航天电子技术范例6篇

前言:中文期刊网精心挑选了航天电子技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

航天电子技术

航天电子技术范文1

伴随着我国载人航天工程首次交会对接任务的完成,中国的航天人终于让电子技术成为中国航天发展最强劲的推动力,迎来航天电子亮剑太空的美好时代。光纤陀螺:开创空间站应用的先河

据了解,在此次载人航天工程首次交会对接任务中,中国航天科技集团公司九院共提供各类产品600余台(套),涉及惯性导航、计算机与微电子、遥测遥控、基础元器件多个领域,且多项创新技术得到首次应用。

天宫一号目标飞行器在地球上空近地点200千米、远地点350千米的椭圆形轨道上运行,它需要一双“眼睛”,精确地感知自身的微小动作,从而更好地确保飞行姿态精确控制以及与飞船交会对接。

但是,与改进型二号F火箭和神舟八号飞船不同的是,它采用了专门为它设计生产的光纤陀螺作为它的“眼睛”,引领它的浪漫太空之旅。

已知的公开资料显示,让光纤惯导陀螺担纲空间站姿态控制的重任,这在世界范围内尚属首次。也就是说,这个光纤陀螺是世界范围内第一个在空间站作为主份应用的光纤惯性器件,开创了光纤陀螺在空间站应用的先河。

据了解,光纤陀螺技术在世界航天领域属于前瞻性技术。航天科技集团九院在前期深入研究、吃透技术原理的基础上,依靠完全自主创新,使光纤陀螺技术短短几年之间取得突破性进展,在国内率先实现工程化和产品批量生产。光纤陀螺技术研究成果已获得两项国家技术发明奖、一项国家科技进步奖,应用于多个宇航型号任务。

与此同时,依托于这一技术的产品也在应用中通过了考验,在卫星搭载验证中不仅表现出良好的性能,而且在一些特殊的空间环境下还发挥了独特的作用,展现了与众不同的特殊优势。

把确保安全作为首要标准

“载人航天,人命关天”,一个不起眼的螺栓出现问题部有可能造成难以想象的灾难性后果,更不要说汇集和处理信息的中枢。航天科技集团公司九院771所把提高可靠性、确保安全性作为研制工作的首要标准。

作为中国航天员巡天的专属座驾,改进型长二F火箭将在我国未来开展空间有人试验活动中发挥关键作用,它的可靠性直接关系到航天员的生命安全。为了最大限度地提高火箭的安全性,让航天员毫无顾虑地乘坐火箭升空,771所在计算机可靠性上下足了工夫。他们一切从头做起,对箭载计算机、故障检测处理器进行了全新设计,采用系统级的冗余设计从根本上提高信息处理的可靠性。

为了实现这一目标,771所先后攻克了三机同步及信息交互技术、故障诊断隔离及系统重构技术、恶劣环境下信号完整性技术等诸多的技术难题,计算机系统由以前的接口部分采用冗余设计改为全部的三冗余系统结构,计算机系统失效成为极小概率事件。

在设计提升的同时,工程技术人员并没有对实验验证有丝毫的松懈。在箭载计算机设计中,他们进行了无数次前仿真、综合后仿真、布局布线后仿真、限电压极限温度环境仿真,对设想到的所有环节进行再三再四的验证。实验中出现的任何毛刺和异常,都深挖细剖、追根溯源,直至得到光滑得近乎完美的试验曲线,确保设计降额充分、逻辑正确、时序合理可靠性有了巨大的跃升

空间站长驻真空、失重、高辐射、冷热剧变的太空环境,飞船往返于天地之间,在地面环境和太空环境中穿梭,人要在其中生活和工作首先需要创造一个能够维持生命的环境。人们在地球上再自然不过的压力、氧气、适宜的温度都需要计算机的控制与维持,而天地交互所有信息的沟通更是离不开计算机的协调与控制。

设想一下,地面上遥控指令的接收与处理,空间站里各种设备的运行,试验结果的汇报,离开了计算机一切都将陷于瘫痪。

航天电子技术范文2

关键词:电子信息工程 电路 就业 学习

一、电子信息工程专业学习内容

电子信息工程专业主要是学习基本电路知识,并掌握用计算机处理信息等方法。电子信息工程专业,第一,要有坚实的数学知识,同时对物理学的要求也很高,并且主要是电学方面。电子信息工程专业需要学习很多电路知识、电子技术、信号与系统、计算机控制原理、通信原理等基本课程。学习电子信息工程还需要自己动手设计,加入一些电路,基于计算机进行实验,对操作能力和使用工具的要求也是比较高的。例如,自己连接传感器的电路,通过计算机建立小型通信系统,还会参观一些大公司的电子和信息处理设备,理解手机信号、有线电视是如何传输的等等,并能有机会在老师指导下参与大的工程设计。学习电子信息工程,要求学生喜欢思考问题,善于动脑筋发现问题。

随着社会不断的信息化,大多数行业需要电子信息工程专业人员,工资是非常高的。学生毕业后可以从事电子设备和信息系统的设计、应用开发和技术管理等。例如,做电子工程师,设计和开发一些电子和通讯设备,做软件工程师,设计和开发各种相关软件和硬件;做项目主管,策划一些大的系统,这就要求有充足的经验和知识,还可以继续学习成为教师,从事科研,等。中国IT行业开始了将近十年,很年轻。人们总是高度关注新鲜事物,关注新朝阳产业。正是因为这一原因,计算机专业迅速成为高校的热门专业,很多同学为了能踏入电子信息工程领域而挤破了头,努力向这一目标奋进,有些人出于兴趣,有些是为了谋生而掌握一项技能,还有的是希望在未来能够取得更快更好的发展。

二、电子信息工程专业学习目标

与前几年计算机专业的火爆相比,近年来,人们对这个专业的选择趋于一个理性和客观的态度。学生和父母考虑更多的是一种基于更有利于个人长远自我发展的出发点,作为一个大学生,我们必须在毕业前掌握下列知识和技能。

较系统地掌握本专业领域宽广的技术基础理论知识,适应电子和信息工程方面广泛的工作范围;掌握电子电路的基本理论和实验技术,具备分析和设计电子设备的基本能力;掌握信息获取、处理的基本理论和应用的一般方法,具有设计、集成、应用及计算机信息系统的基本能力;了解信息产业的基本方针、政策和法规,了解企业管理的基本知识;了解电子设备和信息系统的理论前沿,具有研究、开发新系统、新技术的初步能力;掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。.掌握计算机电子技术所必须的基本知识基本理论和原理;掌握电子产品的一般生产工艺具有电子产品生产管理能力;掌握电子电器类维修焊接技术具有按工艺文件完成复杂产品的全部装接焊接能力;具有熟练使用和维护常用电子仪器仪表的能力和按高度文件调试设备排除故障的能力;具有电子工程的现场安装与调试基本能力。

三、就业展望

由于信息时代的到来,据推测,在相当长的一段时间内,此类人才仍将供不应求。据调查,现阶段对于电子信息工程人才的需要量十分巨大,电子信息工程专业,对缓解当前该类人才的供需矛盾是非常必要的。电子信息工程专业的就业方向有以下几种:

1.电子系统方向(原雷达工程专业)

本专业方向依托电路与系统国家重点学科(博士和硕士点)和雷达 信号处理国防科技重点实验室,面向雷达和通信等行业重点培养学生的电子系统设计能 力,掌握雷达、通信等电子信息系统信号的产生、获取、传输、处理和系统控制等方面 的基础理论和专业知识。毕业生可以从事雷达、导航、通信、制导等各种电子信息系统 的研究、设计、制造和管理工作,或报考本专业相关学科的硕士研究生。

2. 信息处理方向(原信息工程专业)

本专业方向依托信号与信息处理国家重点学科(博士和硕士点)和 雷达信号处理国防科技重点实验室及超高速电路设计与电磁兼容教育部重点实验室处理研究和开发领域重点培养学生的信息处理理论研究及其信息处理的软、 硬件设计能力,掌握电子信息系统的信息获取与处理等方面的基础理论和专业知识。毕 业生可以从事各种信息处理系统的研究、设计、制造和管理工作,或报考本专业相关学 科的硕士研究生。

3.空天电子技术方向

本专业方向是为适应空间科学与应用迅速发展而设立的宽口径专业方向,面向航天电 子信息领域重点培养学生的微波遥感及其信息处理的软、硬件设计能力,掌握空间电子 信息传输与处理、深空探测等方面的基础理论和专业知识。毕业生可从事空间科学与应 用和航天电子信息系统的研究、设计、制造和管理工作,或报考本专业相关学科的硕士 研究生。

4.电磁场与微波技术方向

向依托电磁场与微波技术国家重点学科(博士和硕士点)和天线与微波技术 国防科技重点实验室,面向电磁场与微波技术领域重点培养学生的天线、微波、电波传 播和电磁兼容的设计、仿真及测量能力,掌握电磁场与电磁波、天线与微波技术、电磁 兼容原理与技术等基础理论和专业知识。毕业生可从事天线、电磁场与微波技术及其应 用系统的研究、设计、制造和管理工作,或报考本专业相关学科的硕士研究生。

航天电子技术范文3

【关键词】电子工程;EDA;技术

中图分类号:F406文献标识码: A 文章编号:

1、EDA技术的含义及应用现状

在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。EDA 技术就是以计算机为工具,设计者在 E-DA 软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。是计算机信息技术、微电子技术、电路理论、信息分析与信号处理的结晶,也是现代电子工程的最重要的应用技术。

自从该技术研发至今,已经得到了广泛的应用,现在对EDA的概念或范畴用得更加宽。包括在机械、通信、电子、航空航天、矿产、化工、医学、生物、军事等各个领域,都有EDA的应用,这种技术的应用不仅得到了良好的效果反馈,也为所在的领域的发展起到了极大的促进作用。同时,EDA在教学、科研、产品设计与制造等各方面发挥着重要的作用,因其包含的技术的先进性,致使其相关的产品的研发有很大的技术研究价值。在技术教学方面,现在几乎所有理工科类的高校都有开设了EDA课程,成为了理工科的学生,尤其是电子类专业的学生必修的科目,也是学生们了解目前的科研方向和市场动向的一个有效的途径。主要的目的是让学生了解EDA的基本概念和基本原理、掌握用HDL语言编写规范、掌握逻辑综合的理论和算法、使用 EDA 工具进行电子电路课程的实验验证并从事简单系统的设计。一般学习电路仿真工具(如multiSIM、PSPICE)和PLD开发工具(如Altera/Xilinx 的器件结构及开发系统)。科研方面主要利用电路仿真工具(multiSIM或PSPICE)进行电路设计与仿真,可以在仪器和工具的设计阶段有效的解决各种电路的假设与试验,大大的提高了设计人员的工作效率;利用虚拟仪器进行产品测试,作为流水线的一个重要环节的产品测试,对于该技术的应用也有着非常重要的意义;将CPLD/FPGA器件实际应用到仪器设备中;从事PCB设计和ASIC设计等。在产品设计与制造方面,包括计算机仿真,产品开发中的EDA工具应用、系统级模拟及测试环境的仿真,生产流水线的EDA技术应用、产品测试等各个环节可以大大的提高流水线的作业效率,节省了人工。EDA软件经过多年的发展,其功能也日益强大,原来功能比较单一的软件,现在增加了很多新用途,极大的丰富了软件的作用。如 AutoCAD软件可用于机械及建筑设计,也扩展到建筑装璜及各类效果图、汽车和飞机的模型、电影特技等领域,随着未来该技术的发展,其应用的范围必将越来越广泛。

2、EDA技术的特点

EDA技术之所成为今天电子信息工程中的重要技术,具有“自顶向下(Top—Down)”的设计程序,这种设计程序的最大特点就是改变了以往的软件程序的设计思维,也就确保设计方案整体的合理化;由于EDA采用高级语言描述,有语言公开可利用、描述范围广、可以系统编程和现场编程等特点;该软件的自动化程度高,所以可以进行各级的仿真、纠错和调试工作,大大的提高了工作效率和准确度。这些特点也EDA技术得到广泛的应用的重要原因。

3、EDA技术的作用

EDA技术中的温度分析和统计分析功能可以分析各种温度条件下的电路特性,便于确定最佳元件参数、最佳电路结构以及适当的系统稳定裕度,真正做到电路特性的优化设计。在进行电路测试时,测试的结果会受到诸多因素的影响,从而导致其准确度受到影响,另外由于受到测试手段和仪器精度限制,测试的时候会出现很多技术问题,这种情况下DEA技术,就可以依据其全功能测试解决数据测试和特性分析的问题,大大的提高了应用的效率。

4. EDA常用软件

EDA软件发展很快,目前被我国广泛应用的有:multiSIM7(原EWB的最新版本)、PSPICE、OrCAD、PCAD、Protel、Viewlogic、Men-tor、Graphics、Synopsys、LSIIogic、Cadence、Mi-croSim 等等。但是很多软件的应用技术具有专门性的特点,使得其应用范围大大的受限,所以下面简单介绍一下PCB设计软件、IC设计软件、PLD设计工具及其它EDA软件的常见种类。

4.1PCB设计软件

PCB(Printed-Circuit Board)设计软件是最早的基于 EDA技术的软件之一,经过多年的发展更是种类繁多,常见的如 Protel、OrCAD、Viewlogic、PowerPCB、Cadence PSD、MentorGrap-hices 的 Expedition PCB、Zuken CadStart、Win-board/Windraft/Ivex-SPICE、PCB Studio、TANGO、PCBWizard(与LiveWire配套的PCB制作软件包)、ultiBOARD7(与 multiSIM2001配套的PCB制作软件包)等等。

4.2IC设计软件

IC设计工具也很多,ASIC设计领域有名的软件供应商主要有 Cadence、Mentor Graphics和Synopsys。中国华大公司也提供ASIC设计软件(熊猫2000)。

4.3PLD设计工具

PLD(Programmable Logic Device)是一种由用户根据需要而自行构造逻辑功能的数字集成电路。从目前的市场应用情况来看,目前主要有两大类型:CPLD(Complex PLD)和FPGA(FieldProgrammable Gate Array)。它们的基本设计方法主要借助于EDA软件,在该技术的基础上用原理图、状态机、布尔表达式、硬件描述语言等方法,生成相应的目标文件,最后用编程器或下载电缆,由目标器件实现,可以根据用户的需要设计出各种个性化的使用工具。Altera、Xilinx和Lattice这三家公司是PLD众多生产厂家中比较有代表性的。

综上所述,EDA技术的出现是电子设计领域中的一次革命,21世纪是信息技术和电子技术的时代,也是EDA技术的高速发展阶段。EDA技术作为电子产品开发研制的动力,大大的促进了我国的电子产品行业的发展,也是未来的电子技术的发展的方向,因为实践中我们可以看到采用EDA技术制作的电子产品具有容量大、实时性好、体积小、可靠性高的优点,所以被广大的生产企业广泛的应用。虽然我国对于这项技术的引用较晚,发展也处于起步阶段,但是其在我国的发展前景是乐观的。变现为电子设计工程人员掌握这一技术,不仅是提高效率的需要,更是开发高附加值电子产品的需要,任何的生产厂商搜力图寻找一种体积更加小,性能更加好的电子技术,EDA技术和其衍生的各种软件无疑符合了这一要求,也是其强大的生命力的根源所在。随着80C时代的到来,EDA技术在移动通信系统、卫星系统等对重量、体积及速度敏感的领域将具有重要的实用价值,不久的将来会应用于我国的各项通讯技术和空间技术领域。并且根据最新的统计结果显示,我国和印度正在成为EDA技术设计方面发展最快的两个市场,相信在不久的将来,我国的科技工作者和设计团队会赶上世界先进水平,将这一优秀的电子设汁技术更好的应用到社会发展的各个领域,研发出更多的自主产品和应用软件,为祖国建设提供更好的技术支持。

参考文献

航天电子技术范文4

一、eda技术概念及现状介绍

eda是电子设计自动化(electronicdesignautomation)的缩写,在20世纪90年代初从计算机辅助设计(cad)、计算机辅助制造(cam)、计算机辅助测试(cat)和计算机辅助工程(cae)的概念发展而来的。eda技术就是以计算机为工具,设计者在eda软件平台上,用硬件描述语言hdl完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。是计算机信息技术、微电子技术、电路理论、信息分析与信号处理的结晶。现在对eda的概念或范畴用得很宽。包括在机械、通信、电子、航空航天、矿产、化工、医学、生物、军事等各个领域,都有eda的应用。eda在教学、科研、产品设计与制造等各方面发挥着重要的作用。在教学方面,现在几乎所有理工科类的高校都有开设了eda课程。主要是让学生了解eda的基本概念和基本原理、掌握用hdl语言编写规范、掌握逻辑综合的理论和算法、使用eda工本文由收集整理具进行电子电路课程的实验验证并从事简单系统的设计。一般学习电路仿真工具(如multisim、pspice)和pld开发工具(如altera/xilinx的器件结构及开发系统)。科研方面主要利用电路仿真工具(multisim或pspice)进行电路设计与仿真;利用虚拟仪器进行产品测试;将cpld/fpga器件实际应用到仪器设备中;从事pcb设计和asic设计等。在产品设计与制造方面,包括计算机仿真,产品开发中的eda工具应用、系统级模拟及测试环境的仿真,生产流水线的eda技术应用、产品测试等各个环节。eda软件的功能日益强大,原来功能比较单一的软件,现在增加了很多新用途。如autocad软件可用于机械及建筑设计,也扩展到建筑装璜及各类效果图、汽车和飞机的模型、电影特技等领域。

二、eda技术的特点

eda技术之所成为今天电子信息工程中的重要技术,具有“自顶向下(top—down)”的设计程序,这就确保设计方案整体的合理化;由于eda采用高级语言描述,有语言公开可利用、描述范围广、可以系统编程和现场编程等特点;自动化程度高所以可以进行各级的仿真、纠错和调试工作。这些特点促使eda技术得到广泛的应用。

三、eda技术的作用

eda技术中的温度分析和统计分析功能可以分析各种温度条件下的电路特性,便于确定最佳元件参数、最佳电路结构以及适当的系统稳定裕度,真正做到电路特性的优化设计。由于受到测试手段和仪器精度限制,测试的时候会出现很多问题,dea技术方便得全功能测试解决了数据测试和特性分析的问题。

四、eda常用软件

eda软件发展很快,目前被我国广泛应用的有:multisim7(原ewb的最新版本)、pspice、orcad、pcad、protel、viewlogic、mentor、graphics、synopsys、lsiiogic、cadence、microsim等等。下面简单介绍一下pcb设计软件、ic设计软件、pld设计工具及其它eda软件。

1、pcb设计软件。pcb(printed-circuitboard)设计软件更是种类繁多,如protel、orcad、viewlogic、powerpcb、cadencepsd、mentorgraphices的expeditionpcb、zukencadstart、winboard/windraft/ivex-spice、pcbstudio、tango、pcbwizard(与livewire配套的pcb制作软件包)、ultiboard7(与multisim2001配套的pcb制作软件包)等等。

2、ic设计软件。ic设计工具也很多,asic设计领域有名

转贴于

的软件供应商主要有cadence、mentorgraphics和synopsys。中国华大公司也提供asic设计软件(熊猫2000)。

航天电子技术范文5

关键词:双余度 无刷直流电机 控制系统 DSP

中图分类号:TM33 文献标识码:A 文章编号:1007-9416(2012)11-0029-03

1、引言

无刷直流电机是电力电子技术、传感器技术和永磁材料技术结合的产物,高性能永磁体的采用简化了电机结构,提高了电机的功率密度,电子换向线路取代机械换向线路提高了电机的可靠性和易维护程度,同时电机的转速升高不再受机械换向的影响[1]。是国内外公认的新一代航空、航天电机的重要发展方向,其驱动和控制技术的研究被广泛研究[2]。

余度技术是提高系统可靠性和安全性的一种手段,在故障出现时仍能完成系统任务[3]。这在航空航天、井下矿用等工作环境中,不能或者很难维修的情况下,双余度无刷直流电机对于提高工作的可靠性就起到很大的作用[4]。

本文依据双余度无刷直流电机的特点,设计了一种双余度无刷直流电机的控制系统。该系统有效的解决了两套余度同时工作的问题,测试结果表明,该系统具有良好的控制性能和动态性能。

2、控制系统结构

控制器的核心为DSP芯片,它完成霍尔信号边沿跳变的捕获,换向逻辑的计算,功率管脉宽调制信号的输出,电压电流传感器输出模拟信号的AD转换。上位机与主控芯片DSP之间通过RS232总线进行通信,实现系统的监测和控制指令的传输。系统结构框图如图1所示。

3、系统硬件设计

3.1 主控芯片

本控制系统的核心部件是DSP TMS320F28335,具有高性能外设的32位浮点型微处理器。它集成了浮点单元简化了开发过程并将控制应用的速度平均提高50%。28335是目前广泛使用的2812的换代产品[5]。

3.2 系统电源设计

系统要求一路270V直流供电,需要对控制系统各部分进行电源转换。除3.3V转1.9V的电源芯片外,其它芯片都为DC/DC模块。270V转24V电路原理图如图2所示。

3.3 DSP电源和时钟

图3为DSP电源电路原理图。

电源包括内核电源、IO引脚电源和FLASH电源。采用TPS76801Q将3.3V转换成1.9V。外部晶振产生30M的时钟,接入外部时钟输入引脚XCLKIN。引脚X1接地。

3.4 I/O电路

输入信号包括按钮开关、霍尔信号,输出信号为PWM和故障指示信号。IO电路如图4所示。

S1、S2、S3为开关信号,分别控制A余度启停、B余度启停和正反转信号。为复位信号。输出PWM1~PWM6控制电机A余度,PWM7~PWM12控制电机B余度。ECAP1~ECAP3为A余度霍尔位置信号,ECAP4~ECAP6为B余度霍尔位置信号。D1~D7为系统指示灯,可用于指示系统的运行情况。

3.5 驱动电路

驱动电路采用三相桥专用的集成驱动芯片IR2130。门极驱动供电压为10~20V。A余度的驱动电路的原理图如图5所示。

3.6 电流检测电路

为了能够使用电流分析法进行电机故障识别,需要设计高精度的电流检测电路电流检测电路如图6所示,分别为相电流检测和线电流检测电路。

3.7A/D转换电路

DSP的AD模块为12位,可以对模拟信号快速进行多路AD转换。进行AD转换的信号有模拟的转速给定信号,母线电压信号和线电流、相电流信号。AD转换的原理图如图7所示。

4、系统软件设计

主程序声明和初始化系统变量,声明中断服务程序和需要调用的子函数。主程序程序流程图如图8所示。

声明变量和函数,并将中断服务程序与中断向量表联系,使能中断,初始化外设模块。系统初始化完成后,主程序查询标志位的改变,执行相应的操作。标志位的改变通过按键输入、SCI接收数据以及程序自身的运行实现。

5、实验结果

对由TMS320F28335 DSP芯片构成的双余度无刷直流电动机控制系统进行了试验,试验对象为一台双余度无刷直流电动机,额定转速2000 r/min,额定电压270V,4对极。

其空载双余度开环电流如图9所示。

在带0.4N/m的负载时,其电流波形如图10所示。

两个余度的空载和负载电流波形显示,两余度的电流形状和幅值一致性好。

6、结论

采用TMS320F28335 DSP芯片设计了双余度永磁无刷直流电动机控制系统,该系统控制电路结构简单,易于调试和工程实现。实验证明该系统实时性好,响应快,具有良好的控制性能及动态特性。同时该系统还具有体积小、重量轻,可靠性高等优点,非常适合于防爆、防腐、航空、航天等可靠性要求高的特殊场合。

参考文献

[1]Lawler J S, Bailey J M, McKeever J W, et al. Extending the constant power speed range of the brushless DC motor through dual-mode inverter control[J]. Power Electronics, IEEE Transactions on, 2004,19(3):783-793.

[2] 夏长亮.无刷直流电机控制系统[M].北京市:科学出版社,2009.

[3] 董慧芬,周元钧,沈颂华.双通道无刷直流电动机容错动态性能分析[J].中国电机工程学报,2007(21):89-94.

航天电子技术范文6

(1.山东航天电子技术研究所,山东 烟台 264000;2.中国农业大学〈烟台〉理工学院,山东 烟台 264000)

【摘要】本文概述了霍尔元件的制作材料,研究了霍尔元件失调电压的产生及抑制失调电压的措施,最后探讨了霍尔器件的应用领域及发展方向。

关键词 霍尔元件;失调电压;发展方向

0 引言

传感器技术作为现代信息社会的三大支柱技术之一,被广泛地应用于国民经济的各个领域,霍尔传感器就是其中应用非常广泛的一类,它是一种基于霍尔效应的磁敏传感器,它不仅用于测量电压、电流、功率和磁感应强度等电磁参数,在非电量测量技术中还广泛应用于测量力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速等非电量参数。由于霍尔传感器的核心器件是霍尔元件,所以对霍尔元件的研究有重要意义。

1 霍尔元件的研究

1.1 霍尔元件的制作材料

早期的霍尔元件通常使用的材料有InSb,InAs,GaAs,Ge等,表1给出这些半导体材料的基本特性。1nSb材料电子迁移率高,其霍尔元件具有很高的灵敏度。然而,1nSb材料的禁带宽度小,易于本征激发,因此它的温度稳定性差,无法在高温环境下使用;GaAs是另一种使用广泛的霍尔元件材料,它的灵敏度比1nSb低很多,但是温度特性好,能在较宽的温度范围内工作,同时磁场线性度也是最好的。

1.2 霍尔元件失调电压的产生及抑制

1.2.1 霍尔元件失调电压的产生

在直流状态下,霍尔元件可以看作是一个由分布电阻构成的文氏桥,如图1所示,当在H1端接电源VCC,H3端接地,理想情况时,Rl=R2=R3=R4=R,H2、H4端对地的直流电位为VCC/2,两端之间的电势差为零。当有磁场作用于霍尔元件时,就会在H2和H4的两端产生感应电势,感应电势的极性是由磁场方向和电流方向共同决定,这个感应电势经过放大、控制处理后就可以去驱动输出电路。

实际的霍尔元件由于材料的各向异性、杂质分布的不均匀、几何结构的非对称以及压阻效应等的影响,在有电流流过时,即使没有外加磁场,其输出电势差也不为零,这个电势差就是霍尔元件的失调电压VOS。

霍尔元件失调电压的产生主要包括两个方面,一个是工艺的原因,包括材料的各向异性、杂质扩散的不均匀、几何结构的非对称等。另一个原因是外界机械压力通过压阻效应引起的,通常是在封装时造成的。

1.2.2 霍尔元件失调电压的抑制

本文研究的抑制失调电压的方法为正交电流法,正交电流法就是在一个霍尔元件上,交替地改变输入电流的通路,使输出感应电压周期性地分别从两对正交的端口输出,利用感应电压和失调电压极性的不同变化,实现对失调电压和霍尔电势的分离。只需一个霍尔元件,即可实现对磁场信号的检测和对失调电压与感应电压的分离,在信号检测电路之后采用一个斩波稳定放大器实现对霍尔元件失调电压的抑制,同时实现对有效信号霍尔电势的放大,此外这种斩波稳定放大电路不但可以对自身失调电压实现抑制而且具有非常高的输入阻抗。

在时钟正半周,如图2(a)所示,分别把霍尔元件的Hl、H3端接入电源和地,电流由Hl流向H3,在如图所示的磁场作用下将产生如图所示极性的感应电压;在时钟的负半周,如图2(b)所示,霍尔元件的H2、H4端分别被接入到电源和地,电流由H2流向H4,在如图所示的磁场作用下将产生如图所示极性的感应电压。假设在同一时钟的高、低电平时分别把Hl和H2连接至后级差分放大器的同一个输入端,而H3和H4则连接至差分放大器的另一个输入端,则在同一时钟信号的高、低电平时,接入到差分放大器的霍尔感应电势的极性是相反的,而失调电压的极性则总是相同的,这可以通过以下的假定来说明。假定此时的失调电压是由于某种原因(如压阻效应)导致Hl、H2端之间的等效电阻变大,由于Rl=R3=R4=R,R2>R,则图2(a)所示电路的失调电压VH2H4也为(R/(R+R2)-1/2)·VCC,其极性与此时的感应电压的极性相同;图2(b)所示电路的失调电压VH1H3也为(R/(R+R2)-1/2)·VCC,其极性与此时的感应电压的极性相反,即在同一个时钟的高、低电平时,霍尔元件的失调电压的极性保持不变。改变霍尔元件的电流方向或改变接入到后级差分放大器的连接方式,就可得到不同极性组合的霍尔电压和失调电压,但在每个时钟周期内,都是一个半周为霍尔电压和失调电压的和,另一个半周为它们的差,因此,要得到霍尔电压、抑制失调电压就可以根据失调电压在这两个半周内的极性分别采用相加或相减的方法来实现。在失调电压极性不变时,采用相减的方法,在失调电压相反时采用相加的方法。经仿真证明具有很好的效果。

2 霍尔元件应用及发展方向

霍尔传感器不仅用于测量电压、电流、功率和磁感应强度等电磁参数,还广泛应用于测量直线位移、角位移、转速和压力等非电量参数。随着该技术的推广,其应用领域将越来越广,已被广泛的应用在航天、航空、机械、能源、石油、化工、医疗、汽车、公安防范、仪器仪表、办公自动化、交通运输等领域,在各种信息采集和处理中都起到了极其重要的作用。

随着霍尔传感器的广泛应用,作为霍尔传感器的核心器件—霍尔元件必将大有作为,其主要发展方向:一是加强开展基础研究,重点研究新材料和新工艺;二是朝着微型化、集成化方向发展;三是朝着实现高灵敏度、高精度、高稳定性、低温漂、微功耗、智能化和多功能化方向发展。

参考文献

[1]高桥清,庄庆德.展望21世纪新技术革命中的传感器[J].传感器技术,2001(01):1-3.

[2]涂有瑞.半导体磁场传感器的过去和未来[J].传感器世界,2003(07):1-10.

[3]Alan Hastings. The Art of Analog Layout[M].清华大学出版社,2004:227-230.

[4]白韶红.集成霍尔传感器的发展[J].自动化仪表,2003(03):l-9.