系统设计论文范例6篇

前言:中文期刊网精心挑选了系统设计论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

系统设计论文

系统设计论文范文1

视频数据的接收显示

①视频的硬件解码方式。

在Android平台之上,默认解码的视频格式主要存在两种,分别是mP4格式和3gp格式。它可以通过MediaPlayer和VideoView两种方式来对视频解码器进行一定程度的调用。MediaPlayer的主要作用是对音视频媒体文件进行有效地播放,它在音频的播放方面十分简单,但在播放视频时,则需要对SurfaceView进行一定程度的使用,通过它来对画面进行显示。而对于SurfaceView来说,它对完全的OPenGLES库能够有效的支持,因此相比于自定义的View来说,它能够在绘图方面表现出更大的优势。除此之外,它也可以通过VideoView来播放视频,videoviewt比MediaPlayer简单易用,但定制性不如Mediaplayer。

②视频的软件解码方式。

视频的软件解码方式,需解码H.264格式的视频,因此,需要在Android平台之上对解码器进行一定程度的移植,只有这样,才能够有效的扩展Android对视频格式的支持。一般情况下,要想对视频软件解码方式进行有效的实现,必须要做好解码器的移植工作,它是实现视频软件解码方式的关键。目前状况下,较为流行的一种方式是通过移植FFmPeg开源库来实现H.264格式视频的解码。

图片的接收

在图片的接收方式当中,视频解码的功能主要是由服务器端来进行实现的,因此,Android客户端只需要对解码后的图片数据进行有效的接收。然而,这当中也存在着一个问题,那就是传输后的数据是解码后的图片数据,如果与接收视频的方式进行一定程度的比较,接收图片的方式就对网络宽带有着更高的要求。随着经济的发展,3G技术逐渐普及,在这种环境之下,网络宽带的制约将会得到一定程度的缓解。

目前状况下,在多画面的视频监控当中,无论是硬件解码方式还是软件解码方式都存在着一定程度上的不足。而对于图片接收方式来说,它具有操作简单,效果优良的特点,下面通过实验数据来说明各种方式在多画面视频监控中的性能。实验的平台为Acer平板电脑,型号为A500。在本次试验当中,解码的视频数据的格式均为mp4格式,素材主要存在着三种不同的分辨率,分别为128*96,672*378,800*480。

表2显示的是硬件解码的性能。从上表中,我们可以发现硬件的解码虽然可以对多路视频进行一定程度上的显示,但是在画面的数量上受到一定程度的限制,具体表现在两个方面:一方面,无论视频分辨率多低,画面的数量上限为5路;另一方面,画面的树龄与视频分辨率存在着反比例的关系,画面的数量会随着视频分辨率的增高而出现一定程度的减少。

智能监控的算法

智能视频监控是在无专人监控的情况下,通过计算机视觉技术对视频内容进行自动分析,对监控画面中的变化进行检测、跟踪和识别,并对监控目标的行为进行分析和判断。在智能监控的算法中,运动目标检测是最基本的一步。运动目标检测是指在监控画面中检测出变化区域并提取出运动目标。目前主流的运动目标检测的方法有帧差法、光流法和背景减除法等。本文主要采用帧差法作为智能监控算法。

帧差法是在监控图像中,相邻两帧对应位置上的像素进行差分,并通过阂值化检测出图像中的运动区域。首先,把前一帧图像作为背景图像,与前景图像相减,随后对结果进行二值化:背景亮度变化不大时,若差分后的像素值小于预先设定的阂值,可认为此处为背景像素;若差分后的像素值大于阂值,则认为此处有运动目标,将检测到的区域标记为前景像素。通过标记,便可获知运动目标在画面中的位置。此方法的优点:相邻两帧的时间间隔较短,用前一帧图像作为后一帧图像的背景模型,有很好的实时性,背景不积累,更新速度快,算法计算量小;缺点:阂值选择非常关键:过低,则不能抑制背景噪声,容易将其误判为运动目标;过高,则容易漏检,将有用的运动信息忽略了。而且当运动目标面积较大或颜色一致时,帧差法容易在目标内部产生空洞,无法完整地提取运动目标。

模块分析

在这一系统当中,主要存在着六个模块,分别是视频解码模块、网络接口模块、画面显示模块、人机交互模块、智能处理模块、处理结果显示模块。在这六个模块当中,视频解码和智能处理模块主要是在服务器上进行实现的,其他模块则在Android终端上进行实现。下面对在Android终端上进行实现的模块进行简要阐述。

①网络接口模块。对于HTTP,Android提供了三种HTTP通信接口,分别为标准Java接口()、APaehe接口(org.apache.http)、Android网络接口(.http)。其中APache接口提供了非常丰富、高效的工具包。由于服务器发送的是解码后的图片数据,故而客户端接收到的数据流可以组成一幅图片。通过Android提供的BitmapFactory.decodeByteAITay()函数,可从接收到的数据流中得到Bitmap格式的对象。

②画面显示模块。为了对画面显示进行有效的实现,需要继承View类,重写了onDraw()方法,其中,在onDraw()方法中所实现的内容,将在界面上显示出来。定义一个Bitmap对象bmpl,此对象将在画布中绘制出来(即界面显示)。

系统设计论文范文2

数控技术利用数字信号控制执行机构完成某种功能,实现自动化。随着我国计算机技术的变革,微小型计算机数字控制CNC是当今制造高精度、高质量以及形状复杂产品的基础设施,属于制造技术的关键环节。对于一般数控系统组织,运算器接收、运算、处理输入装置的指令或数据,并不断向输出装置送出运算结果。控制器能根据指令控制运算器和输出装置来实现各种操作及控制整机的循环工作,使数控系统执行所要求的运动,其中伺服驱动把来自控制器的脉冲信号经过功率放大、整形后,转换成执行部件的平移、进给或旋转等运动,主要包括驱动装置和执行结构两大部分。驱动装置由进给驱动单位电机、主轴驱动单元等组成,步进电机、直流和交流伺服电机是常用的伺服元件。执行机构根据控制器发出的指令信号,完成驱动装置对系统旋转和进给运动的控制。作为数控系统改进生产设备的实例,数字喷印技术是非接触印刷技术的主流,以低廉的价格和精美的印刷质量越来越受到用户的青睐。数字喷印吸收喷墨打印等新技术,墨水经过喷腔组件的小孔射出,喷印器在基材上方以高速度喷射墨水,同时晶体振荡器高速纵向振荡,使墨线分裂成一系列大小和间距相等的墨点,机器内部微处理器监视回馈的信号,随着物体的移动,更多的墨点打在物体表面就形成了字符或图线。经调研,市场上还没有针对薄膜开关制造工艺而开发的专业喷印设备,部分生产厂家引入用于广告喷印的喷墨打印设备进行面板的喷墨印刷,主要有2种:热泡式喷墨打印机和平板式喷绘机。深圳某公司生产的热泡式喷墨打印机,采用爱普生配件,底座同步,并采用步进交流电机和IC芯片控制模块化。由于该打印机源于办公打印机技术,墨量不厚,所以不能采用UV油墨,不能立体打印,且印制速度慢,无法满足规模化生产。广州某公司生产的平板喷印机,采用陶瓷压电式工业高速Konic,XAAR等喷头,由多色喷头组成单模组,且UV光跟随固化,可形成立体墨痕和喷印彩色图案,但不能用于电路喷印。由于该打印机在制造中各工序对位困难,故不能完全满足彩色面板、上电路、绝缘层、下电路的套印,工序切换速度慢,不符合一次流水套打的工艺要求。为了提高定位精度,采用计算机视觉定位技术、MARK高精度光学影像定位系统及图像AOI技术,印制精细度达0.1mm,对位精度≤0.2mm。采用多喷头阵列高速流水喷印技术,以4—12个喷头为1组并行喷印,从而实现高速输出。为消除喷头间喷印干扰,对12个喷头的喷印进行同步控制。采用2套独立控制电路,分组传输,每组喷头数不超过6个,从而能保证一般的4色彩油墨、金属导电油墨、特色工艺油墨的喷印阵列。DSP的定位圆图像采集及参数提取更进一步提高了定位精确度和喷印速度。设计的阵列双模式喷印平台基于数字控制器现场可编程门阵列(FPGA),DSP,PC及软件,由程序协调操作FPGA等多芯片运作,同时解决数据分配、时分信号和信号优化等数据处理问题。在数控系统中可以利用FPGA处理接口板与上位主控板之间的数据传输,接收下位伺服的反馈信号,监测伺服电机的工作状态。针对x,y,z和w方向的移动,利用可靠性、可编程多轴控制器构建精确位置控制系统。以PLC控制变频电机为执行元件,通过RS-485通信实现驱动单元的远程控制,提高系统的集成度与可靠性。基于以上设计和工艺,集成高速、柔性、精密配套技术以及制造工艺,利用数控系统的核心技术,喷印平台简化了传统工艺流程,只需改变电气参数就能完成不同的喷印任务,不需要为新产品的每一次改动而制作网版。设计的阵列喷印流水式装置通过交错及斜装阵列组合模式,由12通道静态喷头阵列与4通道动静双模式喷印模组构造,双模式构造能保证喷印清晰度和速度,解决缝接及拉线等问题。该装置能快速完成维护和喷头更换,提高了设备的灵活性和生产效率,其平台抗震、抗干扰能力较好,符合IP54标准。

2阵列双模式喷印平台的控制模块

2.1主要控制单元

作为一种典型的控制不同组合对象的多参数数控喷印平台系统,既有平移、旋转运动控制和图像识别辅助控制,又有喷墨头的温度、流量等过程控制。为保证高速阵列多喷印头的数据协调、时控合理,核心控制模块采用WDM类设备驱动程序架构和MINIPort层间驱动协议,驱动程序用VC编写和调试,使其达到4路USB准同步数据传输,时间关键帧技术保证操作系统达ms级响应。发挥硬件和软件的开放性,实现数控系统和伺服控制系统间的通讯、加工代码的自动生成、最佳模切顺序和最短空程路径。模块化设计后则重点关注控制器、数据处理、I/O系统、驱动接口等子模块,以上位机数控系统来扩展网络控制系统,使用计算机数控系统与FPGA控制器完成接口驱动,控制模块见图2。喷印控制电路系统重点包括基于FPGA的主控部分、基于DSP的定位圆图像采集及参数提取部分。采用现有控制技术的理论方法和技术条件,以FPGA嵌入式为主控制系统,FPGA有丰富的逻辑硬件资源,CycloneIIFPGA芯片有DSP系统、硬件协处理器、接口系统、通信系统、存储电路以及普通逻辑电路等功能子系统,能解决传统宽幅喷印机对大量图像数据在上下位机之间和系统内部传输速度的瓶颈。利用DSP实现复杂的电气控制算法,提高对字车电机和走纸电机运动的精度控制,从而提高宽幅喷印机的喷印精度。系统还开发了FPGA的时钟同步系统,在上位机获取时间戳并通过FPGA硬件电路矫正晶振频率的动态补偿,实现数控系统的精确时钟同步。FPGA主控部分主要包括USB接口模块、喷印数据处理模块、喷头驱动模块、温度控制模块、驱动电压调整模块、喷印图像存储及纠偏模块与DSP接口模块等7部分。

2.2模组控制单元的数据处理

FPGA接收数据并处理数据,发送数据到喷嘴、电机、相机等数字终端,数据缓冲区则使用多片DDR2,以加快数据传输速度。对输入数据进行分组,基于FPGA内核改变时钟域意味着整个喷墨头的处理在1个时钟周期内实现多目标的同步时钟系统。通过使用VHDL编写的时序程序发送控制字到FPGA的UART接收模块,根据控制字的不同,调整相应的数据,电机模块根据控制字产生相应的脉冲和控制信号,控制喷头电机的启停、方向和速度等数值,利用FPGA实现复杂的逻辑时序的控制信号。事件驱动控制的机电驱动系统也在FPGA实现,由有限状态机(FSM)定义所有可能的实现方向数据。其中,USB接口模块在每批次喷印开始前用于接收计算机发送下来的原始喷印图像,并将存储在外部缓存当中的定位原图像上传至计算机,用于在人机界面上检查初始标定参数是否正确。当喷印过程开始后,USB接口模块用于与计算机交互喷印过程中的实时参数,喷印数据处理模块用于将待喷印图像的像素数据进行拆解,并重新封装成适合喷头喷印的数据格式。喷头驱动模块用于计算时设置的有关喷印参数信息转化为适合喷头喷印的时序,以此时序来精确控制喷头的喷印。温度控制模块用于实时调整并显示喷头的温度,驱动电压调整模块用于实时调整喷头驱动电压的幅值及幅宽,存储喷印图像及工艺MARK参数信息处理,可以保证喷印位置的准确性。利用CycloneIIFPGA的并行执行特点,对2—4排喷嘴的数据进行处理及分配,实现实时喷射控制、装置控制逻辑与状态管理。多排喷嘴的数据收发1次,先将此行像素拆分成奇数像素数据和偶数像素数据,再将这2部分像素以相反的顺序发送至喷头,就能喷印1行完整的像素点矩阵。此时,将首先在存储中开辟一个动态的全局缓存,存放所要喷印的一排像素数据,再为若干个喷头分别开辟单独的缓存区和独立的进程,这些独立的进程将通过一定的交换机制,与其他相关进程进行数据交换,所有与喷头相关的进程完全并行,因此整个过程除了USB数据的接收外,其他部分所消耗的时间只相当于处理一个喷头数据所消耗的时间,从而提高数据处理的速度。

3结语

系统设计论文范文3

35kV变电站无人值守自动化系统的设计原则就是通过智能电网的理念,对整个县级电网进行建模,得到安全可靠的设计方案,以保证电网稳定运行。35kV变电站无人值守自动化系统最重要的设备是集控站,其负责整个系统的监控管理、数据收集、数据处理等[4]。无人值守系统较常规系统相比增加了微机自动巡视和跟踪功能(见图1)。受控子站主要包括测控通讯模块、远动通信模块、微机五防模块、网络通信模块、保护测控模块、视频监控模块等,由这些子站实现数据实时采集、通信、终端控制等功能。这些受控子站的分布模式主要有集中式、集中分布式、分散式3种[5]。本设计中采用的是许继集团CBZ8000自动化系统,包括站控层、通讯层、装置层3部分(见图2)。整个系统采用面向对象设计,系统结构简单,不设置总控单元,测控单元均为模块化结构并分散式安装。无人值守自动化控制系统,在遥测和遥信的基础上实现遥控和遥调功能。集控主站内的电气设备主要有:接地装置、35kV进线、断路器、无功补偿装置、电源、主变压器、10kV馈线等。

2后台监控系统设计

CBZ8000自动化系统支持WindowsXP操作系统,利用SQLServer2000构造数据库,基于VisualBasic语言编制程序。实现无人值守自动化模型,需要得到正确的网络拓扑连接,实现系统实时分析。上述算法即为网络拓扑连通性的验证,网络节点矩阵自动生成可以大大降低计算工作量。进入监控系统前要完成登陆,系统设计时一定要根据不同的用户组设置不同的权限,进入登陆系统后就可以查询各个子系统的状态,还可以查看整个变电站的运行数据(见图3)。监控系统还可以查看变压器和进线的调度,如感性有功电度、感性无功电度、容性有功电度、容性无功电度等。变电站出现故障后,会弹出报警界面,同时记录下超限值和发生故障的时间,工作人员需要查看上边的提示,通过保护装置进行操作。本设计采用的终端设备是WYD—800系列RTU,由测控设备完成初始数据采集和预处理,经以太网由终端设备传输到集控站。较以往系统相比,本次设计中改进了微机五防操作系统,主机可以基于规则库中的数据对实际数据进行逻辑对比,并生成相应的操作程序。操作票专家系统设置了5种开票方式:图形开票、专家库开票、调用典型票、手工开票、历史操作票。

3遥视系统设计及测试

现有变电站一般都具有四遥系统,本设计在这个基础上增加了遥视系统,即远程视频监控系统。此系统可以实现以下功能:监控35kV变电站变压器和主要设备情况;对周围环境进行监控并实现消防系统报警;对门禁情况进行中心控制;辅助电力生产减少工作量。变电站遥视系统设备主要有:可控摄像机、烟雾传感器、红外传感器、电源、计算机、交换机、服务器等(见图4)[6]。中心监控服务器是本系统的核心,承担着工作人员与前端设备联络的任务,其可以实现服务器模块管理、监控系统设置、身份认证、权限管理、视频设备管理、镜头分组、报警和联动、中心录像、数据检索、电子地图等功能。遥视系统应用时,工作人员可以在集控站对变电站受控设备进行远程巡视,实现无人值守变电站的自动控制功能,并结合视频监控系统和图像监视系统提供的数据,远程控制现场球形摄像机(见表1)。

4结语

系统设计论文范文4

1.1太阳能供电系统

光伏供电系统的工作受限于天气和日照时间。为保证对滴灌系统的供电,需要对太阳能进行转换并存储在蓄电池中,以保证滴灌系统在阴天或光照不足的情况下正常工作。

1.2控制系统

控制系统采用带有8路A/D转换的单片机STC12C5A60S2,应用C51编程,将土壤湿度传感器采集到的微弱电压信号,经过调理电路提供给单片机,实现土壤湿度的显示,并为执行机构提供动作信息,实现自动滴灌。

2系统硬件构成

系统硬件由太阳能存储模块、数据采集处理模块、串口通信模块、执行模块和太阳能追光模块5部分构成。其中,STC12C5A60S2单片机、土壤湿度检测电路、复位电路、继电器控制电路是整个测控系统的核心。整个系统为太阳能薄膜电池进行光伏转换及蓄电池存储供电。根据不同农作物的蓄水规律,预先在数据采集系统中设定土壤湿度的上下限值,与实时采集到的土壤湿度信号进行比较,然后输出信号使继电器控制电路控制电磁阀门的开关决定是否对作物灌溉。整个系统又为太阳能电池薄膜和蓄电池供电。

2.1太阳能追光模块

该模块主要利用单片机驱动控制直流电机和机械机构,调整电池板与太阳的角度,使太阳能电池薄膜最大限度地吸收太阳能转换电能。本系统以光电隔离和继电器作直流电机的驱动电路,通过软件控制电机的启停动作及间隔时间,利用此追光控制模块,可比普通固定的太阳能发电效率更高。太阳能追光模块和太阳能追踪光电转化分析图分别如图3、图4所示。

2.2太阳能供电模块

整个系统的供电均来自光伏转换,采用转换效率较高的柔性太阳能电池薄膜。该电池采用了UV固化聚合物,质量小、柔韧性好,保证了很高的耐用性。单片薄膜可输出2V电压,370~400MA,通过串并联组合可输出20V,400MA左右的电流。执行机构不工作时,经过充电控制器将太阳能转化后存储在蓄电池中;执行机构工作时,蓄电池为相关机构提供电能。同时,太阳能追光系统通过控制电路适时调整电池板的角度,以最大限度地接受和利用太阳能。

2.3数据采集处理模块

数据采集处理模块是整个控制系统的核心,采用性价比高、耗能低的STC12C5A60S2单片机。该处理器内部集成有8路10位A/D转换单元(250K/s,即25万次/s)。土壤电阻的大小随土壤含水量的不同而不同,根据这一原理,自制阻抗式土壤湿度传感器。其通过探针检测土壤电阻,将土壤电阻的大小转变为电压信号输出,此信号是模拟信号,先由单片机内的A/D转换器变成数字信号后再进行处理,包括主控模块、显示模块及执行模块。2.3.1主控模块单片机有32个I/O口,P0口是单片机和1602的数据接口,P1.0~P1.3口是湿度传感器与单片机内部A/D的接口,P2口部分引脚作继电器及液位检测接口,P3口作液晶显示的控制及按键接口。2.3.2显示模块显示模块采用1602液晶显示片。单片机的P0口和P3口的部分引脚构成了1602的数据和控制引脚,显示模块电路如图8所示。

2.4水位控制和电磁阀驱动电路

储水装置的水位需要控制,具体控制电路如图9(a)所示。电磁阀实现灌溉控制,需要把单片机输出的5V电压转换为驱动电磁阀闭合的12V电压,电磁阀控制驱动电路如图9(b)所示。

2.5串口通信模块

该系统的上位机通过485口实现远程监控。本系统由于上位机距离控制系统较近,采用RS232通信方式。单片机与PC机通过串口通信模块,将采集的数据上传,同时PC机的控制指令通过串口送到单片机。串行接口电路如图10所示。

3系统软件

系统实施灌溉的指令决定于土壤湿度,根据不同作物的需水规律,设定滴灌系统工作的上下限指标。结合考虑土壤水分下渗,一般田间持水率80%的土壤湿度作为上限。本系统用于一个小的种植区,设定土壤湿度85%和10%为上下限值。当前系统状态可由显示器显示出来,设定灌溉时间和时长来驱动电磁阀根据上下限值进行自动灌溉。此外,利用软件设计控制太阳能追光的时间、角度及自动检测高位水箱里水位。

4结论

系统设计论文范文5

关键词:单片机;串行通信;总线;计算机;接口

随着自动化技术、计算机技术和网络通信技术的飞速发展和广泛应用,论文工业过程的智能化、自动化监测与控制系统的应用日益广泛.单片机系统由于其抗干扰性能较好被大量应用到工业过程控制的各个领域。因为工业现场环境较恶劣,单片机系统在使用过程中通常会出现一些设计时想不到的新情况、新问题,这就需要进一步修改和完善.因此,有必要设计一套单片机综合实验系统,根据工业现场反馈的各种问题,随时对系统中的功能模块进行实验研究和分析,解决工程实际问题.本文设计的这套单片机综合实验系统具有自动采集多路模拟量、对采集的数据进行处理和显示、根据设定的参数自动调节和控制输出、与计算机进行远距离数据通信等功能.

1系统组成及工作原理

综合实验系统主要由以下几部分组成:89C51单片机及其仿真系统,温度、压力等模拟量传感器及其接口电路,A/D转换模块,数据存储模块,按键控制模块,日历时钟模块,看门狗电路模块,FP—GA模块,液晶显示模块,通信模块及上位计算机,其组成框图如图1所示.系统采用89C51单片机作为主控芯片,A/D转换模块将多路模拟信号转换为数字信号;外部数据存储模块为该系统采集的数据提供存储空间;按键控制模块向CPU传回键值,用来设置和调节系统参数;日历时钟芯片不仅可以给系统提供准确的时间,而且为系统提供掉电保护功能;看门狗电路模块为系统提供了精确复位和低电压监控功能,一旦系统出现故障或程序跑飞,它就可以在超时周期之后使CPU复位,提高系统的整体可靠性和抗干扰能力.FPGA模块是现场可编程逻辑门阵列,通过编程可将它作为多种数字逻辑器件使用;LCD液晶显示模块可以同时显示多行字符及自造图形,主要用来显示采集到的数据、系统时间等;兼容RS485和RS232两种协议的全双工串行通信接口,可以与上位计算机进行远(约1200m)近(约15m)距离的数据通信[1];上位计算机将接收的数据进行存储、显示、绘制模拟曲线、打印曲线和数据文件,按照用户的具体要求作进一步的数据分析和处理,同时发送控制参数,对被测对象的温度、压力等进行控制和调节.

2系统硬件设计

2.1单片机仿真系统

单片机仿真系统可以模拟CPU在仿真机上运行用户程序(程序和数据存储器借用仿真机的),也可以连接外部电路来实现动态监测与控制功能.仿真机一般都具有单片机的基本功能部件,如CPU、RAM、用户程序存储区、键盘等;具有单步、设置断点(以便随时观察内部各RAM、特殊功能寄存器的数据变化)、连续运行用户程序的功能[2].

监控程序放置在仿真机内,要仿真的CPU器件位于仿真机外仿真线的端头,毕业论文更换不同的仿真头和CPU,该机可以仿真8031、89C2051、89C51等类型的单片机,该机的调试软件可以直接编辑汇编源程序.通过仿真机进行编程和调试减少了对芯片的频繁写人、擦除和修改操作,只有当程序调试顺利通过才将程序写入芯片,编程方便且节省时间.

2.2传感器的选择及信号变送电路的设计

传感器作为系统的感知器件,直接影响着系统的精度和稳定性.本实验系统中,温度传感器选用精度高,线性度好,使用方便的LM335传感器;压力传感器选用标准应变式压力传感器,它具有精度高、响应速度快、分辨率高等特点.传感器接El电路的设计采用了模块化设计方法,设计了温度、压力等专门接口电路,直接与上述各种传感器相连.由于从传感器输出的模拟电信号非常微弱,需对这些模拟信号进行放大,同时为了确保信号不失真,选用了线性度好、抗干扰能力强的高精度运放OP07,其特点是输入失调电压较高、温漂较小、开环电压增益较高、共模抑制比较大,它输出的模拟信号经10位A/D转换器TLC1543转换成数字信号后,送人89C51进行处理.

2.3通信模块的设计

计算机(PC)串行通信端口是RS232负逻辑电平,该实验系统上既有RS232接El,又有RS485接口,可以通过RS232总线进行点对点通信,也可以通过RS485总线进行多机通信_3],RS485总线上最多可挂接32个综合实验系统,总体布局如图2所示.所以实现计算机和该实验系统之间的近距离通信,通过RS232接口即可;若要实现计算机和该实验系统之间的远距离通信,则必须将RS232电平转换为RS485电平后,才可将实验系统挂接在RS485总线上.RS232-RS485电平转换原理如图3所示,通过MAX485的差动输入(A、B)与RS485总线相连进行信号的收/发,由于RS485总线上只能进行半双工通信,所以MAX232和MAX485之间除了接收和发送线外,还有一个信号线来控制MAX485的接收使能(RE)和发送使能(DE),在PC与RS232相连的这一侧,通过PC的请求发送(RTS)来控制.

2.4串行总线I*2C

I*2C总线是PHILIPS公司开发的一种简单、双向二线制串行总线[4].它只需两根线(串行时钟线SCL和串行数据线SDA)就能完成挂接在总线上的若干个IC器件与微处理器之问的数据交换.该实验系统采用具有IC总线接口的看门狗芯片CATll61和可编程实时时钟芯片PCF8563,由于单片机89C51自身没有IC总线接口,所以采用软件合成IC总线与它们相接.

IC串行总线与并行总线的最大区别在于:并行总线有地址总线,CPU通过地址总线访问从器件;而IC总线利用数据传送中的前几个字节传送地址信息,所以占用CPU的口线大大减少[5].随着智能化测控仪器日趋小型化和集成化,IC串行总线正在逐步取代传统的并行总线..5抗干扰设计

工业监控现场工作环境一般较差,干扰较严重,为了保证系统可靠工作,必须解决抗干扰问题.针对工业监控现场可能产生的干扰、干扰来源、传播途径等,采用了软硬件方法对系统进行抗干扰设计.硬件抗干扰设计主要包括:对电源噪声进行滤波、大功率驱动电路接口进行光电隔离、集成电路芯片的VCC与地之间并连电容、优化电路板的布线、看门狗监控等;软件抗干扰设计主要包括:软件陷阱、软件自恢复、数字滤波、求平均值等.

对于数据输入通道的干扰,采用软硬件结合的方法进行滤波.当存在随机干扰而使被测信号中混入了无用成分时,硕士论文首先经过一个时间连续的RC滤波电路,再经A/D变换成二进制数字量后,进行数字滤波.因为硬件滤波能很好地抑制高频干扰,而对低频干扰的滤波效果却较差;而软件数字滤波算法对低频干扰具有较好的抑制能力.

在控制强电设备的开关量输出通道中,为防止现场强电磁干扰或工频电压通过输出通道反串到监控系统,采用了光电隔离技术.因为光信号的传输不受电场、磁场的干扰,可有效地防止干扰信号因耦合而进入系统,达到电气隔离的效果.

3系统软件设计

系统软件包括单片机软件和PC机软件.单片机软件采用模块化结构,利用MCS一51汇编语言编写.根据要实现的功能,该软件由主程序以及数据采集、A/D转换、数据通信、日历时钟编程、键盘中断调控、液晶显示、D/A转换、数码管显示等程序模块组成.下面以加热炉的炉温控制为例,给出系统程序流程图如图4所示.

PC机软件的主要功能是对单片机系统采集的数据进行存储、处理、动态模拟显示、报表绘制、打印输出等.PC机软件采用VisualBasic6.0编写,医学论文PC机与单片机之间的实时通信程序主要是通过计算机的串行通讯口进行数据的实时采集和双向通信,此外,PC机程序还将单片机采集过来的数据按照用户的具体要求进行动态显示、数据统计、生成报表和数据文件等,并对不同情况下得到的数据进行对比分析,总结出变化规律.

4实验结果与分析

为了测试该系统的实时性,将5台综合实验系统与工业计算机组成分布式多机通信系统,单片机串口工作方式1(传送一帧信息10位),波特率2400bps,一帧数据采用5个字节(其中数据占2个字节是因为A/D转换结果是10位)的格式,如表1所示.5台实验系统各采集一次数据给PC机传送时,理论上连续发送速率为2400/(10*5*5)===9.6次/s.经过测试发现,计算机在120ms后收到了5台综合实验系统发送的共250位数据,实际发送速率约为8次/s,这是因为有状态转换和等待时间;为了测试系统的可靠性和稳定性,将调试好的程序写入单片机芯片,使系统连续运行,120h后观察系统仍然在按设定的流程工作,没有出现死机现象.该系统经过多次改进和实验验证后,据此设计了工业加热炉炉温控制系统并在工业现场安装使用,结果系统能连续正常工作(工业计算机故障除外),测量随机误差为±0.01℃,控制结果满

足了实际要求.

5结论

该综合实验系统不仅能为以单片机为核心的系统前期探索研究提供一种方便的实验装置,而且能在远离工业现场的实验室解决工业应用中的实际问题.实验结果表明该系统可以将许多分散的实验项目整合在一起进行研究和分析,节约资源,降低成本;实验数据正确率高,通信实时性强,系统工作可靠;单片机串行网络构成的分布式通讯系统灵活性强,易于扩充,其基本原理适用于工业现场的分布式数据采集、检测及控制系统,具有很大的实用价值.

参考文献:

[1]李朝青.PC机及单片机数据通信技术[M].北京:北京航空航天大学出版,2001.

LIChao-qing.DataCommunicationTechnologyofPCandSCM[M].Beijing:BeijingUniversityofAero—nauticsandSpaceflightPress,2001.(inChinese)

[2]杨文龙.单片机原理及应用[M].西安:西安电子科技大学出版社,1993.

YANGWen—long.PrincipleandApplicationofSCM[M].Xi’an:Xi’anUniversityofElectronicsTechnol-ogyPress,1993.(inChinese)

[3]高红红.矿区专用铁路调度监督系统的研制[J].现代电子技术,2005,21:84.GAOHong-hong.ResearchandDevelopmentofDis—patchandSupervisionSystemofMineRailway[J].ModernElectronicsTechnique,2005,21:84.(inChinese)

系统设计论文范文6

信息系统平台采用JAVAEE开发,基于面向服务体系架构模式(SOA)搭建组件化业务基础平台。组件化业务基础平台相比传统的业务基础平台将业务基础平台的内核分离出来作为每一个业务组件的微内核,再将业务基础平台中可以分离出来的内容作为单独的公共组件,从而实现业务组件和公共组件的分离[4](图1)。当业务基础平台升级时,业务组件不需要随之升级。基于SOA的组件化业务基础平台更利于系统的升级和维护,系统的灵活性高、可扩展性强[5]。本系统的总体技术路线如图2所示,数据管理、服务流程管理、队列管理之间通过相关组件调用方式共同组成业务基础平台。该业务基础平台提供:(1)统一的数据处理接口:用于接入各种服务类型和数据转换处理。各处理服务和转换处理都可以作为“组件模块”插入业务基础平台。(2)统一的管理配置接口:用于接入不同的配置界面,便于系统开发人员配置管理。(3)统一的数据格式:用于接入各种类型的数据源,包括文件读写接口、数据库操作接口、应用系统适配器接口和消息队列的数据绑定接口,并作为“组件模块”插入业务基础平台。(4)统一的运行管理监控接口:方便各种处理运行时信息的统计、运行后处理结果的审计、历史信息的统计等[6]。

2系统数据库的设计

数据库系统分为基本数据库和产品数据库两大类,基本数据库存储区域自动站数据、雷达数据、地面气象观测站数据、卫星云图、农气数据等;产品数据库存放相关业务系统生成的预报产品、农气产品、人影产品、城市气象服务产品、雷达产品、决策服务产品等[7]。数据又分为结构化的数据资料和非结构化的数据资料。通过建立SQLserver数据库管理系统存储结构化的数据资料;由于非结构化资料数据量大,是以整体文件的方式使用,因此其主体以文件的方式存储,通过抽取其基本描述,如文件名称、存放物理路径等,利用DBMS进行管理[8]。数据库管理系统的总体结构如图3所示。取的基本数据检查法。分为一级、二级、三级质量控制,主要采用要素极值检查、时间一致性、内部一致性等方法,目的是在数据入库前辨别数据是正确、可疑还是错误[9]。对于采集、处理、分类入库后的数据分为8个数据子库,分别为:常规气象资料子库、农业气象灾情库(来自AB报、重要天气预报、民政部门的农业气象灾情、气象灾情、受灾面积和损失情况能)、农业气象观测资料子库(包括来自AB报的农业气象实时观测资料和农业产量分析资料)、农业经济统计信息库(农业产量、水利建设、农业生产背景等资料)、农业气象方法(预报模型方法、资源评价方法和灾害评估方法等)、QBS灾情资料库(台风、暴雨、冰雹、大风等)、系统产品库(系统产品表)、辅助数据库(台站信息、数据字典表)等资料。采用数据库管理系统的一个优势就是系统易于扩展,比如区站号、服务产品等可以扩展。在进行数据存储结构设计时,每张数据表都包括区站号和时间两个字段,可将“区站号”设为索引用于和其他数据表进行关联。数据采用分级存储技术,不经常访问的数据驻留在较低成本的存储器中,使不同性价比的存储设备存储不同级别要求的数据文件,分级存储后的数据文件迁移时,应用程序不需要改变[10]。节约了成本,优化了性能,也改善了数据的可用性和移动的灵活度。系统的维护应由专门的数据库管理员进行维护,包括数据的安全性、备份机制和必要的数据恢复技术。

3系统的主体结构

构建气象为农服务系统的构建,需全面考虑业务的需求,充分利用目前各种先进的技术,从生产和研究出发,最大限度地利用现有数据,开发出一套完善、功能强大的系统。系统已经建设完成资源检索与信息查询子系统,信息定制与推送子系统,信息咨询子系统,电子显示与触摸屏子系统,无线信息服务子系统(图4)。系统将信息定制与推送子系统整合到资源检索与查询系统中,如机场和环境监测站查询能见度信息的次数较多,系统自动将能见度相关文献和资料推送到用户主页上,供用户点击浏览。信息查询系统针对不同的用户开设不同的浏览权限,以满足不同用户的不同需求,但农业气象文献、农业决策对所有用户共享。信息咨询子系统包括目前已成熟的电话专线(如92121、气象专线电话)、气象微博和大功率广播电台等咨询系统。电子显示屏与触摸屏系统则是气象为农服务2个体系建设中一个重要的高科技建设内容,系统主要天气实况、短期天气预报、农用天气预报与情报和气象灾害预警信息4个方面的内容,并利用气象数据资源,建立多媒体模型,实时播放或滚动播放农用气象宣传片。无线信息服务子系统的开发主要是通过与ISP合作并从ICP处购买端口,可以在Web页面上创建短信发送平台[11],预先把需要得知农气信息、预警信息的手机号预留后台数据库,以便信息后自动发送到用户手机上。

4系统网络部署

为保障系统的信息安全性,网络采用气象内网与互联网物理隔离。数据库服务器架设在内网上,其他应用服务器采用双网卡的方式,从气象内网数据库服务器中读取数据,并通过互联网将农业气象信息以Web的形式给用户,系统网络部署如图5所示。图5系统网络部署系统的部署由数据层、应用层、负载均衡层和网络接入层组成。数据层主要完成结构化SQL数据库、文件数据库的管理。本系统在设计上将数据库和入机接口部署在不同的服务器上,并采用双机备份机制,提高数据的安全性能。应用层主要承担所有用户的Web服务,以及整体系统的逻辑运算。对于不同的应用层服务器承担不同数目的用户并发访问,对于访问客户较多的应用服务器,可灵活部署多台服务器并开设更大的网络带宽以提高访问速度。负载均衡层采用专用的负载均衡设备主要为多用户同时访问应用服务器时平衡工作任务,从而达到网络性能优化的目的[12]。它主要在网络应用的访问量增长、单个处理单元无法满足负载需求时起作用。网络接入层主要是省市8M专线局域网、VPN专用网以及互联网。

5小结