集成电路原理与设计范例6篇

前言:中文期刊网精心挑选了集成电路原理与设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

集成电路原理与设计

集成电路原理与设计范文1

集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握MOS晶体管的结构、工作原理和工作特性,学生在后面学习CMOS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。

但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习MOS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3. 课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1“。 4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CAD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业

大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CAD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CMOS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CMOS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。 2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。MOS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授MOS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CMOS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CMOS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为EDA工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

集成电路原理与设计范文2

关键词:多媒体;仿真;电路

中图分类号:G434 文献标识码:A 文章编号:1674-7712 (2013) 06-0172-02

随着半导体集成和微电子技术的迅速发展,集成电路的品种和数量与日俱增,应用也越来越广泛,集成电路变得无处不在。集成电路的使用大大简化了电路的设计,并且使系统及设备的性能指标得到了很大提高。《集成电路原理与应用》课程作为电子测量技术与仪器专业的一门职业技术基础课程,其内容涵盖电路基础、模拟电子技术和数字电子技术等多门课程[1]。在本课程的教学中,我们充分利用了多媒体教学方式,以动画形式展现集成电路的相关知识,大大激发了学生学习的积极性,大大丰富了教学内容,同时,我们充分利用了计算机软件仿真技术,将集成电路的典型应用电路通过ProtelDXP进行仿真实验,摆脱了有限的实验环境的限制,让学生在学习集成电路相关知识的同时掌握了先进的计算机辅助工具,最后,我们给予了学生在万能板上实现电子电路的机会,学生通过亲身体验制作和调试电子电路的过程,让学生具备了一定的分析问题和解决问题的能力,同时收获了通过自己努力实现目标之后的成就感。经过教学实践表明,本课程的教学内容容易实现,安排合理,学生参与的积极性高,取得了很好的教学效果。

一、教学内容的安排

本课程的内容繁杂,讲授时间有限,因此结合我院电子测量技术与仪器专业人才培养方案的要求,将本课程的教学目标定位于应用,教学的重点在于典型集成电路芯片及其典型应用电路的分析讲解、仿真和制作。首先应用线性集成稳压器制作出5~15V可调稳压电源,以供后续的集成电路应用电路使用。接着应用运放集成电路、定时集成电路、功放集成电路、非门集成电路和与非门集成电路制作出贴近生活的电子电路。具体教学内容如表1所示。

二、教学实施的特色

(一)充分利用多媒体教学方式

随着现代科技的发展,我们已经进入了一个信息化的时代,多媒体已经广泛的用于教学领域。多媒体教学以声音、图片、动画等丰富的媒体形式最大程度地调动了学生的视听感官系统,充分展示了教学手段的多样化,改变了传统的“一张嘴一支粉笔一块黑板”的教学模式,为现代教育改革注入了新的生机和活力,从而为本课程改善教学效果带来了福音。

本课程所涉及的集成电路芯片众多,受到经费的限制,不可能一一购买给学生展示,但是采用多媒体教学方式后,就可以将典型芯片的图片一一展示给学生,大大降低了教学成本,同时也丰富了学生的视野。另外,有些集成电路的典型应用电路很多,如果采用板书的方式,受到课时的限制,不可能一一给学生讲解,但是多媒体教学可以迅速地把课程资源显现在学生面前,可以大大节省教师板书的时间,使教师可以传授更多的知识,从而提高教学效率。同时,在电路的展示中配以动画,丰富了电路的生命力,从而大大激发了学生的学习积极性。

(二)充分利用计算机软件仿真技术

随着电子技术和计算机技术的快速发展,电子产品的设计与计算机的联系越来越紧密。作为以社会需求为第一要务的高职教育,在《集成电路原理与应用》课程的教学中,我们充分利用现有硬件条件,充分利用计算机软件仿真技术,培养学生应用集成电路设计和分析电子电路的能力。

我们在教学中使用的软件是ProtelDXP,学生已经在前续《电子CAD》课程中学习了如何使用该软件设计和仿真电子电路。使用ProtelDXP作电路仿真的基本流程[2]如图1所示。

在本课程的学习中,学生在ProtelDXP中通过选择元器件、连接电路、确定元器件参数实现集成电路的应用电路,还可以方便地对电路进行测试和修改,有助于增强学生对学习内容的感性认识,培养学生主动思考的能力,而且可以将本专业所开设的课程联系起来,实现几门课程之间的融会贯通,促使学生学好相关专业课程,并且做到学以致用。

(三)动手制作电子电路

电子产品的设计与制作要求学生有较强的实际动手能力,因此,在本课程的教学中,全班学生以小组(一般4-5人一组)为单位,要求学生在已经绘制好的电路原理图基础上设计出单面PCB图,然后在万能板上制作出相应的电子电路。

学生在电路原理图和单面PCB图的指导下焊接并调试电路。在整个制作和调试过程中,教师主要起指导作用,在必要时帮学生分析故障产生的原因,而学生才是主体,一切问题得由学生自己动手解决,从而大大提高了学生学习的主观能动性。

制作和调试电路在整个教学过程中占用时间是最多的,无论多么简单的电路,总是会有个别小组出现问题。但是,学生正是在不断发现问题、解决问题的过程中加深了对所学知识的理解。另外,电路的调试离不开常用电子仪器仪表如万用表、示波器等的辅助,这也让学生实际体会到了在《电子测量技术》课程所学习知识的实用价值。

三、结束语

在本课程的教学中,通过任务引领,结合先进的计算机技术,学生在学中做,做中学[3],学做结合,充分调动了学生的学习兴趣和积极性,学生的出勤率很高,而且参与率很高。学生通过动手制作和调试电路,学习能力和动手能力有了较大提高,从一开始遇到问题不知如何是好,到最后能够查找电路中的简单故障,可见学生解决问题的能力有了一定的提高。但是,也存在一些问题。首先,本课程的教学对教师的要求较高,教师不仅要具备深厚的理论知识水平,还要了解集成电路在实际应用中的情况,这就需要加强与企业间的联系,在这方面需要进一步加强。其次,在当前的教学中,受到成本和课时的限制,集成电路芯片多采用引脚数量少的插针式元件,避免使用引脚数量多或贴片封装形式的元件,这与当前集成电路在实际使用中情况有点相悖,在今后的教学中需要改进。

参考文献:

[1]向继文,刘昕.“集成电路原理及应用”教学改革[J].中国电力教育,2011,193(6):179-180

集成电路原理与设计范文3

[关键词]工艺原理 器件模拟与仿真 微电子技术

[中图分类号] G420 [文献标识码] A [文章编号] 2095-3437(2015)11-0112-03

0引言

西安邮电大学微电子科学与工程专业源于原计算机系的微电子学专业,2005年开始招收第一届本科生,专业方向设置偏向于集成电路设计。2013年,根据教育部《普通高等学校本科专业目录(2012年)》的专业设置,将微电子学专业更名为微电子科学与工程专业。2009年至今,该专业累计培养本科毕业生6届。根据历年应届毕业生就业情况和研究生报考方向,我们发现半导体工艺方向人数比重呈现逐年上升的趋势。另外,随着我国经济的快速发展,中西部地区半导体行业的投资力度也越来越大,例如韩国三星电子有限公司、西安爱立信分公司等落户西安,半导体人才需求日益增加。

根据2014年,微电子科学与工程专业新一轮培养方案的定位,设置出半导体工艺、集成电路设计两大课程体系,可实现半导体工艺、集成电路设计和集成电路应用人才的个性化培养。半导体工艺课程体系除设置固体物理、半导体物理学、半导体器件物理等专业基础课程外,还包含集成电路工艺原理、器件模拟与仿真、集成电路制造与测试和半导体工艺实习等专业课程。本课程体系是微电子技术领域人才培养的核心,旨在培养学生掌握集成电路制造的工艺原理、工艺流程以及实践操作的能力,同时也是培养具有创新意识的高素质应用型人才的关键。

因此,整合集成电路工艺原理与实践课程体系的教学内容,充分利用微电子技术实验教学中心现有的硬件环境和优势资源,加强软件设施,例如实践教学具体组织实施方案及考核机制的建设,构建内容健全、结构合理的集成电路工艺原理与实践课程体系,对微电子科学与工程专业及相关专业的人才,尤其是半导体工艺人才培养的落实和发展具有重要意义。

一、面临的主要问题和解决措施

(一)教学面临的主要问题

课程体系是高等学校人才培养的主要载体,是教育思想和教育观念付诸实践的桥梁。集成电路工艺原理与实践课程体系注重理论教学与实践教学的紧密结合,不仅让学生充分了解、掌握集成电路制造的基本原理和工艺技术,而且逐步加强学生半导体技术生产实践能力的培养。然而,该课程体系相关实践环境建设与运行维护耗费巨大,致使大多数高等院校在该课程体系的教学上仅局限于课堂教学,无法做到理论与实践相结合。

为解决这一问题,学校经过多方调研考察、洽谈协商,与北京微电子技术研究所进行校企合作,建立了半导体工艺联合实验室。通过中省共建项目和其他项目对半导体工艺联合实验室进一步建设、完善,为微电子科学与工程专业及相关专业本科生提供了良好的工艺实践平台。然而,在实际教学过程中,专业课程内容不能模块化、系统化,理论教学与实践教学严重脱钩,工程型师资人员匮乏,教学效果不理想。因此,对集成电路工艺原理与实践课程体系进行深化改革与探索,可谓任重而道远。

(二)主要的解决措施

1.课程体系整合优化

集成电路工艺原理与实践课程体系服务于半导体产业快速发展对人才培养的需要。本课程体系以集成电路工艺原理、器件模拟与仿真和工艺实践为主线,将集成电路工艺原理、半导体器件模拟与仿真、集成电路封装与测试、新型材料器件课程设计和半导体工艺实习等课程内容进行整合,明确每门课程、知识的相互关系、地位和作用,找到课程内容的衔接点,让每一门课程都发挥承上启下的作用,保证半导体人才培养的基本规格和基本质量要求。在此基础上,设置半导体材料、半导体功率器件、纳米电子材料与器件等专业选修课,培养学生的兴趣、爱好和特长,以满足个性化培养需要。

为解决微电子科学与工程专业本科生实践形式单一、综合程度不高导致解决实际问题的应用能力不足等现象,集成电路工艺原理与实践课程体系在力求理论教学与实践教学有机融合的基础上,设置微电子学基础实验、半导体器件模拟仿真、半导体工艺实习以及新型材料器件课程设计等实践课程,形成由简单到综合、由综合到创新的递阶实践教学层次。通过独立设课实验、课程设计、科研训练、生产实习、社会实践、科技活动和毕业设计等实践环节达到预期的效果。同时,注重课程形式的综合化、科研化,提高综合性、设计性实验比例,使实践课程与理论课程并行推进,贯穿整个人才培养过程。

2.考核体系的完善

考核体系总体上包括理论课程考核体系和实践课程考核体系。目前,理论考核体系已基本成熟。然而,长期以来,我国教育领域由于实践教学成本高、经费得不到保障,所以考核主体对实践环节考核的积极性不高、重视程度不够,导致考核制度不完善。集成电路工艺原理与实践课程体系在不断完善理论教学考核体系的同时,尤其注重实践教学体系的改革。将教学实验项目的实验过程、工艺参数和器件性能等列为考核的过程。兼顾定性与定量相结合、过程与结果相结合、课内与课外相结合、考核与考评相结合的原则,不断完善实践教学的考核体系,形成以学生为中心的适应学生能力培养和鼓励探索的多元实践教学考核体系。该体系能全面、准确地反映学生的应用能力和实际技能,激发学生的学习动力、创新思维和创新精神,促进人才培养质量和水平的提高。

3.教学团队构建

根据集成电路工艺原理与实践课程体系对高素质应用型人才培养的需要,本教学团队秉承“以老带新”的传统,为青年教师配备老教授或资深教授作为指导教师。在日常教学过程中,由老教师对年轻教师进行业务指导,负责教学质量的监控与授课经验的传授。在老教师的“传、帮、带”和示范表率作用下,青年教师间互相听课、交流教学心得,定期组织教学竞赛,体现以人为本,强调德才兼备,营造青年教师良好的教与学氛围。同时,课程体系团队积极为任课教师创造条件,加大队伍培养建设,鼓励教师走出去,了解企业的运作模式,提高自身的业务能力。目前,已有多位教师到企业参观交流、参加各种业务能力培训,取得了多种职业资格认证,教师的业务能力和水平得到大幅提升。

西安邮电大学经过多年建设和培养,形成了一支结构合理、师资雄厚的教学团队,具有高学历化、年轻化和工程化的特点。本课程体系现拥有任课教师15名,其中具有博士学位的教师7名,副高以上职称的教师8名,40岁以下的教师占课程组教师总数的60%,具有工程实践经验的教师占课程组教师总数的40%。

4.实验环境的优化

实验环境是实践教学和科学研究的关键性场所。根据微电子科学与工程专业半导体工艺、集成电路两大课程体系对人才培养的需要,微电子技术实验教学中心下设微电子学实验教学部和集成电路实验教学部,共计占地约1300平方米。微电子学实验教学部下设微电子学基础实验室、半导体工艺仿真实验室、半导体工艺实验室、微 / 纳材料器件实验室、材料器件分析实验室。微电子学基础实验室,拥有霍尔效应、高频晶体管测试仪、四探针测试仪等常规设备,可实现微电子学专业基础实验。半导体工艺仿真实验室,配置Silvaco、ISE和EDA等专业仿真软件,可实现半导体器件工艺参数和性能的仿真。半导体工艺实验室拥有双管氧化扩散炉、光刻机、LP-CVD、离子束刻蚀机、磁控溅射台、高温快速退火和激光划片等设备,可实现半导体工艺生产。微 / 纳材料器件实验室设计专业,配备排风、有害气体报警系统,拥有气氛热处理程控高温炉、纳米球磨机、高压反应釜等设备,可实现多种纳米材料器件的制备。材料器件分析实验室,拥有吉时利4200-SCS半导体特性分析系统、太阳能模拟器和化学工作站等设备,可完成新型材料器件的测试分析。

通过实践教学资源配置、环境优化,实现了实验教学中心的整体规划和布局;针对大型贵重精密设备配备专业操作人员,进行定期的维护和保养;制定大型设备的操作流程和规范,保证实践教学的顺利实施。实验平台的建设,将为相关专业的本科生、研究生和教师在实践教学、科研方面搭建一个良好的学术平台。

二、改革的特色和预期成果

(一)改革的特色

1.校内实验平台的优化

集成电路工艺原理与实践课程体系的构建,使专业培养方向定位更加明确、教学内容更加明了。尤其是在教学形式上,从教学内容整合、考核体系制定、教学团队形成和实验环境优化等进行了多方位、多角度的改革探索。围绕集成电路工艺原理、半导体器件模拟与仿真和半导体工艺生产实践教学内容为主线,保证半导体人才培养的基本规格和基本质量要求;利用选修课实现学生专业个性化培养。通过合理设置理论课程与实践课程比例、课内课程与课外课程比例,可有效地控制教学内容的稳定性、机动性,推进课程内容的重组与融合。同时,引领学生独立思考、主动探索,激发学生的创新意识和提高学生解决实际问题的能力。

2.校企合作实验平台的构建

在校内实践教学的基础上,微电子技术实验教学中心先后与西安芯派电子科技有限公司、西安西谷微电子有限责任公司等微电子器件及测试公司建立了良好的交流合作关系。这些关系的建立,可使微电子科学与工程专业的学生在校外公司,例如在西安芯派电子科技有限公司进行半导体器件再流焊工艺的实习。校内外互补的工艺实践体系构件,使学生不仅掌握集成电路工艺实践基本知识和原理,更能够掌握实际行业内集成电路工艺中需要考虑的系列问题,从而培养了工程的思维方式。

(二)改革的预期成果

1.达到理论与实践教学的有机融合

理论学习是知识传递过程,实践则是知识吸收过程。实践环节教学能巩固、加深学生对课堂上所学知识的理解,培养学生的实践技能。集成电路工艺原理与实践课程体系,将课程体系教学内容按层次分为半导体工艺原理、器件模拟与仿真和半导体工艺实践三个主要部分。通过半导体工艺原理的学习,掌握材料器件的基本参数、性能和制备方法;通过器件模拟与仿真,了解各种制备方法、工艺参数和器件性能之间的关系;通过半导体工艺实践,充分调动学生的学习积极性、主动性和创造性,从而有效地加深对理论知识的理解,锻炼实际动手能力。通过理论和实践的有机融合,可有效培养学生发现问题、分析问题和解决问题的能力。

2.实现教学的开放性

集成电路工艺原理与实践课程体系,在理论教学方面,打破传统课堂教学的局限性,充分利用现代多媒体技术,实现网络教学。通过网络教学系统,开展互动学习的教学模式。将传统教学活动如批改作业、讨论答疑和查阅资料等传到网络教学系统上;开发试题库,建设合理的测试系统。在实践教学方面,将部分实践教学环节以录像的形式上传到网站上供学生学习、参考,部分实验室实行全天候的开放,学生自主学习、管理。通过兴趣小组、创新项目和开放性实验等多种方式,形成团队教师定期指导、高年级学生指导低年级学生的滚动机制,激发学生潜在的学习能力、创新意识,提高学生的学习兴趣和实践动手能力,为我校培养微电子技术领域高素质应用型人才奠定基础。

三、结语

根据西安邮电大学2014年微电子科学与工程专业新一轮培养方案的定位及社会发展对半导体人才培养的客观要求,本文提出集成电路工艺原理与实践课程体系改革。本课程体系以半导体工艺原理、器件模拟与仿真和半导体工艺实践为主线,对教学内容进行整合、修订和完善,保证半导体人才培养的基本规格和质量要求。根据现有实验环境、实验设备和优势资源,进行资源优化配置,完成微电子技术实验教学中心的整体规划布局。通过师资队伍的建设、切实可行的实践教学管理制度的制定,明确任课教师的职责,出台实践教学质量考核标准,加强实践教学环节的时效性。通过上述诸要素的相互协调、配合,实现集成电路工艺原理与实践课程体系“非加和性”的整体效应,促进微电子技术领域应用型人才培养质量和水平的提高。

[ 参 考 文 献 ]

[1] 崔颖.高校课程体系的构建研究[J].高教探索,2009(3):88-90.

[2] 马颖,范秋芳.美国高等教育管理体制对中国高等教育改革的启示[J].中国石油大学学报(社会科学版),2014(4):105-108.

[3] 别敦荣,易梦春.中国高等教育发展的现实与政策应对[J].清华大学教育研究,2014(1):11-13.

[4] 王永利,史国栋,龚方红.浅谈工科大学生实践创新能力培养体系的构建[J].中国高等教育,2010(19):57-58.

集成电路原理与设计范文4

【关键词】电子信息科学与技术微电子课程体系建设教学改革

【基金项目】大连海事大学教改项目:电子信息科学与技术专业工程人才培养实践教学改革(项目编号:2016Z03);大连海事大学教改项目:面向2017级培养方案的《微电子技术基础》课程教学体系研究与设计(项目编号:2016Y21)。

【中图分类号】G42 【文献标识码】A【文章编号】2095-3089(2018)01-0228-02

1.開设《微电子技术基础》的意义

目前,高速发展的集成电路技术产业使集成电路设计人才成为最抢手的人才,掌握微电子技术是IC设计人才的重要基本技能之一。本文希望通过对《微电子技术基础》课程教学体系的研究与设计,能够提高学生对集成电路制作工艺的认识,提高从事微电子行业的兴趣,拓宽知识面和就业渠道,从而培养更多的微电子发展的综合人才,促进我国微电子产业的规模和科学技术水平的提高。

2.目前学科存在的问题

目前电子信息科学与技术专业的集成电路方向开设的课程已有低频电子线路、数字逻辑与系统设计、单片机原理、集成电路设计原理等。虽然课程开设种类较多,但课程体系不够完善。由于现在学科重心在电路设计上,缺少对于器件的微观结构、材料特性讲解[1],导致学生在后续课程学习中不能够完全理解。比如MOS管,虽然学生们学过其基本特性,但在实践中发现他们对N沟道和P沟道的工作原理知之甚少。

近来学校正在进行本科学生培养的综合改革,在制定集成电路方向课程体系时,课题组成员对部分学校的相关专业展开调研。我们发现大部分拥有电子信息类专业的高校都开设了微电子课程。譬如华中科技大学设置了固体电子学基础、微电子器件与IC设计、微电子工艺学以及电子材料物理等课程。[2]又如电子科技大学设置了固体物理、微电子技术学科前沿、半导体光电器件以及高级微电子技术等课程。[3]因此学科课题组决定在面向2017级电子信息科学与技术专业课程培养方案中,集成电路设计方向在原有的《集成电路设计原理》、《集成电路设计应用》基础上,新增设《微电子技术基础》课程。本课程希望学生通过掌握微电子技术的原理、工艺和设计方法,为后续深入学习集成电路设计和工程开发打下基础。

3.微电子课程设置

出于对整体课程体系的考虑,微电子课程总学时为32学时。课程呈现了微电子技术的基本概论、半导体器件的物理基础、集成电路的制造工艺及封装测试等内容。[4]如表1所示,为课程的教学大纲。

微电子技术的基本概论是本课程的入门。通过第一章节的学习,学生对本课程有初步的认识。

构成集成电路的核心是半导体器件,理解半导体器件的基本原理是理解集成电路特性的重要基础。为此,第二章重点介绍当代集成电路中的主要半导体器件,包括PN结、双极型晶体管、结型场效应晶体管(JFET)等器件的工作原理与特性。要求学生掌握基本的微电子器件设计创新方法,具备分析微电子器件性能和利用半导体物理学等基本原理解决问题的能力。

第三章介绍硅平面工艺的基本原理、工艺方法,同时简要介绍微电子技术不断发展对工艺技术提出的新要求。内容部分以集成电路发展的顺序展开,向学生展示各种技术的优点和局限,以此来培养学生不断学习和适应发展的能力。

第四章围绕芯片单片制造工艺以外的技术展开,涵盖着工艺集成技术、封装与测试以及集成电路工艺设计流程,使学生对微电子工艺的全貌有所了解。

4.教学模式

目前大部分高校的微电子课程仍沿用传统落后的教学模式,即以教师灌输理论知识,学生被动学习为主。这种模式在一定程度上限制了学生主动思考和自觉实践的能力,降低学习兴趣,与本课程授课的初衷相违背。[5]为避免上述问题,本文从以下几个方面阐述了《微电子技术基础》课程的教学模式。

教学内容:本课程理论知识点多数都难以理解且枯燥乏味,仅靠书本教学学生会十分吃力。因此,我们制作多媒体课件来辅助教学,将知识点采用动画的形式来展现。例如可通过动画了解PN结内电子的运动情况、PN结的掺杂工艺以及其制造技术。同时课件中补充了工艺集成与分装测试这部分内容,加强课堂学习与实际生产、科研的联系,便于学生掌握集成电路工艺设计流程。

教学形式:课内理论教学+课外拓展。

1)课内教学:理论讲解仍需教师向学生讲述基本原理,但是在理解运用方面采用启发式教学,课堂上增加教师提问并提供学生上台演示的机会,达到师生互动的目的。依托学校BBS平台,初步建立课程的教学课件讲义、课后习题及思考题和课外拓展资料的体系,以方便学生进行课后的巩固与深度学习。此外,利用微信或QQ群,在线上定期进行答疑,并反馈课堂学习的效果,利于老师不断调整教学方法和课程进度。还可充分利用微信公众号,譬如在课前预习指南,帮助学生做好课堂准备工作。

2)课外拓展:本课程目标是培养具有电子信息科学与技术学科理论基础,且有能力将理论付诸实践的高素质人才。平时学生很难直接观察到半导体器件、集成电路的模型及它们的封装制造流程,因此课题组计划在课余时间组织同学参观实验室或当地的相关企业,使教学过程更为直观,加深学生对制造工艺的理解。此外,教师需要充分利用现有的资源(譬如与课程有关的科研项目),鼓励学生参与和探究。

考核方式:一般来说,传统的微电子课程考核强调教学结果的评价,而本课程组希望考核结果更具有前瞻性和全面性,故需要增加教学进度中的考核。课题组决定采用期末笔试考核与平时课堂表现相结合的方式,期末笔试成绩由学生在期末考试中所得的卷面成绩按照一定比例折合而成,平时成绩考评方式有随堂小测、课后习题、小组作业等。这几种方式将考核过程融入教学,能有效地协助老师对学生的学习态度、学习状况以及学习能力做出准确评定。

5.结语

集成电路原理与设计范文5

关键词:集成电路EDA 教学方法 拓展 培养

所谓“集成电路EDA”是通过设计、建模、仿真等手段搭建集成电路框架,优化集成电路性能的一门技术,也是一名优秀的集成电路工程师除了掌握扎实的集成电路理论基础外,所必须掌握的集成电路设计方法。只有熟练掌握集成电路EDA技术,具备丰富的集成电路EDA设计实践经历,才能设计出性能优越、良品率高的集成电路芯片。可以说,集成电路EDA是纤维物理学、微电子学等专业的一门非常重要的专业课程。然而,目前集成电路EDA课程的教学效果并不理想,究其根本原因在于该课程存在内容陈旧、知识点离散、概念抽象、目标不明确等不足。因此,通过课程建设和教学改革,在理论教学的模式下,理论联系实践、提高教学质量,改善集成电路EDA课程的教学效果是必要的。

为了提高集成电路EDA课程的教学质量,改善教学环境,为国家培养具备高质量的超大规模集成电路EDA技术的人才,笔者从本校的实际情况出发,结合众多兄弟院校的改革经验,针对教学过程中存在的问题,进行了课程建设目标与内容的研究。

课程建设目标的改革

拓展学科领域,激发学生自主学习兴趣 本校集成电路EDA课程开设于纤维物理学专业,但是其内容包括物理、化学、电子等多个学科,教师可根据教学内容,讲述多个学科领域的专业知识,尤其是不同学科领域的创新和应用,引导学生走出本专业领域,拓展学生视野,提高科技创新意识。与学生经常进行互动,启发式和引导式地提出一些问题,让学生课后通过资料的查找和收集,在下一次课堂中参与讨论。激发学生思考问题和解决问题的兴趣。这样课内联系课外、师生全面互动、尊重自我评价的新型教学方法可以培养学生创新精神,激励自主学习,由被动式学习转为主动式学习,拓宽学生的知识面。

完善平台建设,培养学生创新实践能力 在已有的实验设备基础上,打造软件、硬件、网络等多位一体的集成电路EDA平台,完善集成电路EDA实验。通过集成电路EDA平台的实践环节,既培养了学生的仿真设计能力,加深了对集成电路EDA知识的掌握,又使学生掌握了科学的分析问题和解决问题的方法。引导学生参加项目研发,鼓励学生参与大学生创新创业和挑战杯活动,以本课程的考核方式激励学生写出创新性论文,通过软件仿真、实验建模等方式设计出自己的创新性产品,利用集成电路EDA平台验证自己的设计,然后以项目的形式联系企业,将产品转化为生产力,将“产学研”一体化的理念进行实践,培养学生创新实践能力。

课程教学内容的改革

精选原版教材 教材是教学的主要依据,教材选取的好坏直接影响着教学质量。传统集成电路EDA课程的教材都以中文教材为主,内容陈旧,即使是外文翻译版教材,也由于翻译质量及时间的原因,仍然无法跟得上集成电路的革新。因此,在教材选取时应当以一本英文原版教材为主,多本中文教材辅助。英文原版教材大多是国外资深集成电路EDA方面的专家以自己的实践经验和教学体会为基础,结合集成电路EDA的相关理论来进行编写,既有丰富的理论知识,又包含了大量的设计实例,使学生更容易地掌握集成电路EDA技术。但是只选择外文教材,由于语言的差异,学生对外文的理解和接受仍然存在一定的问题,为了帮助学生更好地学习,需要辅助中文教材,引导学生更好地理解外文教材的真谛。

更新教学内容 著名的摩尔定律早在几十年前就指出了当价格不变时,集成电路上可容纳的元器件的数目,约每隔18个月至24个月便会增加一倍,性能也将提升一倍。这条定律指引着集成电路产业飞速的发展,集成电路EDA课程是学生掌握集成电路设计的重点课程,因此必须紧跟时展,不断更新教学内容。现有的集成电路EDA教材涉及集成电路新技术的内容很少,大部分都以阐述基本原理为主,致使学生无法接触到最新的内容,影响学生在研究生面试、找工作等众多环节的发挥。在走入工作岗位后,学生感觉工作内容与学校所学的知识严重脱节,需要较长的时间补充新知识,来适应新工作。为了改善这种状况,需要以纸质教材为主,辅助电子PPT内容来进行教学。纸质教材主要提供理论知识,电子PPT紧跟集成电路的发展,随时更新和补充教学内容,及时将目前主流的EDA技术融入课程教学中。还可以进行校企结合,把企业的专家引进来,把学校的学生推荐到企业,将课程教学和企业实际相结合,才能激发学生的学习兴趣和积极性,提高教学效果。

参考文献

[1]马颖,李华.仿真软件在集成电路教学中的应用探讨[J].中国科教创新导刊,2009.

[2]杨媛,余宁梅,高勇.半导体集成电路课程改革的探索与思考[J].中国科教创新导刊,2008(3):78-79.

[3]李东生,尹学忠.改革传统课程教学强化EDA和集成电路设计[J].实验技术与管理,2005,4(22).

[4]徐太龙,孟坚.集成电路设计EDA实验课程的教学优化[J].电子技术教育,2012(7):87-89.

[5]卫铭斐,王民,杨放.集成电路设计类EDA技术教学改革的探讨[J].电脑知识与技术,2012,18(19):4671-4672.

集成电路原理与设计范文6

关键词:微电子技术专业;集成电路;实验室建设;

作者:陈伟元

0引言

以集成电路为主的微电子产业是现代信息产业的基础和核心[1],它对经济建设、社会发展和国家安全具有至关重要的战略地位和不可替代的核心关键作用,其重要性在迅速提高,产业规模在逐步扩大。目前,我国集成电路产业的发展,已经形成了以设计业、芯片制造业及封装测试业为主的微电子产业链,并相对独立发展的产业结构特点。微电子产业的快速发展带动了社会对各层次微电子技术人才的大量需求。为顺应微电子产业的快速发展,为地方经济建设服务,各地高职院校纷纷开设了微电子技术专业,并大力加强微电子技术专业的建设[2-4]。但微电子技术是一门应用性非常强的学科[5],不仅需要较好的理论基础,更需要有较强的生产工艺实际操作能力,这都需要较好的实验环境和实验条件来支撑。微电子实验实训设备要求高,资金投入大,很多高职院校(包括本科院校)没有足够资金购买昂贵的实训设备,学生只能通过老师解说、观看录像等了解相关工艺过程[6-7],没有机会亲自动手[8],造成我国微电子制造业人才总量严重不足,且人才质量基础较差、人才层次结构不合理[9]。

基于工作岗位和人才培养目标的分析,苏州市职业大学结合省实训基地和省光伏发电工程技术开发中心的建设,优化建设方案,用非常有限的资金投入,建立微电子技术专业实验室,为培养符合企业需求的高技能、高素质人才进行了有益探索。

1微电子技术专业培养目标分析

目前,中国集成电路产业已初步形成以长三角、环渤海,珠三角三大核心区域聚集发展的产业空间格局。以2010年为例[10]:我国集成电路产业销售收入1440.2亿元,三大区域集成电路产业销售收入占全国整体产业规模的近95%。其中,环渤海地区占国内集成电路产业整体规模的18.8%,珠三角地区占全国集成电路产业的8.4%,涵盖上海、江苏和浙江的长江三角洲地区已初步形成了包括研究开发、设计、芯片制造、封装测试及支撑业在内的较为完整的集成电路产业链,占全国集成电路产业的67.9%。目前国内55%的集成电路制造企业、80%的封装测试企业以及近50%的集成电路设计企业集中在长三角地区。

可见,长三角地区是中国重要的微电子产业基地,而苏州、无锡等苏南地区在集成电路制造、封装测试领域又具有明显的区位优势。现代工业的发展,集成电路后端(版图)设计服务的需求会持续增加。

高等职业技术教育微电子技术专业的就业核心岗位的确定,既要反映出当地微电子产业的市场需要,又要考虑到适合高职学生能做、并乐于做的岗位。如现场操作为主的“半导体技术工人”岗位,不适合作为本校微电子专业的核心岗位,也体现不出与中职学生在岗位上的竞争力[11]。经调研和分析,确定“集成电路版图设计”、“微电子工艺及管理”、“设备维护”作为本专业学生培养的核心工作岗位。

微电子专业的培养目标为:培养德、智、体、美全面发展,能适应现代化建设和经济发展需要,具有良好职业道德和创新精神,熟悉微电子器件及工艺的基本原理,具备集成电路版图设计、晶圆制造及封装测试中的设备操作与维护、工艺管理、产品测试、品质管理能力,面向生产服务一线的高素质应用型技术人才。

2微电子技术专业实验室建设目标

高职教育以培养高素质应用型人才为主,培养的学生不仅具有较好的理论基础,更应具有较好的基本技能。根据以上培养目标,高职微电子技术专业重点培养学生微电子材料工艺及IC领域如下方向的基本技能:

(1)微电子材料器件工艺与检测。了解微电子材料与器件的常规工艺制备过程,并了解其主要参数的表征及测试方法;

(2)IC设计技术。了解IC设计的流程,掌握IC设计的基本原理和方法,重点熟练掌握IC版图设计工具软件的使用方法;

(3)IC制造与封装测试技术。了解IC制造的基本过程和工艺,掌握基本的IC封装及测试原理和方法,并学会基本测试仪器的使用方法。

为实现以上目标,在微电子技术专业实验室的建设上,至少应围绕如下几个方向来进行:①集成电路设计,特别是集成电路版图设计方向;②微电子材料和集成电路工艺方向;③集成电路封装及测试方向。目前国内各高职院校的微电子技术专业根据自身的实际情况,基本上也是围绕这几个发展分支来建设专业实验室[12]。

微电子实验设备非常昂贵,若要建设完善的微电子技术专业实验室,其建设资金的投入是非常庞大的,大部分学校也没有这样的建设能力。为此,在有限的建设资金上,实验室建设采取实用化原则,以国家投入或学校自筹资金方式建立微电子基础性实验室、IC版图设计实验室、微电子材料及器件工艺实验室,而对于投资较大的IC封装及测试实验室,主要采取与企业共建的方式进行建设。

3微电子技术专业实验室建设方案

根据以上微电子技术专业实验室建设目标,苏州市职业大学结合省实训基地和省光伏发电工程技术开发中心的建设,建立了IC版图设计实验室、微电子材料及器件工艺实验室和IC封装测试实验室。

3.1IC版图设计实验室

IC设计包括IC系统设计、IC线路设计、IP核设计和IC版图设计。其中IC版图设计工作的任务量大、所需人员多,是一种高技能、应用型技术,是最适合高职微电子技术专业学生就业的工作岗位。

IC版图设计实验室的建设,以服务器和计算机终端组成,再配置IC设计软件。其中,终端一般要配置40套以上,以便课堂上每位学生均能单独练习。

IC版图设计实验室的建设投入大,特别是IC设计软件价格昂贵,可争取大学计划、实验室共建等多种方式,获得EDA软件商的支持。苏州市职业大学与SprigSoftInc.合作,引进其先进的IC版图设计软件平台Laker,并与IC设计公共服务平台提供商苏州中科集成电路设计公司进行深度合作,发挥各自优势,共同进行IC版图设计高技能人才的培养与培训。

3.2微电子材料及器件工艺实验室

微电子材料、器件涉及的工艺广泛,实验设备价格昂贵,只能用有限的资金投入,解决一些微电子最常用的工艺实验设备。为让学生对微电子工艺有感性认识和实践机会,经调研,认为净化、扩散退火、薄膜工艺、光刻工艺、霍尔效应测试等是微电子行业应用较多的公共技术。微电子材料器件工艺与检测实验室,建设为千级的净化实验室,以扩散退火炉、真空镀膜设备为基础,并配以相关的光刻机、光学显微镜、霍尔效应测试仪等,从而满足从微电子材料的制备工艺到微电子材料与器件的性能测试等实验需求。

该实验室也结合了省光伏发电工程技术开发中心的建设,兼以实现太阳能光伏电池的制备实验,为微电子技术专业的“半导体器件物理”、“集成电路工艺”、“太阳能光伏电池”等课程提供实验支撑。

3.3IC封装测试实验室

近几年来,国内IC产业有较大的发展,尤其是IC制造及IC封装测试业发展很快,在我国集成电路产业链中有着举足轻重的地位,占据了我国微电子产业的半壁江山[13]。IC封装及测试行业也是微电子技术专业学生重要的就业岗位。

建设IC封装测试实验室是培养高素质IC应用型人才的必要要求。

IC封装及测试实验设备价格非常昂贵,高校往往没有能力独立承建。可采用与企业共建的方式进行建设。本实验室与华润矽科微电子有限公司合作共建,建有集成电路自动测试系统、引线键合、电子显微镜、晶体管特性测试及电子测试设备等。

该实验室的建成,为微电子技术专业的“半导体器件物理”、“微电子封装技术”、“集成电路工艺”、“集成电路测试”等课程提供实验支撑。