任务依靠知识的内在逻辑或采取分类的方式进行具体化,以微任务的形呈现。较之任务驱动法,其目标更为明确,导向性更强,教师使用这种方法教学也更容易控制课堂教学的节奏,保证能在规定时间内完成教学进度。

3.2微任务教学设计

微任务驱动法的实施过程是:教师先依据教学目标设计一个总任务,引起学生的学习兴趣。再引导学生分析总任务的解决方法并将总任务拆分为一个个的微任务,各微任务之间可以是从属或并列关系。拆分出来的微任务不能太难或任务量太大,应设计为学生较易完成的程度,以便于将学生的理解逐步引向深入。通过一个个的微任务引导和推动学生一步步上升,一层层提高,不断接近并最终达到复杂的学习任务的顶点。微任务法的核心是如何科学合理的设计微任务。首先,任务必须要有明确的目的性,教师提出的每一个微任务,原则上都是为了完成总任务而设计的,尽量不设置多余任务,不能本末倒置。其次,教师选择微任务时应考虑到大多数学生的水平,注意难易适度。并且在教学过程中,根据学生的反应与掌握程度以及课程进度随时调整微任务,不能任务教条化僵化。第三,微任务还应遵循完整性原则。教师所设计的微任务必须连贯,不能有断续感,让学生知道自己要做什么,可以解决什么问题,使他们获取的知识完整且有条理。最后,微任务的设计要适当增添趣味性,可以在教学过程中加上图片插画,视频音频等数字教学资源,让学生在完成任务的同时体会到学习的乐趣。

3.3微任务驱动法在电路设计实训课程中的应用

AltiumDesigner软件的工具栏较多,常用工具栏中的各命令参数也较杂,若逐个讲解,则显得各知识点杂乱无章,学生记的多忘得快,但在实际绘图时还是束手无策,不知该用哪个工具来绘制。例如,在介绍AD软件常用绘图工具栏中的直线、多边形、椭圆弧线、文字和文本框等,若单纯讲述这些知识点,难免枯燥乏味,且容易与布线工具栏的功能弄混。围绕这些教学内容,可设计对应电路制图微任务,围绕一个小目标,教师可以设计多个由简单到复杂的小任务,布置学生循序渐进地完成任务,在练习中熟悉各种命令的操作。例如,基本绘图训练可将学生已在模拟电路和数字电路课程中学过的常用电子元件符号如:变压器、运算放大器(如图1(a)、(b)所示)融入其中,将它们设计为一个个需要完成的微任务。每个任务都考虑到学习课程的前后连贯和趣味性,让学生绘制自己所熟悉的事物。随着学习的深入,可以布置学生完成如图1(c)所示的七段数码管等稍复杂的绘制任务。完成任务后的喜悦感和成就感会更加强烈,也为以后的学习增添了动力。微任务驱动法在教学过程中将知识点分解到一些小任务中进行,学生头脑中的知识是零散的,有时会降低知识的系统性和完整性。因此,这样的设计任务和完成过程是十分必要的,教师可以通过一个较为完整的任务引导学生将已完成的微任务中的知识点进行归纳总结,加深对所学知识和技能的记忆和理解,完成真正意义上的知识建构。例如,上完第三次课后,教师即可布置学生完成如图2所示“八路彩灯控制电路图”大任务。从创建元器件、调用常用元件开始,直至综合运用各种绘图指令及编辑工具完成绘图。让学生在本次课中复习巩固了前面微任务中所学的小知识并将其融合,初步完成了一张简单的电子电路设计原理图样,并总体上掌握了一张较完整电子电路工程图的绘制过程,具有综合应用性。

3.4电路设计课程与其余课程的前后融合

电路设计课程在介绍一般电路绘图技巧与制版规则时,还会涉及到数字电路、模拟电路、单片机技术应用等课程的接续关系。将本课程绘制图中所涉及到的器件类原理基础前移到数字电路和模拟电路等课程中解决,诸如实际译码电路、三态电路与缓冲器芯片等知识点不再占用本课程学时。本课程把握好衔接关系,主讲等电路板制版规范、电路设计的仿真方法等要点主题,把以往重复性内容节省的学时用于应用层面。在重点讲述电子电路图绘制方式的时候,还应适当向学生加强常用接口电路的连接方法知识点,并向学生扩展对嵌入式处理器及新技术的了解,为后续单片机原理课以及传感与检测技术中各种传感器与微处理器的连接使用,智能传感器、数字式一体传感器等内容的讲授打下基础。

4总结

简单的电子电路设计范文2

关键词:EWB;电子电路仿真设计

1 软件的性能和特点

(1)采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。

(2)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。

(3)EWB软件带有丰富的电路元件库,提供多种电路分析方法。

(4)作为设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据。

(5)EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

2 软件的操作说明

2.1 元件与信号源

EWB软件的工作界面具备美观大方、简捷明了的特点。在基本工作区上方有菜单栏、工具栏、元件库栏。从菜单栏可以选择所需的各种命令,从元件库栏中根据图标选择所需要的的元件或仪表,使用鼠标拖放操作安放元器件到工作平台,完成实验电路连接。选中虚拟仪器图标,通过使用鼠标拖放操作,可以安放仪器仪表,设置好仪器仪表的参数后,按下仿真开关控制电路的运行与停止,即可观察测试结果,在基本工作区下方是电路描述窗口,可根据需要输入有关电路的介绍或说明。

EWB提供了丰富的元器件库,根据不同类型可分成:信号源和电源库,基本元件库、二极管库、三极管库、模拟集成电路库、数字集成电路库、逻辑门电路库、数字触发器库、指示器件库、控制器件库、杂元件库和自定义库。

在设计电路时,设计人员根据需要从该库中进行查找与选取元器件,对选中的元件用鼠标左键将其拖放到电子平台工作区,同时可利用旋转、平翻、直翻调整元件方向。为了使电路便于连线,图形整齐,还可以通过鼠标操作对元件进行移动、复制与删除。为了使电路连接简单明了,还可以将一些常用电路定为子电路,子电路相当于用户自己定义的小型模块电路,存放在自己定义的元件图标库里,供以后反复调用。

2.2 虚拟仪器仪表的使用

EWB提供七种虚拟仪器,每种只有一台,在电路设计中,每种仪器只可使用一次,这是其软件设计的局限性,而目前其升级版本Multisim已将虚拟仪器增加到11个,而且同一种仪器可以多次取用。

模拟仪器仪表主要包括万用表、函数发生器、示波器、波特图仪(扫频仪)以及电压表、电流表,数字仪器仪表包括数字发生器、逻辑分析仪、逻辑转换器。这些仪器仪表(除波特图仪),在接入电路后,开启仿真开关,若改变电路的测试点,则显示的数据和波形也会相应变化,而不用重新启动电路。EWB的虚拟测试设备能提供快捷简单的分析,主要包括直接工作点,瞬态,交流频率扫描,付立叶、噪声、失真度、参数扫描、零极点、传递函数、直流灵敏度、交流灵敏度、最差情况、蒙特卡洛法等14种分析工具,可以在线显示图形并具有很大的灵活性。

3 软件在广播电视技术工作中的实际应用

3.1 在广播电视技术培训工作中的应用

EWB软件是一款优秀的EAD软件,推出后得到了社会各界的好评。尤其是在教育领域取得了巨大的成功,许多院校把EWB作为电子类专业课教学和实验的各种辅助手段,最大限度的满足了广大学生和工程技术人员的迫切需求。针对软件的这种特殊效能,近年来在广播电视技术领域中,EWB也同样得到了普遍应用,尤其是许多单位把EWB 软件应用在了技术队伍培训工作中收效显著。广播电视高新技术的快速发展,对广播电视技术从业人员的整体素质提出了更高要求,需要广泛开展技术培训工作,但是在职教育和在校学习有着很大的差别,资金、场地、设备、设施等诸多因素制约了技术培训工作的良性发展,EWB软件的应用不仅较好的解决了这一问题,而且体现了三个优越特点:(1)节约资金、高质高效;(2)功能强大、直观形象;(3)操作简便、方便普及。许多单位还把EWB软件应用在了广播电视技术能手竞赛中,更是得到了意想不到的效果。通过对软件的应用不仅克服了客观条件给技术竞赛多形式、多层面开展带来的制约,同时也可以全面的考查参赛选手的实践技能,为展示技术人员的综合技术水平搭建了最佳平台。

3.2 利用EWB软件进行电子电路仿真设计

EWB的优越性能为激发广大技术人员的潜在智能提供了广阔空间。利用EWB可以设计简单、复杂、模拟、数字等各式电路。这为广大技术人员开展技术改造、技术革新工作提供了非常实用的工具。尤其是广播电视发射设备的固态化、数字化、自动化的发展方向,使计算机辅助设计、测量、维护等在广播电视技术领域得到广泛的应用,EWB软件的出色性能表现,也得到了广大技术人员的青睐。下面仅以双音报警器电路的仿真实验为例,向大家简单介绍其电路设计与分析。首先设计电路原理图(见图1)并根据电路需要选择所需元件参数。

图1

用鼠标将元件、仪器拖到电子工作平台,根据电路原理图调整元件,仪器布局,并设定元件标值,调整仪器设置的选项,按通仿真开关,即可进行仿真实验,如果电路设计、连接正确,此时扬声器应该发出“滴、嘟、滴、嘟”…..的双声音,用示波器观察IC1、IC2的输出波形,应该是频率不同的两个方波(见图2),可通过打印机打印出来,进行实际电路的组装。

图2

此电路原理主要是应用555时基电路组成两个多谐振荡器,用IC1输出的方波信号通过R5去控制IC2的5脚电平,当IC1输出高电平时,IC2的振荡频率低,当IC1输出低电平时,IC2的振荡频率高,因此IC2的振荡频率被IC1的输出电压调制为两种音频频率,所以扬声器发出双音声响。此电路可应用在发射台铁塔匹配间防盗报警,也可在改进后应用于水箱上水报警等其他方面。

参考文献

简单的电子电路设计范文3

【关键词】调试;测试;故障分析与处理

电子工业是一个细致精确的专业,在电子的技术运用中,最为重要的环节就是对电子设备的整个电路安装和调试的过程。这是理论和实践相结合的典型,是人们把主观所想变为客观现实即电子设备或者电路的过程,也就是把设想变为产品的客观事实。这一转变过程使电子技术实现了在生活和生产中产生巨大作用的现实可能性。有了理论作用实践的基础,相应的就要使这一使用过程去检验有关理论设计,并对该理论设计进行修改、补充。使电子电路更优,使电子系统更完善。电子电路调试的目的是达到之前电路设计规定的指标,在保证达到目标的情况下,对电子电路进行测量、判断、调整和再测量,并使这一系列的操作过程反复不断的进行运行。对电子电路进行调试,能够及时发现并纠正有关设计方案的设计缺陷,或者提出一些安装工作中的不合理之处,再对不足加以改正,作为电子设备中极为关键的环节,电子电路的调试工作能使电子装置实现最优化,达到预期的技术指标。同时电子电路调试工作又是一项需要极大耐心又必须时刻保持认真状态的工作,每一个环节都不得马虎,稍一疏忽就可能错过很关键的一个检测细节,而影响整个电路的调试进行的程度,造成很严重的人力、物力损失。

一、电子电路的调试

一般的测试的步骤和方法如下:

1、不通电检查。检查连线电路安装完毕后,不要急于通电,先认真检查接线是否正确,包括错线、少线、多线。多线一般是因接线时看错引脚,或者改接线时忘记去掉原来的旧线造成的,在实验中经常发生,而查线时又不易发现,调试时往往会给人造成错觉,以为问题是由元气件造成的。例如TTL两个门电路的输出端无意中接在一起,引起电平不高不低,人们很容易认为是元器件坏了。为了避免做出错误判断,通常采用两种查线方法:一种方法是按照设计的电路图检查安装的线路,把电路图上的连线按一定顺序在安装好的线路中逐一对应检查,这种方法比较容易找出错线和少线;另一种方法是按实际线路来对照电路原理图,按照两个元件引脚连线的去向查清,查找每个去处在电路图上是否存在,这种方法不但能查出错线和少线,还能检查出是否多线。

2、通电观察把经过准确测量的电源电压加入电路,但信号源暂不接入,电源接通之后不要急于测量数据和观察结果,首先要观察有无异常现象,包括有无冒烟,是否闻到异常气味,手模元件是否发烫,电源是否有短路现象等。如果出现异常现象,应立即关断电源,待排除故障后方可重新通电。然后再测量各元件引脚的电源电压,而不是只测量各路总电源电压,以保证元器件正常工作。

3、分块调试调试包括测试和调整两个方面。测试是在安装后对电路的参数及工作状态进行测量,调整是指在测试的基础上对电路的参数进行修正,使之满足设计要求。为了使测试顺利进行,设计的电路图上应标出各点的电位值、相应的波形以及其它数据。测试方法有两种:第一种是采用边安装边调试的方法,也就是把复杂的电路按原理图上的功能分成块进行安装调试,在分块调试的基础上逐步扩大安装调试的范围,最后完成整机调试,这种方法称为分块调试。采用这种方法能及时发现问题,因此是常用的方法,对于新设计的电路更是如此。另一种方法是整个集成电路安装完毕,实行一次性调试。这种方法适用于简单电路或定型产品。本文仅介绍分块调试。分块调试是把电路按功能分成不同的部分,把每个部分看成一个模块。比较理想的调试程序是按信号的流向进行,这样可以把前面调试过的输出信号作为后一级的输入信号,为最后的联调创造条件。分块调试包括静态调试和动态调试。

二、系统的精度及其可靠性

测试系统精度是设计电路很重要的一个指标。测量电路的精度校准元件应该由高于测量电路精度的仪器进行测试后,才能作为校准元器件接入电路校准精度。例如,测量电路中,校准精度时所用的电容不能以标称值计算,而要经过高精度的电容表测量其准确值后,才能作为校准电容。对于正式产品,应该就以下几方面进行可靠性测试:抗干扰能力;电网电压及环境温度变化对装置的影响;长期运行实验的稳定性;抗机械振动的能力。四、电子电路的故障分析与处理在实验过程中,故障常常是不可避免的,分析和处理故障可以提高分析和解决问题的能力。分析和处理故障的过程就是从故障现象出发,通过反复测试,做出分析判断,逐步找出问题的过程。

三、调试中应注意的事项

在调试过程中,自始至终都必须具有严谨细致的科学作风,不能存在侥幸心理,当出现故障时,不要手忙脚乱,要认真查找故障的原因,仔细分析作出判断,切忌一遇到故障,解决不了问题就要拆掉线路而重新安装,或者盲目的更换元器件。因为即使重新安装,线路的问题可能依然存在,何况在原理上,问题并不是重新安装就能够解决的。再则,重新安装而找不出原因,会使自己失去一次分析和解决问题的锻炼机会,要认真查找故障原因,仔细分析判断,根据原电路原理找出解决问题的办法。

在调试过程中,要注意安全,接线、拆线和仪器仪表的连接一定要在断电的情况下进行,注意仪器仪表电压电流的量程,彻底杜绝人身事故和仪器仪表损坏事故的发生。

综上所述,我们即可对于电子设备等进行调试,通过调试过程,使电路的各项性能指标达到要求,使系统能够正常的工作。

【参考文献】

[1] 徐兴华;刘志刚;;电子电路的调试方法与技巧[J];烟台职业学院学报;2007年02期

[2] 赵金奎;;电子设备中瞬态干扰分析及其抑制[J];电源技术应用;2005年08期

[3] 周焱;吴孝丽;;电子仪器设备安全性试验研究[J];内江科技;2007年02期

[4] 曹宏炳;蔡金燕;黄允华;;电子设备的故障预测方法研究[A];中国电子学会第七届学术

简单的电子电路设计范文4

关键词:轨道交通;信控专业;工程应用;电子电路课程;EDA平台支撑;

中图分类号:TP39 文献标识码:A 文章编号:1674-098X(2016)07(b)-0000-00

Abstract. Electronic circuit course is one of the important basic courses for undergraduate students in the electronic majors. The current teaching approaches are proposed for undergraduate education, not suit for distinguished engineers. In order to meet the requirement of distinguished engineer education, we propose a novel approach - EDA learning carrier teaching for undergraduate electronic circuit course in railway transportation majors. In this approach, teacher explains theory of electronic circuit course using EDA, and students participate in problem solving, solution verification, practice and examine (theory and practice) with EDA. It aims to promote the ability of linking theory with practice and problem solving.

Keywords: Railway Transportation; Signal and control major; Engineering application; Electronic circuit course; EDA platform support ;

1.引言

现代科技飞速发展对本科层次工科教育提出新的要求,现代工科培养目标是造就一批创新能力强、适应经济社会发展需要的各类型工程技术人才,服务国家的新型工业化发展和创新型国家建设 [1],为此,国家战略性的提出了“卓越工程师计划”。对于本科电类专业,电子电路课程是必修课程,是高校培养电力电子工程师和相关领域科研人才的最重要基础课程之一,它包括了电路原理、模拟电子技术和数字逻辑电路课程。随着电路集成度和规模不断扩大,EDA软件已成为电路设计、分析、测试和仿真必不可少的工具,EDA课程是基于EDA的电子技术实践课程,是电子技术工程师培养不可缺少的课程。轨道交通信控专业(本科)是适应新时代轨道交通大发展背景下设立的高层次人才培养专业,具有极强的工程应用背景,因此,如何实现适用于轨道交通信控专业的电子技术课程教学是该专业人才培养的关键环节。

图1给出了电路原理、模拟电子技术,数字电路以及EDA技术的知识点关联。从图可知,电路原理与模拟电子技术是紧耦合关系;数字逻辑电路与模拟电子电路的信号处理对象和分析方法完全不同,两者的直接耦合点较少;EDA技术课程与电路原理和电子技术基础紧密相关,贯穿于电子电路课程的整个体系中。

2. 电子技术课程教学的问题

1)在制定本科教学计划时,高校通常将电子电路课程和EDA技术课程开设在不同学期,其中,电路原理和电子技术基础基本为必修课程,而EDA技术课程为选修课程,有些高校甚至不开设EDA课程。EDA课程的弱化导致学生对电子电路课程所学知识的应用了解不深刻,理论联系实际不够,解决问题和动手实践的能力较弱。

2)在课堂中,学生是“听”和“看”。“听”是学生听教师的讲解,“看”是学生对课本和多媒体课件内容的阅读,目前的多媒体课件仍然以静态内容为主,少数有动态演示。电子电路课程的知识体系庞大、理论抽象、难点较多,特别是一些电路的参数复杂,输出变化多,静态课件无法帮助学生深入和理解知识点,学生收获甚微。

3)电子电路课程与电子技术发展联系紧密,电子技术的不断革新使课程必须紧跟其发展步伐。电路中许多科学问题来源于实际技术与工程问题,传统的电子电路课程教学针对的是电子技术发展中某阶段的问题,对许多新出现的问题具有不适应性,例如,对较大规模的电路分析,仅通过多媒体课件和教师讲解无法使学生对其深入的理解。

3 基于EDA平台支撑的教学模式

电子电路课程的改革和探索主要有三种,一种是通过引入EDA等技术进行辅助教学[2-3],提高课堂效果,这类方法以EDA为辅助教学手段;其次是通过教学内容的提炼,突出重点,分层教学,是理论教学层面的改进[4];第三种是基于项目的实践化教学,偏重实训,主要用于课程设计和高职高专教学[5-6]。以上的教学改革对象为本科基础理论教学和高职高专实训教学,与本科层次人才的培养并不适应。轨道交通信控专业的培养计划为“厚基础、重实践、求创新”,其课程教学应该有根本性的变化。

3.1 课程教学

新的课程教学有以下特点:1)教学载体和内容需适应电子技术领域的前沿发展;2)从单一的学生学习知识和利用工具变为以现代化电路辅助设计(EDA)工具为支撑的“基础理论+工程应用”模式;3)应以将提升学生的工程应用能力(特别是与轨道交通信号控制系统相关的应用)为重要指标。

基于EDA平台支撑的电子技术课程教学旨在使学生打下扎实的理论基础,培养学生独立思考意识,提高学生的实践和解决问题的能力。EDA平台支撑的教学针对轨道交通信控专业培养所提出的教学方法,是将EDA技术融入到电子电路课程的教学各环节,包括课堂讲解、课程练习和课程考核,为理论教学提供系统性教学手段,具有工程技术创新的培养特点,在原有理论教学的基础上,更强调先进性、技术性和工程应用性。

3.2 教学流程

针对轨道交通信控专业本科层次人才培养,我们提出了一种新的基于EDA平台支撑的电子电路课程教学。基于EDA平台支撑的教学以“问题提出理论知识点(EDA工具) 教师讲解(EDA工具)问题解决(EDA工具):包括学生验证(EDA工具),练习与考核(EDA工具)”为教学链,通过以EDA为载体形式在教学链中嵌入,达到理论知识点与应用的双重教学目的。EDA嵌入式教学包含以下重要节点:

教师讲解与演示:利用EDA系统进行电子技术知识点讲解,以动静结合的方式讲解重要知识点和难点;

解决方案:思考问题的解决方案,由教师进行实例求解和讲解,学生参与部分问题求解;

学生对多种EDA系统(Multisim-电路原理,PSPICE-模拟电路,QuartusII-VHDL和Preteus-数字系统设计)的学习与使用;

验证:学生利用EDA系统对问题的方案进行实际测试和验证,在验证过程中提出新的问题,达到理论联系实际的效果;

课后练习:教师布置课后习题内容,学生利用所学知识和EDA系统完成作业,以此巩固知识点,提高问题解决能力;

课程考核:分为理论考核部分和项目实践,理论考核部分主要测试学生基本定理掌握和知识点的理解;项目实践则需要学生根据题目在EDA系统上完成方案设计、电路设计、仿真与测试,项目考核是考察学生对理论知识点的应用能力。

图2中对比了传统EDA辅助教学和新的EDA平台支撑教学模式对比。从图2中看出,EDA学习载体的教学是EDA作为与电子课程中各问题求解的手段,并不是单一的演示,是一种基于EDA平台的教师-学生的互动教学方式,而非简单的将EDA作为演示或仿真手段,这与EDA辅助教学是有本质区别的。

4.结束语

电子技术课程是轨道交通信控专业的基础必修课程,其重要性不言而喻,该课程的行业背景决定了该课程教学必须兼具理论基础和工程应用两个方面。为了适应新时代的本科层次工程技术人才培养要求,本文提出一种基于EDA平台支撑的教学模式,旨在提高学生的理论联系实际和解决轨道交通电类工程问题的能力。

References

[1] Ministry of education, China Academy of Engineering, 《General criteria for the education and training program on excellent engineer 》 2013.

[2] Wang Weidong, Qin dongcheng, Zhao Zhonghua, The introduction of EDA, to improve the teaching of Electronic Circuit Courses, Journal of Research on Higher Engineering Education, 1(2002)76-78.

[3] Gao Haikuo, Ma Shengnan, Exploration on teaching reform of electronic circuit CAD, Education Teaching Forum. 19(2014)40-41页

[4] Nie Hui, A preliminary study on the teaching method of "three cases" in the course of electronic circuit, Theory and Practice of Contemporary Education ,5(2013) 106-107

简单的电子电路设计范文5

关键词:直流稳压电源;电路设计;工作原理

1 电路设计背景和目的

通过多年的教学经验和对中职院校的学生进行的调研情况来看,中职院校的学生普遍文化基础薄弱,对文化课、理论课不感兴趣,但是大部分中职学生对实训课程感兴趣,喜欢动手操作,能够尝试动手去做一些实验,有的甚至能独立完成一些电子产品的安装与调试。例如,简单的门铃电路,流水灯电路等。因此,针对中职院校学生的实际情况,结合我学院电气工程系的学生学习情况,今年,我系领导决定对学生的课程安排进行了大胆改革,去掉纯粹的理论课,所有专业课程都变为一体化课程,让学生通过动手操作掌握理论知识,真正做到在做中学,在学中做,在这样的背景下,我尝试了将所担任学科《电子技术基础》这门理论课程融入到《电子电路的安装与调试》这门实训课程中去,变理论课实训课程为一体化课程。依托这样的改革前提,我尝试对直流稳压电源的电路进行了以下设计,目的就是为了更好的适应电气工程系的改革实践,同时也能够使学生在实际动手操作过程中深刻理解相应的电子专业理论知识,能够培养学生掌握理论知识的能力,激发学生热爱电子专业的热情,提高了学生学习的积极性,最重要的是让学生学会了技能,一技在手,更好地走上工作岗位,尽快地适应社会。

2 电路设计实验设备及器件

所谓巧妇难为无米之炊,电路设计同样需要必要的实验设施和工具,而实验条件的好坏和选择工具的正确与否是设计的关键和前提。下面我来具体阐释我的设计思路中所需要的实验条件、实验工具和必要的原材料:

2.1 电路所需实验设施和工具

本次设计的完成需要在专业的电子试验台上进行,需要的工具如下:示波器、万用表、变压器(12v)、电烙铁、钳子和镊子等,另外需要必要的焊锡和连接线。

2.2 电路所需元器件清单

元器件清单如下:

1A二极管IN4007,V1、V2、V3、V4,4只;发光二极管V5,1只;熔断丝FU 参数为1A1只;100uF 50 V电容C1,1只;10uF25V电容C2,1只;500uF 16V电容C3,1只;2200uF电容C4,1只;开关SW,1只;2.7KΩ电阻R1,1只;190Ω电阻R2,1只;280Ω电阻R3,1只;1KΩ电位器R4,1只;三端集成稳器CW7812 U(可调范围1.25V~12V),一只;可调电阻RW,1只。

3 电路设计思路

直流稳压电源又称为直流稳压器,其作用就是将交流电转化成相应用电器所需要的稳定电压的直流电。其关键是输出直流电压的稳定性,所以我们设计电路的着眼点就是电路转化的稳定性。

3.1 直流稳压电源的工作原理

直流稳压电源一般由电源变压器、整流电路、滤波电路、稳压电路组成,其组成框图如图1:

直流稳压电源各部分的作用

(1)电源变压器:主要是降压器,用于把220V的交流电转换成整流电路所需要的交流电压Ui。(2)整流电路:利用整流二极管单向导电性,把交流电U2转变为脉动的直流电。(3)滤波电路:利用滤波电容将脉动直流电中的交流电压成分过滤掉,滤波电路主要有桥式整流电容滤波电路和全波整流滤波电感滤波电路。(4)稳压电路:利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的,用于将不稳定的直流电压转换成较稳定的直流电压。

3.2 直流稳压电源的设计方法

直流稳压电源的设计,是根据其输出电压UO、输出电流IO等性能指标的要求,确定出变压器、集成稳压器、整流二极管和滤波电路中所用元器件的相关性能参数,选择出这些元器件。

具体设计方法分为三个步骤:第一步:根据直流稳压电源的输出电压UO、最大输出电流IOMAX,确定出稳压器的型号及电路形式。第二步:根据稳压器的输入电压Ui,确定出电源变压器二次侧电压U2;根据稳压电源的最大输出电流IOMAX,确定出流过电源变压器二次线圈的电流I2和电源变压器二次线圈的功率P2;再根据P2,确定出电源变压器一次线圈的功率P1。然后根据所确定的参数,选择合适的电源变压器,一般为12v。第三步:确定整流二极管的正向平均电流ID、整流二极管的最大反向电压URM和滤波电容的容量值以及耐压值。根据所确定的参数,选择合适的整流二极管和滤波电容。

4 电路设计步骤

电路设计思路想出后,考虑实际电路具体设计步骤,完整的设计步骤是整个电路的核心部分,因此在设计过程中实际设计步骤显得尤为重要,具体步骤为以下几步:

4.1 电路图设计方法

电路图设计使用PCB制图软件制作

4.2 电路原理图的设计

电路原理设计使用Protel2000制图软件设计电路原理图如图2。

4.3 直流稳压电源实物设计

如图3所示安装直流稳压电源电路的前半部分整流滤波电路,然后从稳压器的输入端加入直流电压UI?燮12V,调节RW,如果输出电压也跟着发生变化,说明稳压电路工作正常。用万用表测量整流二极管的正、反向电阻,正确判断出二极管的极性后,先在变压器的二次测线圈接上额定电流为1A的保险丝,然后安装整流滤波电路。安装时要注意,二极管和电解电容的极性不能接反。经检查无误后,才将电源变压器与整流滤波电路连接,通电后,用示波器或万用表检查整流后输出电压UI的极性,若UI的极性为正,则说明整流电路连接正确,然后断开电源,将整流滤波电路与稳压电路连接起来。然后接通电源,调节RW的值,如果输出电压满足设计指标,说明稳压电源中各级电路都能正常工作。

5 电路设计总结

通过论述直流稳压电源电路的设计过程,强化了本人所教学科《电子技术基础》中模拟电路部分知识和《电子电路的安装与调试》实验部分知识。所设计的直流稳压电源电路,广泛运用于生活中,例如手机的充电电源、冰箱的稳压电源等。同时,也通过查阅参考书,网上资料等拓宽了自己专业方面的知识面。论述过程中,通过边教学边调研边实践的方式使本人对直流稳压电源电路设计过程有了一些新的认识,特别是强化了自己的教学能力,增强了所教专业学生掌握理论知识的能力,提高了其动手操作的能力。通过一段时间的教学效果来看,我所教授专业的学生对学院的此种教学改革适应快,容易接受,对教师所设计的教学模块感兴趣,并且激发了继续探究这一教学模块的动力,这也充分证明了学院提出的此种教学改革是可行的。

参考文献

[1]郭S.电子技术基础(第四版)[M].北京:中国劳动社会保障出版社.

[2]王建.维修电工技能训练(第四版)[M].北京:中国劳动社会保障出版社.

简单的电子电路设计范文6

中图分类号:TN710-34文献标识码:A

文章编号:1004-373X(2010)18-0172-04

Application of Multisim10 in RF Electronic Experiment Teaching

LI Song-song1, LI Xiang1, GAO Xiao-ye2

(1.School of Information Engineering, Dalian Ocean University, Dalian 116023, China; 2.Dalian Vocational & Technical College, Dalian 116035, China)

Abstract: Multisim10 is a software of modern computer simulation, is organic carrier of electronic design automation, and is an effective means of theory and practical ability in teaching. Through theoretical analysis of RF circuit, the RF circuit design principles are described and the network analyzer is used to simulate in Multism10. The theoretical analysis is verified by virtual experiments, the results of simulation show Multism10 is more flexible, exact and quick in assist teaching and practice in teaching.Keywords: Multisim10; electronic circuit simulation; RF circuit; maximum power transfer

0 引 言

随着教育改革的不断深入,教育技术现代化,教学手段现代化已成为我国教育改革所面临的十分重要的课题。其中电子线路EDA技术的发展,正是弥补目前我国各院校电子学实验室的条件不足,特别是新器件,新设备价格昂贵时,而开设一些内容更新颖、具时代意义的创新型、设计型以及综合型实验而设置的[1]。同时,对于具备条件的实验,正是对理论联系实际的检验,对满足现代电子领域对高校培养具有高层次专业技术人才的需求提供了一定程度上的保障。

1 Multisim 10软件简介

利用Multisiml0可以实现计算机仿真设计与虚拟实验,与传统的电子电路设计与实验方法相比,具有如下特点:设计与实验可以同步进行,可以边设计边实验,修改调试方便;设计和实验用的元器件及测试仪器仪表齐全,可以完成各种类型的电路设计与实验;可方便地对电路参数进行测试和分析;可直接打印输出实验数据、测试参数、曲线和电路原理图;实验中不消耗实际的元器件,实验所需元器件的种类和数量不受限制,实验成本低,实验速度快,效率高;设计和实验成功的电路可以直接在产品中使用。

Multisim 10还可以应用到日常课堂的演示教学中,它可以制作在课件中,对于所讲述电路的各种参数进行即时分析,可以生动在投影上模拟各种实验的结果,具有极佳的演示效果,提高电子技术开发中心系列课程的趣味性和直观性[2-4]。

Multisim 10提供了16 000多个高品质的模拟、数字元器件和RF组件模型,另外用户还可以自行编辑和设计相应的元器件。Multisim 10不仅提供了电路的多种仿真分析方法,如直流扫描分析,参数扫描分析,交流频率特性分析,瞬态分析,傅里叶分析,后处理器功能等,而且提供了2个仪表和多台仪器,仪表有:电压表、电流表;常用的仪器有:数字万用表,函数信号发生器,示波器,逻辑分析仪和逻辑转换仪等。同时,应用Multisim 10可以进行模拟电路、数字电路、模数混合以及射频电路的仿真。其中,它的高频仿真和设计环境是众多通用电路仿真软件所不具备的[5]。

2 射频理论

目前,包括大学生电子技术设计大赛在内的很多知名赛事,都把无线收发作为一个重点的研究方向,而各个高校都有开设类似的课程和实习作为培训学生得┮幌瞠基本内容。这都是由于RF电路自身特点的主要用于无线电通信系统的发射装置和接收装置的研究中。所以随着信息技术的发展,对各种发射、接收装置的要求越来越高。RF电路的性能好坏,将直接关系到通信的质量。尤其是RF频段中的微波波段,其频率高、频带宽的特点,使其很适用于作为大容量通信的载波,来传输多路电报、电话和电视信号[6]。

射频技术RF(radio frequency)的基本原理是电磁理论,指的是从音频以上至可见光频率的整个频段,其范围约为16 Hz~20 kHz。可见光波段在微波波段以上,所以RF的范围大约为20 kHz~3 000 GHz,其中包括微波波段。总的来说,RF频段的频率很高。射频系统的优点是不局限于视线,识别距离比光学系统远,射频识别卡可具有读写能力,可携带大量数据,难以伪造,且有智能[7]。

近年来,便携式数据终端(PDT)的应用多了起来,PDT可把那些采集到的有用数据存储起来或传送至┮桓霆管理信息系统。便携式数据终端一般包括一个扫描器、一个体积小但功能很强并带有存储器的计算机、┮桓霆显示器和供人工输入的键盘。在只读存储器中装有常驻内存的操作系统,用于控制数据的采集和传送。

PDT存储器中的数据可随时通过射频通信技术传送到主计算机。操作时先扫描位置标签,货架号码、产品数量就都输入到PDT,再通过RF技术把这些数据传送到计算机管理系统,可以得到客户产品清单、发票、发运标签、该地所存产品代码和数量等,这些研究领域对于电子信息类专业的学生来讲,都是实践理论的研究课题。

根据射频理论,它与一般的低频电路相比较,有其自身的特点,主要包括以下几点:

(1) 大量使用调谐网络:这些网络不仅提供调谐到所要求的工作频率,同时还使晶体管特性与输入和输出阻抗匹配。因此,调谐网络设计的好坏,将直接关系到RF电路的性能。

(2) 需考虑阻抗匹配问题:在RF电路中,处理信号的不同部件被安置在相距有一定距离的地方。这个距离往往和被传输信号的波长可以相比拟。将它们连起来时,必须考虑到阻抗匹配。

(3) 不同频段使用的元件不同:RF频带宽,包括长波、中波及短波、超短波和微波。从使用的元件、器件及线路结构与工作原理等方面来说,中波、短波和米波波段基本相同,但它们和微波波段则有明显的区别。前者大都采用集中参数元件,如:通常的电阻器、电容器和电感线圈;后者则采用分布参数元件,如:同轴线和波导等。在器件方面,中、短波和米波主要采用晶体管、集成电路及电子管,而微波除上述器件外,还需特殊的微波器件,如:微波二极管、速调管、行波管及磁控管等。

3 Multisim 10软件及其在射频领域模块技术

随着电子通信技术的发展,RF电路的开发研究吸引了众多电子设计工程师。Multisim 10射频模块可以提供基本的射频电路所需的设计。分析和仿真射频电路的功能。Multisim 10的射频模块由RF-Specific(射频特殊元件,包括自定义的RF SPICE模型)。用于创建用户自定义的RF模型的模型生成器。

在Multisim 10中,标准的RF元件包括电容、电感、环行线、耦合器、传输线、波导以及有源器件等。在RF设计中,该模块包含了大约100多个元件和元件模型,这些模型都可以在高频下准确工作而设计的,克服了SPICE模型中在高频时候工作不稳定的问题。

元件在电子学领域中可以分成两类:集中式和分布式元件。当Е=c/f时,集中式元件的尺寸小于波长,在这种情况下,电压波长和电流波长运行时比元件自身大很多,欧姆定律在此时有效。另一方面,大部分的分布式对象中电压相位和电流相位的改变远超过器件的物理扩展,因为器件的尺寸都是类似的,某些时候甚至大于波长。因此常规的电路理论已经不适用工作在MHz到GHz之间的频率电路中。射频元件存在寄生效应,与用于低频状态的模型有所不同。射频模型使用的电容和电感都在高频工作状态下,两节点之间连接发生的行为和低频工作状态下两节点连接发生的行为是不同的。在PCB上执行这些行为时,将表现传输线的形式。电路板本身将变成电阻的一部分,会干涉到电路的正常工作。这就是EDA工具中可行的低频电路仿真在高频电路中却变得不可行的原因[8]。

4 基于Multisim 10的射频电路设计

高频电路的设计通常有别于低频电路,射频设计的主要工作就是设计好输入输出阻抗、功率增益、噪声分析以及问点因数的参数性能。高频电路可以被理想化成为一个双端口网络,为了恰当的使用网络分析仪,电路的输入端、输出端必须断开,在仿真期间,网络分析仪可以通过插入子电路完成对电路的分析。

对于设计一个简单的直流偏置,重要的是晶体管的性能和放大器的静态工作点。应用Multisim 10设计┮桓霆最大功率传输放大器,首先应选择射频功率管,由于在相对较高的频率上有低功率和低噪声的优势,这里选择MRF927T1,从元件库中选择该元件并将其放在电路中[9-10]。

为了配合低频电子线路相关课程的内容,选择静态工作点,静态工作点表现为Vce和Ic。Vce通常要小于VCC,并且通常在集电极-发射极之间的最大摆幅为VCC/2,因此,选择Vce=3 V和Vcc=9 V。而Ie近似于Ic,晶体管的集电极耗散功率为Ic×Vce。为了达到较好的频带增益和电压增益,这里设置Ic=3 mA。

同时,设定Vbe=0.7 V,β=100Ъ扑闳缦:

Rc=Vcc-VceIc=9-33×10-3=2 kΩ

Ib=Icβ=3×10-3100=3 μA

Rb=Vcc-VbeIb=9-0.73×10-6=277 kΩ

设计完静态工作点之后,就可以在Multisim 10下进行仿真,设置Rb=277 kΩ和Rc=2 kΩ,绘制电路如图1所示。

图1 最初设计的偏置电路

在低频电子线路的教学中,学生已经掌握对静态工作点的直流分析,而Multisim 10软件自带有直流工作点分析语句,可以直接设置选择基极和集电极工作节点。通过仿真,可以得到Vce=3.33 V和Vbe=0.8 V,当修改以上这两个值以满足静态工作点的需要,经过实验得到,当Rb=258 kΩ和Rc=2 kΩ时,近似得到Vce=3.00 V和Vbe=0.80 V,这时有:

β=IcIb=(Vcc-Vce)/Rc(Vcc-Vbe)/Rb

=(9-3.00)/(2×103)(9-0.80)/(258×103)

=94.39

此时,β比较接近设定值,可以应用到此次实验中。对于信号源,假定使用信号源的中心频率为3.02 GHz,设置偏置网络,连接两个电容到网络分析仪,如图2所示。

对于一个连接好网络分析仪的电路,可以进行双端口测量,以及测量传输参数。Multisim 10软件自带有网络分析仪。网络分析仪主要测量信号所包含的频率和频率所对应的幅度。对于RF系统来说,可以应用到调制波的以及载波信息的失真。Multisim 10中的网络分析仪所模拟的是实际中Agilent公司生产的HP8751A和HP8753E两款网络分析仪,可以方便的测量S、H、Y、Z四种参数,并且是高频最常用的仪器之一。连接好电路打开网络分析仪界面,如图3所示。

图2 连接入网络分析仪的电路

图3 图2的网络分析仪界面

对于一个无源负载条件下不会产生振荡的电路稳定可以称为“无条件稳定”,这时可以使用阻抗匹配器自动改变RF放大器的结构以便获得最大增益阻抗。

为了获得放大器以及源阻抗之间的最大匹配,必须要求放大器的输入和输出端口之间的阻抗匹配最大。这种阻抗匹配电路提供的最大功率传输适用于非常窄的频带,对于选频网络特别适合。图2的网络自动匹配结果如图4所示。

图4 图2的网络自动匹配的结果

应用图4所得到的网络参数,加入到原始电路图中,所得电路图如图5所示。

图5 最终设计的RF电路

5 结 语

无论是高频还是低频电子线路课程是 电子信息类学生必修的课程,它不但要求学生掌握电路的基本原理和计算方法,更重要的是培养学生对电路的分析、设计和创新能力,因此实验教学在整个教学过程中成为不可缺少的一部分。

因此,利用Multisim 10进行射频电路设计型实验教学,改变了利用电子元器件、仪器等物质手段的传统设计型实验教学模式,从而更好地培养学生的实验技能、提高学生的电路设计能力和设计周期,培养学生的科学作风和创新精神,为以后从事电子技术方面的工作打下良好的基础。

参考文献

[1]文亚凤.刘向军.EDA仿真技术在电力电子技术实践教学中的应用[J].实验技术与管理,2006(5):31-32,40.

[2]黄智伟.基于NI Multisim的电子电路计算机仿真设计与分析[M].北京:电子工业出版社,2007.

[3]聂典.Multisim 9计算机仿真在电子电路设计中的应用[M].北京:电子工业出版社,2007.

[4]王廷才.基于Multisim的电路仿真分析与设计[J].计算机工程与设计,2004,25(4):654-656.

[5]胡维.基于Multisim进行波形变换器的设计[J].实验技术与管理,2007,24(12):82-84.

[6]唐赣.Multisim&Ultiboard10原理图仿真与PCB设计[M].北京:电子工业出版社,2007.

[7]张肃文.高频电子线路[M].北京:高等教育出版社,1993.

[8]田胜军, 秦宣云.基于Multisim 2001的高频电路分析与仿真[J].现代电子技术,2006,29(8):100-102.