数字电路的设计方法范例6篇

前言:中文期刊网精心挑选了数字电路的设计方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

数字电路的设计方法

数字电路的设计方法范文1

Abstract: The introduction of the new course is an art of teaching, the successful introduction of new course can quickly attract the attention of students, and it is a successful half of the class. According to the characteristics of the course of "digital circuit and logic design", which is rich in content, theoretical abstraction, large span and strong practicality, this paper puts forward several specific new course introduction methods and applies them to the teaching process. Practice had proved that dull knowledge became lively and cheerful with these methods,and students took part in all discuss in classroom actively to improve the teaching and then successfully fulfill it.

P键词:新课导入;数字电路与逻辑设计;教学

Key words: the introduction of the new course;digital circuit and logic design;the teaching

中图分类号:G642.3 文献标识码:A 文章编号:1006-4311(2017)11-0181-02

0 引言

《数字电路与逻辑设计》课程是测控技术与仪器、电子信息工程、电气工程及自动化、计算机等专业的一门专业基础课程。该课程详细介绍了数字逻辑的基础内容、逻辑门电路、组合逻辑电路、锁存器和触发器、时序逻辑电路、脉冲波形的变换与产生、数模与模数转换、存储器和可编程逻辑器件[1]。该课程结合集成芯片,进行系统而广泛的描述,旨在培养学生了解和掌握典型数字集成电路的基本知识、使用方法和设计要点的基本技能。

该课程是许多专业的学生接触的第一门与实际电子、电器紧密相关的一门课程,更是学生学习今后专业课的基础。如何引导学生尽快入门,并且学好该课程,是教师需要认真考虑的一个重要问题。本文重点从新课导入方法来阐明如何学好该课程,因为良好的开端是成功的一半。新课导入引人入胜,可以产生凝聚效应,即凝聚学生的注意力、思想、情感,进而对该课程产生学习兴趣。本人根据教学经验的积累,将多种实用的导入方法总结归纳,根据知识点的特点,采用不同的新课导入方式,以期达到最有效的教学效果。

1 新课导入方法

1.1 史料法导入

《数字电路与逻辑设计》课程比较枯燥,教师如果适时、合理地将与该课程有关的历史人物或事件引入该课程,必将为枯燥的课程带来几分生动,同时激发学生的求知欲。如讲授数字电路与数字信号基础知识的时候,首先介绍电子技术的发展历程,从1906年福雷斯特等发明电子管,到1948年肖克利等发明晶体管。从60年代初出现的只有4个逻辑门的小规模集成电路,到目前使用的超大规模集成电路。每当电子器件有一次变革,电子技术就有一次突破性进展。每当电子器件发生变革的时候都伴随着与历史人物有关的有趣的小故事。通过历史人物的故事,加深学生对电子器件的认识。这样,很容易激发学生的学习兴趣,促使他们认真地去学习各种电子器件,并且深深体会每种器件所代表的时代特征,为后续知识的学习奠定基础。

1.2 温故导入

温故而知新是一种由已知向未知的导入方法,传统、简单、有效。通常以旧知识为铺垫,采用提问的方式复习已学知识,找出已学知识与新知识相联系的纽带,自然地过渡到对新知识的学习。这样既可以巩固所学知识,又可以帮助学生全面认识事物,提升学生的分析能力以及对知识的融汇贯通能力。比如讲授二进制数的算数运算时,先在黑板上给出一个十进制数,让学生转换成相应的二进制数、八进制数和十六进制数,这样不但复习了不同的数制,而且可以顺利引入二进制数的算数运算。因为加强了学生对十进制数到二进制数之间的转换之后,再来学进制数的运算就会事半功倍。

1.3 实例导入

实例导入即通过举例子或者练习题来回忆旧知识,并且很自然地过渡到新知识。比如,在最小项和卡诺图讲解结束,将要讲逻辑函数的卡诺图化简时。首先,给出一个逻辑函数表达式,接着提问学生“该表达式是不是最小项表达式?如果不是则写出其最小项表达式的形式和最小项编号的形式”;然后,根据学生已经写好的最小项表达式填写卡诺图,这样就通过一个例子将最小项和卡诺图的相关知识回忆和应用了一遍;最后,针对题目所给的逻辑函数表达式提问学生“该表达式是不是最简的形式呢?若不是该如何化简?”这时学生很自然地会用代数化简法进行化简,化简完成之后告诉学生代数化简法的缺点并引出卡诺图化简法。即代数化简法要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经代数法化简后得到的逻辑表达式是否是最简式较难掌握,这就给使用代数化简法带来一定的困难,使用卡诺图化简法可以比较简单而直观地得到最简逻辑表达式。那么,这个时候学生自然会被卡诺图化简法所吸引,顺理成章进入新课程。

再比如,当讲解到编码器时,在讲解之前先举一个大家很熟悉的例子,即每个学生都有一个学号,名字可以重名,但是学号是唯一的,这就是用十进制数将学生进行了编码。紧接着提出“在数字电路里面,什么是编码呢?”带着该问题引入到新课的学习中。

以实例为桥梁导入新课的方法有很多种方式,都是通过举例吸引学生注意力,并且强化学生对理论知识的运用,使师生之间更容易产生互动。

1.4 对比导入

所谓对比导入就是根据新旧知识的关联点、异同点,采用正反对比的方式导入新课。《数字电路与逻辑设计》课程中功能相反、思路相反的例子很多。组合逻辑电路的分析与设计、时序逻辑电路的分析与设计、编码器与译码器等等。在讲授这些内容时,应用对比法导人可以使学生加深对所学知识的理解与掌握。

比如,组合逻辑电路的分析讲解结束,将要讲组合逻辑电路的设计时。首先,回顾组合逻辑电路的分析,即已知条件是逻辑电路,待求条件是逻辑功能;然后,紧跟着提问学生“如果反过来,即已知条件是逻辑功能,待求条件是逻辑电路,又该如何解决呢?”由此过渡到新课,即组合逻辑电路的设计。同样,同步时序逻辑电路的分析讲解结束之后,依然采用对比导入方式引出并讲解同步时序逻辑电路的设计。

又比如,在讲授译码器时,通过回顾编码器的工作过程对比引入译码器的工作过程。即先列出三位二进制编码器的编码表,然后说明译码器和编码器的工作过程相反,编码器是将某种信号或十进制数码(输入)编成二进制代码(输出),译码器则是将二进制码(输入)按其编码时的原意译成对应的信号或十进制数码(输出),从而很容易列出三位二进制译码器的状态表。这样,通过对比的方式回顾并学习了编码器的知识和译码器的状态表之后,再介绍译码器的其余知识就会很容易,学生也会很好地区别和理解编码器及译码器。同样,数据分配器和数据选择器、数~模转换器和模~数转换器、锁存器和触发器等很多内容的讲解都可以采用对比的方式。

1.5 实物导入

《数字电路与逻辑设计》课程是一门应用性、实用性都很强的课程,如果教师能恰当地选择一些与讲课内容密切相关又符合学生认知能力的电子小产品来导入新课,也不失为一种引发学生兴趣,培养解决实际问题的好方法。在讲组合逻辑电路设计时,笔者以“设计好的一个切实可行的表决器”为例导入新课,告诉学生们学完今天的内容,你就会做表决器,甚至更复杂的电子产品。这样理论和实际一下子联系起来了,学生们也一下子来了精神。此时,教师适时提问“实际中的表决器有什么特点?它属于什么电路?怎样实现呢?”这样因势利导地切入正题引入这节课要讲的内容。教师要善于引用学生熟悉的现象、事例来导入新课,使学生有一种亲切感和实用感,从而激发学生兴趣,让学生真正感受到学习了此课程我就可以做什么。

再比如,在讲授典型的时序逻辑电路的时候,将已经设计好的计数器带入教室,让学生们先了解一下其功能,以及现实生活中经常用到计数器的地方,加强理论与实际的联系;然后通过提问学生“计数器的电路是如何来设计的?怎样实现呢?”这样不仅可以有效地吸引学生注意力,而且很自然地过渡到新知识的讲解。需要实物导入的地方很多,再比如单稳态触发器、施密特触发器、多谐振荡器等的讲解都可以采用实物导入的方式,通过实物加深学生对理论知识的理解与巩固,提升学生的感性认识,从而使枯燥的课堂变得活跃、充满学习热情。

2 结束语

新课导入是课堂教学中一个必不可少的环节,是教师引导学生参与学习的过程和手段,也是教师必备的一项基本的教学技能,有效的课堂导入可以充分体现学生的主体地位和教师的主导作用。通过上述方法的实践证明:一些成功的、高效的新课导入可以开启学生的思维,提高教W质量,为学生后续专业课的学习奠定良好的基础。

参考文献:

[1]白彦霞,张秋菊.数字电子技术基础[M].北京:北京邮电大学出版社,2009.

数字电路的设计方法范文2

关键词:数字电路 在线故障 检测技术

中图分类号:TP274 文献标识码:A 文章编号:1007-9416(2015)12-0000-00

数字设备由于电路或自身元件,工作环境等原因,导致数字电路在运行过程出现各种程度的故障,影响数字电路正常工作。传统的数字电路检测主要是利用仪表和人工测试来进行检测分析,耗时较长,检修难度较大,检修效率偏低,不能维持数字电路正常快速运行。因此需要找寻更快速的检测方法,来快速完成数字电路故障检修。

1 数字电路故障特点

数字信号指以多个离散的数值表示的离散信号,而数字电路就是对这些离散的数字信号进行有效处理的电路。其功能主要分为时序型和组合型。在输送界限中指存在简单的组合型电路,没有反馈路线,数据的输送主要取决于输入进的信号,与前期的电路输送不存在必然联系,因此没有进行任何数据记录。而组合型与时序型的区别在于是否有集成数据来体现,时序型电路的主要构成在于触发器拥有的储蓄功能,其状态的表达及记忆主要是通过该电路完成的。在储蓄电路末端一定要进行信号的输出与收取工作,这一现象中由于需要检测的数据较多,最多可高达上千条。而且电路中的元件主要设置在软芯片中,有较多的物理曲线,检测过程会比较复杂,十分不利于对于数字电路的检测。

2 数字电路故障原因

(1)设计未考虑集成参数变化。由于设计时没有充分考虑元件的集成参数变化,导致电子元件使用时出现元件老化、参数性能不稳定甚至降低的不良状况。例如进行简单的数字电路运输只能选取8个同型号电路,但其所带实际电路早已超过指定数值,由于高数值引起的低电压极速上升,会对电路内部元件及系统进行破坏,影响数字电路正常运行,因此高负荷电路的应用是十分重要的。(2)工作环境不佳。大部分的数字电路对于运行环境有一定的要求,如温度不能过高或过低、对于电路要合理控制、工作时间不宜过长,保持环境干燥等,任何的环境变化都会影响数字电路正常运行。另外如果环境中存在较强的电磁干扰,也会导致数字电路无法正常运行。(3)超出使用期限。对数字电路的过度使用,会加速数字电路元件老化,降低数字电路各项使用性能,增加了数字电路发生故障的机率。(4)线路安排不合理。进行电路安装时,由于安排不合理,出现断线、漏线、末端信号计算不准确、电路元件安装失误、放置输送处理不当等,都会严重影响数字电路正常运行,引发线路故障。

3在线电路检测技术

(1)持续观测。持续不断的观察是对电路检测的基础方法,对电源连接,引脚状态,内部元件运行,线路分布,输入末端等进行随时观测。并且在设备通电过后进行随时观察,看内部零件是否出现冒烟、发烫,电源短路的现象。这是在线电路的初步检测方法。(2)分割检测。将整体的数字电路进行分割,独立数字电路单元、功能及构造,将电路各部分独立检测,并进行电源连接,找寻局部障碍,再利用逻辑笔确定障碍部位。以计算数据电路检测为例,可分为区域、计算设备、和数据显示器三个部分。计算数据电路输入计数脉冲,分析译码设备反馈的数据。如试用3线至8线的译码器74LS138与非门构建罗辑函数,还可再与数据显示器连接,检测电路运行是否正常。诸如此类的方法应用,有助于快速找出故障部位。(3)电阻测试。电阻测试主要是针对通电后的电路检测。如电路电源连接后,如果出现发烫、冒烟的现象。为了防止故障的进一步扩散,需要快速阻断电源连接,再对其使用单组检测设备,检查内部输送端口是否正常,电源是否短路等。电阻测试的方法还可用于数字线路、电路地板等进行检测,主要针对的是接触不良、电路短路的故障问题。(4)替换零件。数字电故障极少部分较为隐蔽,如电路中的集成零件性能下降时,采用逻辑电平对于故障点进行找寻比较困难,这时候可以使用替换法,将故障零件用相同型号但质量性能更好的零件进行替换,然后检测故障是否清除,是处理这类隐蔽故障的重要方法。需要注意的是,在进行零件替换期间,一定要切断电源。

4检测注意事项

(1)检测有一定的顺序,不能盲目进行。可首先使用万用表对集成设备及电源进行检测。CMOS设备可以用于对连线、底版、集成线路等进行检测;其次使用直观观察法,对客户进行询问后初步确定大体故障部位,然后通过直接观察,检测设备元件完整情况。然后连接电源,查看是否存在冒烟、发烫等现象,若有应立即拔掉电源,如果一切正常,则需要对电路信号进行测量,找出故障原因;最后可对故障进行合理排除,这种方式常常用于组合电路检测。该方法主要是保持原有的输入,用逻辑笔检测输入电平,比较数值,寻找故障点。如时序型电路检测时,应使用波形方式进行观察,检测时钟信号,有效寻找设备故障。若发现线路与底板故障,应先切断电源,再使用电阻测试法对线路连接点进行检测,看数据是否正常。若是数字电路设备故障,可检测该设备逻辑系统。以较为复杂的MSI为例,可使用专业的检测设备检测数字电路,或者使用替换法用新的装置替换故障部位。(2)由于数字电路设备多样,型号较多,在对不常见型号进行检测时,需参照检测手册,了解数字电路型号,运转功率,引脚名称等,按照检测手册进行检查。同时注意遵守手册的注意事项,更有助于进行故障的排查。

5结语

综上所述,随着数字电路的广泛应用,其故障发生频率也日益增加,数字电路故障检测也越来越重要。检测人员只有不断积累经验,熟练掌握故障检测技术,了解故障形成原因,才能在检测时选出最合适的方法,以最快的速度进行故障排除,保障数字电路正常运行。

参考文献

[1]李珊琼.关于数字电路故障诊断的探讨[J].计算机光盘软件与应用,2014,(7).

[2]杨迁迁.数字电路在线故障检测技巧与方法探究[J].中国电子商务,2014.

[3]雷振雄.关于数字电路的故障测试方法研究[J].科技致富向导,2013,(14).

数字电路的设计方法范文3

关键词:数字电路;故障;检测技术;特点

中图分类号:TN79 文献标识码:A 文章编号:1674-7712 (2013) 18-0000-01

一、数字电路概述

数字信号,指的是以多个离散值表示的离散信号;数字电路,是指用于处理数字信号的电路。数字电路输出只有低电平和高电平两种状态(三态门除外)。通常来说数字电路可区分出高低电平状态。以逻辑规则为标准,可将数字电路分为组合逻辑电路和时序逻辑电路两类。其中组合逻辑电路,是指输入信号、输出信号二者无反馈关系的数字电路,在该类电路中,各时刻输出的信号仅与实时输入信号有关,与之前的电路输出无关,其不具有记忆能力。依靠触发器存储功能所组成的电路称之为时序逻辑电路,其具有记忆功能,该类电路的输出内容,由输入端信号与输出端反馈信号共同决定。

二、数字电路故障的特点及原因分析

(一)特点分析

数字电路故障检测是一项复杂的工作,这是因为待检测电路同时存在多个输入输出,多者可达数百个,电路响应具有时序性,而并非简单的组合关系;同时,由于很多的记忆元件、电路门都被封装于同一芯片中,其可能存在较多的物理缺陷,对于这些元件的输入输出、逻辑电平是无法测量的。所以,有必要找寻到一些准确而简单的检测方法,对元器件芯片、数字电路故障进行检测。

(二)原因分析

数字电路发生故障的原因主要可分为5大类:

1.在进行电路设计时考虑不周全(如元件参数变化),出现了设计缺陷

随着使用时间的推移,电子元件会逐渐发生老化,其参数性能也会逐渐下降,同时温度的改变也可能导致参数变化。例如:1个与非门可带10个同类门电路输出低电压,然而与非门实际可带的同类门远大于10个。这就可能导致输出低电压迅速上升,从而对电路原功能产生破坏,使系统无法正常工作,在输出高电压时,也同样会出现此种问题。

2.信号线故障

电路板电路在潮湿、大电流等因素的影响下,会导致信号线断路、短路、烧蚀等现象,发生信号线故障,致使电路无法正常工作。

3.接触不良、布线不当

在数字电路中,元件接触不良、布线不当是最为常见的故障类型。焊点氧化、虚焊、插件松动等都可能导致电路板故障。另外,在安装过程中出现漏线、桥接、中断线、元器件插错、闲置输入端或使能端处理不当等都会引发电路故障。

4.使用期限过长

对于电子元器件,若使用时间过长,超出了使用期限,就会发生老化,各项性能指标都会下降,从而加大设备故障的发生概率。

5.工作环境太差

当设备所处环境不符合设计要求的电磁环境、湿度、温度、工作时间等规定时,就很难保证设备的可靠运行。很多数字设备都对工作环境方面具有较高要求,湿度过大、温度过低或过高等都可能造成设备故障。另外,环境中的电磁干扰过大,也可导致设备故障。

三、数字电路故障检测技术

在数字电路故障检测中,常用的方法主要有逻辑检测、常规检测两种方法。

(一)逻辑检测法

常用逻辑检测法包括群举测试法、伪群举测试法两种。其中群举测试法,是指将受测电路作为输入端,接受所有输入信号,将其作为测试码,再查看受测电路输出,判断其与电路逻辑功能间的关系。应用该方法时,先要确定测试码集合,其是电路故障检测的直接依据,把测试码集合加入受测电路,通过测试电路相应以进行故障判定。伪群举测试法,是改进后的群举测试法,其有效克服了原方法中测试效率低下、测试码众多的缺陷。伪群举测试法中,先对电路进行合理分块,然后运用群举测试法对各块电路进行测试,从而使测试效率大为提高。

(二)常规检测法

常规检测可总结为“望、闻、问、触、测”五个字,其中,“望”就是查看设备有无异常情况,例如渗液、破损、腐蚀等。“闻”就是闻元器件是否有异味。“问”,即询问故障情况,全面了解故障现象、产生原因,以缩短检测时间;“触”就是触摸元件,感受有无异常发热;“测”就是使用专业设备对电路进行测试,常用的专业测试设备有逻辑分析仪、逻辑笔、示波器等。

另外,顺序检测法也是一种常用的故障检测技术,该方法是指先在输入端加信号,跟随信号流向,从输出级到输出级逐级测量、检查,以判定故障部位,也可从输出级到输入级进行测量,在检测出异常信号后,再由故障级开始逐级检测,直到检测到正常信号为止。

四、故障检测步骤

数字电路故障的检测一般会经历隔离、定位、诊断排除3个步骤。首先,在深入、全面考察故障特征的基础上,尽量缩小故障范围,进行故障隔离。通常来说,若电路无信号,应使用探头对电路连接路径进行检测,以快速找出消失信号;其次,在隔离故障后,就要观察故障影响,此时多会运用到电流跟踪器、逻辑脉冲发生器、逻辑探头,以进一步锁定故障源;最后,在找出故障源后,先要对故障电路进行动态测试,控制故障范围,再进行静态测试,以找准故障点,最后顺利排除故障。

五、结束语

综上所述,随着数字电路应用的日益广泛,其发生故障的频率也越来越高,因此数字电路诊断、检测的作用也显得越发重要。在实际工作中,应当多积累经验,结合实际情况,合理选择故障检测方法,提高故障检测效率,以确保数字电路运行的可靠性与稳定性。

参考文献:

[1]蔡万清.关于数字电路的故障检测技术研究[J].中国科技纵横,2010(4):25.

[2]卢振达,陈建辉.数字电路ATPGS实现的关键技术研究[J].仪表技术,2009(10):21-22,25.

[3]姬昌.数字电路的故障检测与诊断初探[J].科海故事博览・科教创新,2009(2):193-193.

数字电路的设计方法范文4

关键词:数字电路 故障 测试

中图分类号:TN79 文献标识码:A 文章编号:1007-9416(2013)02-0087-01

在进行数字电路设计和生产过程中一定要进行电路的故障诊断,这样对于芯片模板上出现的缺陷可以及时修复,开始建立故障冗余系统;可以有效的改进生产工艺,更好的分析故障检测方法,进而使芯片的产量、质量和可靠性都得到提升。传统数字电路的故障诊断常常用常规仪表及传统的人工进行分析的,所以在诊断定位上就会难度增加、周期变长,导致设计和生产数字电路的速度严重降低。所以,设计数字电路故障诊断系统,可以有效地提升当下数字电路故障诊断的效率。

1 讨论故障产生的主要原因

1.1 数字电路的故障

数字电路故障就是在设计和生产过程中出现接触不良、电器元件损坏等原因,造成导线短路、假焊、虚焊等现象,就会出现电路逻辑功能的错误,发生电路故障[1]。以组合逻辑电路而言,必须按照真值表的要求来进行工作,否则就是电路出现了故障;而就时序逻辑电路来说,必须按照时序的状态转换图就行工作,否则就是电路出现了故障。

1.2 故障主要原因的产生

(1)元器件参数的改变。由于电子元器件随着不断地使用,就会导致老化和参数性能下降,有的是在温度变化时改变了参数性能。(2)信号线故障。在电路板电路受到外界影响时,信号线就会损坏出现短路和断路。(3)电路元器件出现不良接触。这种问题是最常见的,在工作中如果发生虚焊或者焊点被氧化,就会导致电路板故障的发生。(4)不健全的工作环境。一旦工作环境达不到设备所要求时,如湿度、温度及电磁环境等,无法实现设备的正常工作。(5)超出使用期。就是在使用过程中超出期限,导致元器件的老化,降低了性能指标,所以就会增加设备的故障率[2]。

2 逻辑故障组成

逻辑故障包括永久故障和暂态故障。其中的永久故障就是故障出现之后,只有人为修复可以清除故障,除此之外故障会长久存在。包括很多的静态故障。例如固定电平故障、桥路故障、固定开路故障。而暂态故障也能叫做软故障,这种故障的发生是因为元器件自身或者是电路自身存在的容限非常小而导致电路不稳定。

3 数字电路故障测试的基本方法

3.1 故障的检测

(1)直观检测法。这种方法就是通过直观的观察来推断出故障出现的大体部位。我们在进行检测时可以咨询用户,就会知道出现了什么样的现象,这样就可以快速的进行检测省去了很多不必要的麻烦。我们可以在检测时直接观察设备是否出现元器件的破损,导线是否断开或者短接,或者其它设备出现什么状况,来检测出故障在什么地方。一旦电路电流或者电压过大时,在电路中的一些器件就会出现异味,我们通过嗅觉就会感知到在什么地方出现了故障。当一些电子元器件的外壳热度过高时,我们通过触摸就会找到这类损坏的元器件,从而发现电路产生的故障。最后我们可以直接的用专业的检测设备测试诊断电路,来检测出是否存在故障,如果存在给其进行定位。(2)顺序检测法。这种方法分为两种,其一就是由输入级开始逐渐向输出级进行检查,这就需要我们在输入端加入检测信号,开始以该信号为主逐渐向输出端进行检测,最终来找出电路所存在的故障[3]。其二就是由输出级开始逐渐向输入级进行检查,一旦出现信号不对的情况,就开始由故障级向一级检测,最终到发现正常信号截止。(3)比较法。在检查故障时,这也是一种常用的方法。想要快速的发现所存在的故障,通常的方法就是把故障电路重要的关键点测试参数和同类型电路在正常工作时所得到的检测值进行对比,最终检测出故障所在。(4)替代法。如果说有的时候我们在数字电路中很难找到出现的故障,这个时候我们就应该想到应用替代法测出数字电路中的故障。什么是替代法?简单地说,替代法就是我们将数字电路中的电子元器件替代掉,应用一些同等型号,但是在品质上却高于原有电路中出现的器件,之后换上这些高品质器件之后,来检查电路是否可以进行正常的工作。前提是我们在采用替代法进行实验来检测故障时,一定要在电路断电的时候换上各种元器件,用以保证安全。上述四种方法就是在检测数字电路故障时常用到的常规方法。

3.2 逻辑故障的检测

在数字电路中产生的逻辑故障中,我们可以建立起故障的模型,之后通过该模型研究算法,产生测试向量,完成故障的检测。这里我们就以在逻辑故障中出现的单固定故障为例。由于逻辑故障中存在着单固定故障,而这种故障模型是数字电路测试中使用最多的一种门级故障模型。这种故障可以含盖数字CMOS电路一半以上的制造故障。在测试这种故障时,首先我们应该建立故障模型,之后根据这种故障模型生成测试向量。在组合逻辑电路中,以早期提出的经典算法D算法为主,完成测试向量的自动生成。而在时序逻辑电路中,我们将以较为了解的门级时序电路的ATPG系统完成测试向量的覆盖率。之后我们通过不断地分析测试向量对故障的覆盖情况,从而来进一步的提高故障的覆盖率。最终实现单固定故障模型的完整建立,解决故障的检测工作[4]。之后再以此种模型来对多固定故障进行测试。最终实现逻辑故障的检测。

3.3 波形检测法

在脉冲电路当中,我们还可以用波形检测的方法对电路进行检测。首先在检测时选择一个良好的示波器,之后开始对电路各级在输出端所输出的波形进行检测,最后在示波器上面观察并记录出现的波形是否正常,最终来完成电路故障的测试。

4 结语

本文主要简单的介绍了数字电路出现的故障及故障检测方法。在电子电路发展的今天数字电路得到了飞速的发展。为了更好的使数字电路应用到现代电路中。对于可能出现的故障应及时的做出检测。更好的完善数字电路,使数字电路进一步发展,适应现代科技要求。

参考文献

[1]胡文君.设备故障诊断技术的现状与发展[J].后勤工程学院学报,2004(2).

[2]吴翠娟.现代大型设备故障智能诊断技术的现状与展望[J].电子技术用,2003.

数字电路的设计方法范文5

关 键 词 数字电路;软错误;防护;方法

中图分类号:TN79 文献标识码:A 文章编号:1671—7597(2013)021-083-01

随着纳米时代的到来,数字电路的制造工艺不断改革与创新,但是,革新与挑战是并存的。目前,数字电路的设计制造面临着诸多挑战,其中一项就是在达到设计标准的前提下,如何能使设计制造的电路可靠运行。

增强数字电路可靠性的方法主要是容错技术的使用,这种技术的应用是为了保证数字电路的功能不受到影响或者所受的影响最低。其原理是增加冗余资源,有效降低因故障所造成的影响。但随着工艺尺寸的改进,运用环境的变化以及海拔高度的改变,数字电路软错误率也随之受到影响,软错误率的升重影响了集成电路的可靠性,集成电路的可靠性又直接决定了计算机系统的可靠性,因此,数字电路软错误防护方法的研究逐渐成为研究热点。

1 数字电路中软错误的类型

1) 时序逻辑电路中的软错误。随着集成电路特征尺寸的缩小,工艺扰动问题日益严重,受工艺扰动的影响,芯片的软错误率增加,偏离了芯片的设计指标,由此影响了电路性能和功耗。

最常见的工艺扰动主要包括沟道长度扰动、栅氧厚度扰动以及阈值电压扰动,这三种工艺扰动所造成的软错误影响着时序逻辑单元,而最容易受影响的节点分别是SRAM的节点“VR”、传输门触发器的节点“S1”、动态锁存器的节点“OUT”以及C2MOS触发器的节点“S”。通过仿真实验,研究沟道长度扰动、栅氧厚度扰动以及阈值电压扰动这三种工艺扰动对四种时序单元的软错误率的影响,实验证明,工艺不同,引起的临界电量偏差不同,从而对软错误率影响程度也不同。

2) 组合逻辑电路中的软错误。组合逻辑电路中的软错误率也受到工艺扰动的影响,随着尺寸减小,组合逻辑单元对软错误越敏感,组合逻辑单元的临界电量也越小,组合逻辑电路的三种软错误屏蔽效应也随之降低,因此,降低组合逻辑电路的软错误率也逐渐得到重视。通过实验研究发现,注入电荷量与脉冲宽度呈指数关系,这也关系影响了临界电量与逻辑门延时之间的关系,当逻辑门延时增加时,之前的逻辑门上产生的电压脉冲中宽度比较小的部分无法通过这个逻辑门传播到输出端,从而无法造成软错误。

2 数字电路软错误防护方法

数字电路软错误防护技术主要有晶体管级软错误防护技术和门级网表的软错误防护技术,这两种技术的应用原理是针对数字电路软错误,以扫描链电路的功能复用为切入点,降低软错误防护的硬件开销,通过改造扫描链电路,从而降低软错误率。

1)晶体管级软错误防护技术。晶体管级软错误防护技术主要是设计具有SEU/SET防护性的电路库单元,这种电路库单元的设计,需要对其防护能力进行量化,在晶体管级进行软错误率的建模计算。对于软错误防护能力的评估主要有两种手段,一是直接对电路进行辐照实验,二是使用晶体管级仿真软件进行软错误故障注入和软错误率的建模计算。对比这两种方法,运用仿真软件进行评估不仅大大降低了试验成本,而且缩短了试验周期。运用晶体管级仿真工具HSPICE进行软错误故障注入,即读入一个输入文件,生成一个包括模拟结果、警告信息和错误信息的列表文件,从而观察SEU/SET对于时序单元内部节点和输出端所产生的电压变化。时序逻辑单元的软错误防护技术主要是未经加固的静态锁存器、TMR-Latch锁存器、SDT单元以及DICE单元,其中DICE是比较经典的晶体管级软错误防护结构。组合逻辑单元的软错误防护技术主要是基于时差的SET防护技术和CSWP单元。

2)门级网表的软错误防护技术。门级网表的软错误防护流程是故障注入、计算SER、进行单元替换,在故障注入环节包括对时序逻辑和组合逻辑的软故障注入,在计算SER环节需要考虑输入故障注入点、时序屏蔽、逻辑屏蔽、向量组合等诸多因素,在单元替换环节包括全部替换和部分替换,而替换策略又分为面积优先替换策略和速度优先替换策略。

软错误注入方法有很多,例如使用高能量质子束照射整个芯片,模拟宇宙射线中的种子产生的效应,或者直接使用中子束进行辐照实验等等。这些方法主要用于精确评估每个标准单元的软错误易感程度。

软错误率计算是对电路的软错误防护性能做定量分析的关键,软错误率分析包括对逻辑和RAM的软错误率分析,RAM的软错误率分析方法比较成熟,目前研究的难点主要在对组合逻辑的软错误率的分析。

3)基于扫描链复位的软错误防护技术。芯片的设计通常都进行可测性设计,可测性设计包括扫描设计和内建自测试,为了提高其可控性和可观测性,这两种可测性设计都需要将普通的寄存器更换成扫描寄存器。对扫描寄存器进行功能复用,可以进行软错误防护,这种防护技术就是基于扫描链复位的软错误防护技术(SEMRSC)。目前已有的SEMRSC技术主要是Intel公司的BISER技术,以及ESFF-SED和ESFF-SEC技术。BISER技术的优势在于以下几点,首先,在对扫描链进行功能复用的过程中,有效的降低了软错误防护的面积开销;其次,BISER技术和ECC技术结合实用,可以将芯片级SER改善10倍;再次,BISER技术可以有效降低单元级SER。ESFF-SED和ESFF-SEC作为两种软错误防护方法也能有效的对数字电路的软错误进行防护。

3 总结

集成电路工艺的改进、工作电压的降低、工艺偏差的增强,使得数字电路的软错误率急速攀升,这大大影响了芯片的可靠性。本文分析了软错误的两种类型,阐明了针对不同类型的软错误所运用的多种防护技术,相信,通过不断的实验与研究,数字电路可以在达到设计标准的前提下,安全可靠的运行。

参考文献

[1]傅忠传,陈红松,崔刚,杨孝宗.处理器容错技术研究与展望[J].计算机研究与发展,2007,44(l):154-16.

数字电路的设计方法范文6

【关键词】数字电路;故障;特点;原因;诊断

一、数字电路特点

数字电路就是运用数字信号完成对数字量进行算数运算和逻辑运算的电路。因为它具备逻辑运算和逻辑处理的功能,因此又被称作数字逻辑电路。数字电路按照功能来分可以分为两类,即组合逻辑电路和时序逻辑电路,组合逻辑电路是由最基本的逻辑门电路组合而成的,电路没有记忆功能,它的输出值仅与输入值有关,所以出输出值总随着输入值的变化而变化;时序逻辑电路是由最基本的逻辑门电路和反馈逻辑回来或器件组合而成的,不同于组合电路,时序电路拥有记忆功能,因此它的输出值不仅与输入值有关,与电路之前的状态也有关。首先数字运算使用的是二进制数字信号,同时具备算术运算和逻辑运算的功能,非常适用于运算、比较、存储和决策等多方面的应用;以二进制为基础,操作实现起来比较简单,受电源电压的波动较小,对温差和工艺偏差的包容性较大,可靠性非常好;数字电路的突出优点还体现在它集成度高、体积小、功耗低等多方面上,电路在设计、调试、维护上比较灵活,随着微电子技术的高速发展,数字电路将会取得更大的进步。

随着微电子技术的迅速发展,电路将会越来越复杂,技术人员在设计、调试、安装、维修的时候将会遇到很多无法避免的故障。当电路在运行中,由于不可测的故障影响,电路可能不能正常工作,器械工作也会受到影响。电路故障是指一个或者多个电子元器件因为损坏或接触不良而引起导线短路、虚焊造成电路逻辑功能出现错误不能正常运行的现象。对于组合电路来说,电路如果没有按照真值表要求运行,就被认为出现故障;对于时序电路来说,如果不能按照规定的状态转换图来运行,就被认为存在故障。当电路出现故障时,就必须及时对电路进行检修,只有这样才能保证其他工作的正常运转。电路检修是一项复杂的工作,因为待检测的数字电路,输入值输出值高达上百个;电路包含了组合逻辑和时序逻辑两种结构,并非是简单的组合;有的电路门和记忆元件是封装于一个芯片之内的,本身存在的物理缺陷就很多,难以去直接测量,为此必须找准电路故障原因,对症下药,才能选择合适的检测方法,有效地解决故障问题。

二、电路产生故障的原因分析

1.电路在设计工作中没有充分考虑到电路的参数及其工作条件

(1)数字电路集成度高,负载能力有限

随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,从小规模集成电路集成、中规模电路集成、大规模电路集成发展至超大规模电路集成,虽然集成规模越来越大,但是针对于具体某一个电路来说,负载能力还十分有限。比如说一个普通的与非门的输出低电压最多可以带10个同类门电路,这就是它的极限值,如果超过了极限值就会出现问题,就会使得电路输出的低电压急速升高破坏电路的原有功能,致使系统不能正常的工作。为此我们必须选择那些负载能力强的集成电路。

(2)集成电路的工作速度较慢

因为数字化集成电路的工作原理,只有当第一组集成电路稳定输出之后才能输入第二组信号,当然也会出现内部延时的状况,进而影响了电路的工作状态。如果电路信号输出挡在输入脉冲较高的时候,就会在输出端产生不稳定故障现象。这些故障还不是很容易检测的,因此在设计的时候就需要考虑到这个因此,选用一些工作速度高的集成电路。

2.线路安装不当,导致接触不良

在线路安装的时候就特别要注意,如果布线和电路芯片安装不当,就会影响电路工作的正常运行。特别是在安装中如果出现断线、桥接、漏线、插错电子元器件、闲置输入端等情况,就都会使得电路运转出现故障。

3.电路工作环境较为恶劣,影响了电路的正常工作

因为现代数字化设备对自身的工作环境都是有一定的要求的,像温度偏高或者是偏低,湿度过大等都会影响电路设备的正常工作,另外对于电器产品来说,环境中过多的电磁干扰也会影响设备的正常运行。

三、数字电路的故障诊断

早在上世纪60年代,数字系统的故障诊断就引起了科技界、工业界的重视,也取得了重大的成果。在数字电路故障诊断中,关键的一步是测试向量的生成,确定施加什么样的激励、在什么地方施加激励可以使故障激活以及确定在什么地方作测量。目前获得数字系统测试主要有两种方法,那就是确定性测试生成和非测试生成两大类,确定性测试生成是指采用测试生成算法自动推导数字电路的测试矢量;非确定性测试生成算法是指人工测试生成,即由测试人员根据对被测系统功能的了解,并结合实际测试经验,用人工的方法产生检测被测系统故障。

不同种类的数字化系统电路有着不同的功能和故障特点。主要有故障字典法、特征分析法和边界扫描测试法。故障字典法就是根据故障特征编制编制成一部故障与特征对应的字典,将其存入标准数据库,建立故障查寻表;特征分析法就是在窗口内观测数据信号的波形,进而提取有效特征;边界扫描测试法是指是一种扩展的自测试技术,在测试时不需要其它的测试设备,只适用于具有边界扫描特性器件的电路板。

现代信息化社会,数字技术应用面非常广泛。随着微电子技术的迅速发展,电路将会越来越复杂。为了提升数字电路工作运行的效率,提高电器使用和产品的制造质量,必须加强对数字电路故障的诊断研究,。只有这样才能有效地提升数字电路的应用水平,提升数字电路的应用质量,拓展其应用范围。

四、总结

作为一名合格的工程技术人员首先必须要充分了解数字电路及其发生故障的特点、原因,然后根据实际情况进行故障诊断工作。只有这样才能保证电路工作的正常运行,促进数字化电路系统的健康发展。

参考文献

[1]江国栋.数字AV产品的抗干扰设计[J].电声技术,1999.