前言:中文期刊网精心挑选了新能源电力技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
新能源电力技术范文1
关键词:电气节能技术;电力新能源;发展应用
1引言
我国是一个人口大国,随着经济建设的快速发展,对电力的需求不断增加,为了追求经济建设的可持续发展,实现节能环保的目标,我国开发了电力新能源,研究了电气节能的技术措施,有效的降低了电能的耗损,以下就对电气节能技术的措施分析以及电力新能源的开发进行简单的分析.
2电气节能技术与措施分析
电气节能技术与措施主要是从两个大的方面进行的:①研究新型的电气节能技术从而降低电能的消耗与损耗;②通过对原有的电气设备进行改造,从而降低电能损耗,实现节能目标。
2.1研究新型的电气节能技术降低电能的消耗与损耗
新型的电气节能技术主要为分布式的电力供给,这种供电方式是基于节能环保技术运行的,在使用的过程中,主要是对电力集中的供给,在运行的过程中,主要是在电力用户的周围安装发电系统,从而采用分布式的方法统一集中的进行电力的输送与供给,采用此种供电方式可以有效的降低电能的消耗,与传统供电方式相比,具有良好的能源节约作用,并且采用分布式的电气节能技术可以循环利用可再生的资源进行电力的输送,实现能源节约,环境保护的目标。研究对发电、储存能量的电气节能技术的研究,具有较高的实践价值,通过对热水器的蓄能与蓄热技术,空调的蓄冷技术措施等的应用,可以实现电能的有效转化,以其他能源形式储存起来,以便在需要工作的时候再转化为电能,实现电能的合理分配与利用,降低了电能的损耗,提高了电能的利用率与使用率,具有较高的节能环保效果。
2.2通过对原有的电气设备进行改造,降低电能损耗,实现节能目标
现今,电气设备不仅会消耗巨大的能源,还会在使用的过程中,造成一定的能源损耗,所以研究电气节能技术,通过对电气设备进行改造,调整原先不合理的地方,从而提高电能的使用率,降低电能的损耗,对电气设备进行改进措施主要表现在以下几个方面:
2.2.1对变压器设备进行节能技术的改进
在整个电网运行输送系统中,变压器是最重要的组成,将节能技术应用在变压器设备的改进上,可以调节电压,实现电能的安全输送,降低电能的损耗,而对变压器设备进行节能技术的改进,就是要使变压器改进为低损耗的设备。不同的用户对电力的需求不同,因此不同用户的电力输送的电压也存在着较大的不同,采用变压器调节电压时,就会造成一定电能的损失,所以研究低损耗的变压器,对节约电能具有重要作用,采用非晶合金铁心构成的变压器具有良好的节能环保作用,不仅可以降低电能的损耗,还可以降低成本的支出,具有良好的推广使用价值。调整变压器的参数可以有效的降低电能的消耗,实现节能目标,在电能输送的过程中,我们要对电力负载进行调整,改变其运行的方式,降低电能在输送过程中的损耗。变压器在运行的过程中们需要加强对各个方面的管理,通过对变压器进行调整,可以提高节能的效果,降低变压器中的功率损失与消耗,提高电能的利用效率,从而实现节能环保的目标。
2.2.2对电网运行的配置进行节能技术的应用与优化
对电网运行的配置进行优化与设置也可以降低电能的损耗,因为在电网运行时,往往会出现无功的电流导致的电能损耗,而对电网运行的优化配置就是无功补偿,采用节能技术措施降低电能的损耗,还可以对电网的功率进行合理的配置与分配,保证变压器电压的稳定状态,降低电能损耗。
2.2.3采用节能技术减少线路的电力损耗
发电站是通过输电线路进行电路的输送的,很多时候发电站与电力用户的距离非常远,在运输的过程中就会造成线路的电能损耗,输电线路越长,电力负载就越大,造成的电能耗损也就更大,降低线路的电阻值,可以提高电网系统的功率因数。在供电营业区域内,要结合区域经济发展,做好规划与布点方面的工作,如负荷密集地变电站电压等级应选110kV及以上为宜,偏远山区,负荷较轻的地方可采用35kV及以下变电站。线路规划要坚持最短距离的原则,减少线路的长度距离,在选择导线时,要注意规格的选择,包括截面积等,选择截面积较大的导线在某种程度上也能降低能源消耗。在进行输电线路的架设时,要对整个区域进行综合了解,选用最短路径的方法降线路电能的损耗。
2.2.4采用节能技术实现空调系统的环保与节能
一般在建筑内都是通过空调系统来实现室内温度的改变与调节,但是空调系统会造成极大的能源损耗,所以如何提高空调系统的节能环保就成为电气技能技术研究的重要内容,要对空调系统进行优化设置,要对空调系统进行参数的设定,选用节能环保型的空调,实现节能控制的目标。冰蓄冷技术是利用夜间电网低谷时间风能,利用低价电制冰蓄冷将冷量储存起来,白天用电高峰时溶水,与冷冻机组共同供冷,而在白天空调高峰负荷时,将所蓄冰冷量释放满足空调高峰负荷需要的成套技术。从能源合理分配角度出发可知,冰蓄冷技术有效的节约了能源,节省了空调设备费用,减少制冷主机的装机容量和功率,利用峰谷分时电价,大量减少运行费用,也降低了总电力负荷,减少电力需求,缓解建设新电厂(机组)的压力。此外,冰蓄冷技术还能节省用户对空调系统的投资、改造、运行维护等费用,降低用户空调系统的运行费用冰蓄冷技术具有良好的节能减排作用。
3电力新能源的开发与发展应用
除了电气节能技术的应用,还可以开发电力新能源,实现电能的节能环保作用。现今随着经济建设的快速发展与进步,我国对电能的需求逐渐升高,但是能源使用比较紧张,如何开发电力新能源就成为现今能源利用的最重要课题,开发电力新能源可以缓解能源紧张的现状,促进经济建设的可持续发展。近些年来我国对电力新能源的开发研究力度不断的加大,也取得了一些进展,开发使用的新能源有效的缓解了能源紧张的局面,节约了能源,现今我国电力新能源的开发与发展是在机遇与挑战中并存,以下就对有良好实践效果的电力新能源进行介绍分析。
3.1风能转化为电能的应用
风能作为电力新能源具有良好的节能效果,对纾解现今能源紧张的现状提供了积极的作用,利用风能转化为电能,有效的提高了电能的利用率,现今可以有较多的新能源应用在电力能源的开发与使用中,风能的应用具有良好的节能效果。图4~5是与美国风电利用小时数与发电量的对比,虽然与美国还存在一定距离,但是也在不断的进步中。
3.2太阳能转化为电能的应用
我国最常见的电力新能源就是太阳能的发电,主要是采用分布式的太阳能发电形式,可以满足用户对电力的需求,除此之外,还可以将太阳能转化的多余电能传送到电力系统中,采用太阳能的分布式发电具有较高的优势价值,不仅可以高效的转化为电能,还可以就地附近进行使用。采用光伏的太阳能发电,适合分布式的特点,不仅可以为当地的用户提供基础的电力能源,还具有良好的节能环保作用。电力新能源的开发与应用具有良好的发展前景,可以促进经济建设的可持续发展,通过对电力新能源的不断开发与研究,可以减少对资源的过度利用,实现资源节约与环境保护的目标,新能源与传统的能源相比具有较高的实用价值与推广价值,污染小,还可以节约电能,对新能源进行开发与研究是时代所趋,也是构件和谐社会的重要手段。
4结束语
总之,我国对电力的需求不断的增加,研究电气节能技术与电力新能源可以舒缓能源紧张的现状,解决电能的损耗以及资源浪费的问题,具有良好的节能环保作用,我们要继续研究电气节能的技术,加大对电力新能源的开发与研究,从而促进经济建设的可持续发展。
作者:刘耀华 单位:国网江西省电力公司宜春市袁州区供电分公司
参考文献:
[1]郭鑫.电气节能技术与电力新能源的发展应用[J].山东工业技术,2014,12(1):22~28.
[2]张文吉.浅析电气节能技术与电力新能源的发展应用[J].建筑工程技术与设计,2015,01(8):12~23.
新能源电力技术范文2
【关键词】电力节能 新能源 开发应用
一、电气节能措施
(一)运用新型节能技术减少电能消耗
分布式供电是一种常用的节能环保的供电方式,但是其使用对象为集中式供电。其运行方式为在用户附近布置发电系统,之后采用分散式的方式进行电能的输送,这种输电方式与传统的输电方式相比其能耗量比较小,而且分布式的供电还可以利用可再生资源进行发电,能够实现节能环保的目标。
高度重视发电蓄能节能技术的发展对于实现电气节能具有重要的意义。这主要是通过中央空调的蓄冷技术,空气源热水器热泵蓄热技术等的应用,对电能进行转化,并将其转化成其他的能源储存起来,在需要使用的时候在转化成电能以备不时之需。这种技术可以在用电低谷的时候进行电能转化、储藏,在供电高峰期的时候再把电释放出来,有利于降低电能的浪费,提高电能的使用率。
(二)通过改造电气设备减少电能消耗
电气设备在运行的过程中可能会造成电能的耗损,因此应该重视对电气设备的改进,力求通过每一个细节降低能耗,提高资源的使用效率。下面就从几个方面简单说一下改造电气设备的情况。
首先是变压器的改造。变压器是整个电力输送系统的重要组成部分,通过调节电压实现电力的正常输送和节约能源的目的,因此要加大低耗损变压器的推广。由于不同的用户对电的需求不同,因此为每位用户输送的电的压力值也存在差异,这就需要借助变压器对电压进行调节,但是在使用变压器的过程中不可避免的会出现能源消耗的情况,因此为了实现电力系统的能源节约,降低变压器的能耗具有重要意义。非晶合金铁心的变压器具有噪音低、损耗低、空载损耗低的特点,其能源损耗程度都不及传统变压器的损耗的五分之一,而且其维修费用相对比较低,维护比较简单,因此非晶合金铁心的变压器的推广成本比较低。
变压器参数的调整有利于实现节能的目的。在电能运输的过程中,面对相同的点亮,通过对负载的调整和运行方式的改变,有利于降低电能在输送过程中产生的损耗。在变压器运行的过程,要加强供、用电的管理。整个电力系统中的变压器可能在容量、材质、电压等值等诸多方面粗在差异,因此有功率的空载损失和短路损失、无功率的空载损失和定额负载消耗的参数都都不尽相同,通过对变压器参数的调整,可以降低变压器的有功功率损失和损失率,提高电能的利用率,从而达到节能环保的目的。
其次,优化电网配置在电网中时常会出现无功电流,这些电流会导致能量的消耗,会对人民群众的生产生活造成不便。无功补偿是利用技术措施降低线路损耗的常用手段。其不仅能对有功功率进行合理高效的分配,还对无功功率进行合理高效的分配,对电网中的无功电流进行合理配置,通过对其进行合理的调度,降低有功功率的损耗,保护电压稳定。
再次,降低线路损耗。一般而言发电站离用户有一定的距离,因此需要通过线路对电力资源进行运输,把电送到千家万户去,但是在运输的过程中也容易导致电能的损耗,通常而言,线路的长度和负载与电能的耗损量成正比,线路越长负载越大,出现的耗损也就越大。因此为了降低电能的损耗,应该尽量减少导线的电阻,提高系统的功率因数。因此要注意以下几点:在进行电路路径的规划时,一定要坚持电路最短的原则,尽可能的减小导线的长度,在导线铺设的过程中能够进行直线铺设就不能走完了;对于导线截面积的选择要科学、合理,一般导线截面的选择要根据当地电网的运输的电流量和当地能承担的起的导线截面积价位进行选择,在无法简短导线长度的情况下,可以通过加大导线截面的方式降低能耗;最后在进行线路架设之前,应该对当地用电量比较大的地区进行了解,合理确定电气房的位置,从而实现供电路径的最小化。
最后是通过空调系统的节能。在公共建筑中主要是通过空调进行室内温度的调节,因此空调会造成大量的能耗,据不完全统计空调系统产生的能耗能在整个公共建筑中占其总能耗的百分之五十以上,因此加强空调系统的节能意义重大。加强空调系统的节能建设主要依靠以下几点:机电设备启停优化设置、参数设定节能控制等。
二、电力新能源的开发
随着经济的发展,能源的需求量越来越大,但是当前国际能源形势严谨,因此加强新能源的开发利用对于缓解当前的能源压力,为经济的可持续发展提供充足的资源供给具有重要的意义。我国政府也高度重视新能源开发工作,近年来我国新能源开发的研究工作得到一定的发展,预计到本年(2015)年底,为国家经济发展提供的新能源已经可以抵换4300吨标准煤,对于加快我国能源结构的更新换代,带动相关产业的发展都具有重要的意义。目前我国新能源发展正处在机遇与挑战并存,技术与经济并存的时期。下面就对发展比较良好的新能源进行简单介绍。
风能的利用对于缓解当前的能源压力具有积极作用,目前我国的风电和分布式光伏得到加快的发展,但是利用率仍然较低;系统的调峰主要靠煤电,但是随着越来越多的新能源进行电力资源的开发,系统峰调将面临更加严峻的挑战。
太阳能发电也是我国比较常见的新能源,采用分布式发电,既可以满足用户和附近需求以外,还可以将多余的电量输送到当地的电网系统,,分布式发电具有清洁高效、就近利用、分散布局的优点,而光伏发电非常适合分布式发电的特点,能够充分发挥光伏发电的优势,为居民生产生活提供所需能源。虽然近年来我国的新能源得到较快的发展,但是与发达国家相比我国的新能源的发展比较晚,根基比较浅薄,相关的法律法规建设还不够健全,与电网及其他资源的发展的协调程度还不够。
最后新能源的开发和使用有利于促进我国社会主义经济的可持续发展,有利于我国社会主义和谐社会的建设,主要体现在以下几点:不断进行新能源的研发,能够缓解当前的资源压力,同时有利于环保工作的开展,与传统的能源的相比,新能源具有污染小的特点,同时新能源的出现将降低煤电和水电的需求量,减轻煤窑的开采,降低对周边环境的污染,同时也能减少在发电过程中造成的空气污染,最后加强新能源的开发,有利于缓解当前的通货膨胀,降低生产成本,促进经济更好的发展。
三、结语
目前我国对于电力资源的需求量比较大,并且主要以火电和水电为主,因此在电力制造的过程中存在资源浪费严重、污染严重等问题,这也就要求电力行业加强对节能技术的研发,充分考虑各种主流电能开放方式的效益,并通过采取各种有效的措施降低电气能源在输送过程中产生的能耗。但是追求减少电气能源输送能耗的前提是满足当前经济发展所需的能源,不能单纯的为了降低能耗而不为市场供应充足的资源,导致经济发展受损。在进行电气节能技术研究的同时,要积极寻找电力新能源,降低能耗。作为一名电力工作者,我们应该充分认识到节能的重要性,在工作中注意方法总结,为我国电气节能和新能源开发贡献自己的一份力量。
【参考文献】
[1]郭鑫.电气节能技术与电力新能源的发展应用[J].山东工业技术,2014(01)
[2]尹忠东.可持续发展战略中的电气节能技术[J].电气时代,2006(06)
新能源电力技术范文3
电池是关键
电池,最开始就是指盛有电解质溶液和金属电极产生电流的容器,正因为容器里盛有液体,所以叫“池”。不过,随着科技的进步,电池的概念变得越来越宽泛,比如我们常常用到的手机电池,笔记本电池,都是锂离子电池。电池一词现在已经用来泛指能产生电能的小型装置了。
正如移动通信器材需要“小轻薄”且高效能的电池一样,想让新能源汽车跑得更远、更快、更好,高性能的电池是不可绕过的技术高点。在今年2月21日的新材料“十二五”规划中,国家明确了新能源汽车配套电池的技术公关方向:高效率、大容量、长寿命、安全性等成为突破重点,还将同时推进石墨和钛酸盐类负极材料产业化,加快耐高温、低电阻隔膜和电解液的开发。
锂电池是未来方向
新能源车所用的动力电池一般为化学电池,发电原理是我们在化学课中学过的氧化还原反应。从部件构成来分,化学电池主要由充当氧剂的正极材料、充当还原剂的负极材料以及有良好离子导电性能的电解液组成。习惯上,我们用正极材料来命名电池,锂做正极的电池称为锂电池。
在“十二五”新材料规划中,为配合2015年新能源汽车累计产销50万辆的目标,同期配套动力电池模块150亿瓦时/年、功率型30亿瓦时/年、电池隔膜1亿平方米/年、六氟磷酸锂1000吨/年、正极材料1万吨/年、碳负极材料4000吨/年。省略(迈博汇金)对于传统的铅蓄电池行业则实施行业准入制,加大行业整合力度。
锂电池是新能源汽车电池未来的方向,规划中提到的磷酸铁锂电池是众多锂电池中的一种,指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料有很多种,其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。
锂电性能有待突破
在目前全球锂电的产业格局中,以欧美、亚洲的日、韩为主导,中国则是以竞争者的姿态出现。亚洲主要公司包括韩国的LG、三星,日本的索尼、三洋,以及中国的比亚迪、深圳比克等。其中日韩企业在产品性能和产业链的完整性方面,工业技术和装备方面领先优势比较明显。其中三星在2011年已经位于全球排名的第一位。
国内锂离子电池产业从上世纪90年代开始起步,经过十多年的发展,据行业协会统计,2010年国内生产锂离子电池约16亿只,占全球产量的32%。国内的电池企业四强是比亚迪、深圳比克、ATL公司、天津力神,这几家聚集度比较高,占国内的36%。
新能源电力技术范文4
【关键词】:电力新能源;安全;高效利用
1、电力新能源的概念及其特性
新能源是指在传统能源之外的一切可利用的、有待推广的能源形式。电力新能源是指应用新的科学技术将传统能源之外的一切可利用的能源进行开发,并应用到发电、输电、配电、用电等领域中去。电力新能源大部分都是可再生能源,比如水能、风能、太阳能等。电力新能源的应用不会产生严重的环境污染,具有清洁、可再生等有点。但由于当前的技术能力的限制,电力新能源具有随机波动性大等特点。所以将大规模的新能源电力接入到当下的电网中,会对当下的电网的电力系统结构、运行方式、控制手段、输配电等造成严重的影响。
2、新时期电力新能源的具体利用
2.1太阳能光伏发电
(1)电压波动
毋庸置疑,要利用太阳能进行发电,那么太阳的光照强度便成为影响太阳能光伏发电系统的输出功率的首要因素,我们知道,太阳的光照强度也不是人为可以决定的,它要受到天气和季节条件的影响,这样一来,自然条件的变化的不可人为干预的,那么太阳能光伏发电系统的输出功率就会从自然条件的不断变化产生不稳定性。新时期进行太阳能光伏发电并网技术的应用,基于保证系统运行的稳定性和安全性,就要充分预估到从电网中瞬间脱离对系统电压产生的影响,并采取一定的措施减小这种不利影响。
(2)谐波
谐波会对电力系统的稳定运行产生极为不利的影响,但是在利用太阳能光伏发电技术进行发电时,系统中的并网逆变器在转换电能时必然会产生为数不少的谐波,会对电网运行产生不利的影响。如此一来,就需要加强太阳能光伏发电并网技术的检测工作,这也是控制畸变率的有效手段。在利用太阳能光伏技术的时候,如果是直流电并入电网系统,那么其所产生的电压畸变率尚处于国家电网相关标准的允许范围内,然而若是要将电压变入电流,则会产生大量的谐波,这样一来电压的畸变率就会超出国家标准,因此可靠的检测技术是防止这种严重畸变率的手段。
2.2风力风电
风力发电的原理比较简单,就是利用自然对流运动产生的风力带动风车叶片转动,但是这个转动可能会很慢,达不到风力发电的速度要求,这时就需要借助风力增速机来增强叶片的转动速度,一旦达到了一定的转速,动能就可以转化为电能了。但是通过相关研究发现,尽管风力发电节省了大量的能源,但是这种发电方式对风能的利用率还是存在偏低的状况,仅仅从理论出发,风能发电机能够发挥的最大风力才只有全部风能的59.6%,实际应用中的利用率则更低。由此可见,风力发电作为一种新型的新能源发电方式,其未来可提升的空间还很大,应着力于研究风能的利用技术,推动风能利用率的增长。
2.3清洁煤的使用
清洁煤是一种新型的煤炭资源,这种煤炭资源将普通煤炭的燃烧率大大提高,减少了燃烧过程中的浪费。清洁煤技术的应用主要有以下几种:一是原煤的加工技术。要将原煤进行继续深加工,型煤是最好的选择,但是加工之后煤浆和配煤也可以用于选择。水煤技术也是一种新型的清洁煤资源,在煤炭原料中掺入相关的添加剂,使得煤炭的状态油固态变为液态,这是一种很好的混合燃料,能够实现喷燃,也为运输提供了便利。二是从煤炭的烟气净化技术。当前应用最为广泛的便是湿式的石灰石装置。另外,外脱氮氧化物技术也是实现烟气净化的先进技术。要使得煤炭降低污染指数,那么新的燃烧技术的出现尤为重要,当前应用的技术包括煤气联合的循环、整体地煤气化联合循环、增加液化床的联合循环。
3、促进我国电力新能源高效、安全应用的有效措施
3.1电源响应的应对措施
加强电源响应的主要手段就是需要提高技术能力。当下我们可以适当引进国外的一些先进的新能源发电、输送以及平抑电力波动的一些新技术,以提高电力新能源的发电效率以及应用效率,确保新能源电力能在电网中安全运行。除大力引进国外先进技术外,我们也应该加强自主技术研发,国家应该重点扶植新能源技术开发,给予政策和资金上的适当支持。通过加强技术开发,提高新能源的开发利用率。
3.2电网响应的应对措施
新能源电力存在电网扰动的缺陷是当下新能源电力在电网中无法大力输送的一个重要因素。新能源电力的电网扰动是受新能源电力系统的相关特征所决定的,这就致使了新能源电力系统的电压耐受能力以及通能力低的现象。解决新能源电网扰动问题就需要采用合理的低电压、高电压或不对称穿越的方式,改变新能源电力系统的阻尼性,使其存在电力系统电网相应的惯性,为新能源电力的安全、高效利用打下坚实的基础,为解决新能源电力的电网扰动问题提供支撑。
3.3负荷响应的应对措施
近年来随着新能源电力开发利用技术的不断发展,新能源电力系统对一些较大负荷都有了一定的调节能力,但新能源电力系统对外界环境的抗干扰能力显然还不够。一旦外界对其产生了较为严重的干扰,对电力系统的安全性产生严重的影响。甚至在情况严重时,还会导致整个新能源电力系统的功能瘫痪。所以,还必须加强对调峰技术的升级研究,提高系统的调峰能力。同时还需要充分应用新能源发电设备的集中布局,充分发挥使用距离优势,全面提高新能源电力的高效利用。同时分区域与远距离解耦连接输送电力,也能提高电力资源的高效传送,同时有效规避掉部分区域电力系统不稳性以及波动性。
结语
综上,在发电的技术方面,正在向着应用新能源和可持续的方向在发展。能源的巨大消耗是摆在世界各国面前共同的问题,国作为一个能源十分短缺的国家,更应该注意发电新能源技术的利用。我们相信,在了改革几十年的积累,我国一定能够走出一条更为环保而可持续的发电的道路。
【参考文献】:
新能源电力技术范文5
关键词:智能电网;新能源发电;储能技术;能源基地输电规划;功率预测;虚拟发电厂
中图分类号:TM614 文献标识码:A 文章编号:1006-8937(2014)36-0042-02
当前,随着化石能源的日益枯竭和环境问题的日趋严重,开发使用新能源是世界能源发展的新趋势。2009年9月4日,国家发展改革委员会向全社会公布了《可再生能源中长期发展规划》。规划提出,到2020年可再生能源消费量占能源消费总量的比重将达到15%,形成以自有知识产权为主的可再生能源技术装备能力。
然而必须面对的是,新能源的迅猛发展,给现有电网带来了新的严峻挑战。风能、太阳能发电具有随机性和间歇性,这无疑使电网运行控制的难度和安全稳定运行的风险明显增大;核电的可调节能力较差,发展核电也需要坚强电网的支撑。这些新的问题使电网升级改造迫在眉睫,也为智能电网在新能源发电中的应用奠定了坚实的基础。
1 智能电网概论
1.1 智能电网的由来
自第一次工业革命完成迄今近二百年来,在科学技术产生强大生产力的作用下,人类文明得到了全面而迅速的发展,但与此同时,人类活动能力不断增强与范围的不断扩大也对地球环境产生了巨大的影响,全球气候变化、自然灾害频发、环境污染及沙漠化严重、能源危机加剧,人类的生存与发展面临前所未有的严峻挑战。电力工业自第二次工业革命兴起以来,至今已有一百多年的历史,人类社会也随着经济的发展、技术的进步对电力依赖程度日益增长。
电力工业是国家能源产业的核心,资源和环境的双重压力使人们开始重视电力系统在节能减排方面的巨大潜力。同时,各行业对供电可靠性及电能质量要求的日益提高也对电网建设提出了更高的要求,反过来,电网的发展升级对各国保证能源安全和能源独立、进一步抢占科技与经济发展制高点、促进就业都有着重大意义。在此背景下,国内外研究人员纷纷提出对下一代电力系统的展望,智能电网应运而生。
1.2 世界各国智能电网建设的差异
环境问题、能源危机、技术经济需求以及电网自身更新升级需要这四个方面成为各国大力研究和建设智能电网的主要驱动因素,由于国情的差异,各国在发展智能电网方面存在共性动因的同时,又各有侧重点。
在美国,2003年8月的美加大停电使得美国电网自身设备老化、技术陈旧、网架结构脆弱等问题逐渐凸显,因而美国智能电网发展一方面侧重于对传统电网设施进行升级改造,提升电网的安全性与可靠性,并十分重视配电网的优化升级与分布式电源的利用。另一方面美国希望通过设施改造与技术创新开辟新的经济增长点,占据国际市场领先地位,在推动经济发展同时缓解失业率较高的问题。
在欧盟,由于各国社会经济情况、资源禀赋、电网现状的不同,欧洲各国对自身智能电网的发展规划各有特点,从共性来说,欧盟的超级智能电网(Super Smart Grid)计划侧重于解决大规模可再生能源尤其是海上风电的消纳利用、分布式电源并网以及需求侧管理等问题。
我国社会与经济不断的发展,带来了对电力需求持续而强劲的增长;传统能源日益短缺和及其环境污染问题在给全社会造成巨大压力的同时也使得电力企业在考虑生产成本之外开始审视其带来的社会和生态成本;同时,我国电力资源和需求在地域上的不平衡、大规模新能源和分布式能源的开发利用、配电网建设相对滞后等问题都对电网进行资源优化配置能力提出了更高的要求。
根据国家电网公司的定义,坚强智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节,覆盖所有电压等级,实现“电力流、信息流、业务流”的高度一体化融合的现代电网。
2 智能电网与新能源发电的关系
2.1 大力发展新能源是建设智能电网的驱动力
能源危机与气候全球变暖告诉我们,人类社会要想可持续发展,必须减少对化石能源的依赖,减少环境污染。也就是说,使用新能源是可持续发展的必然要求,是历史发展的必然要求。而智能电网作为未来社会能源基础设施,必须顺应历史发展的要求。
因此,大力发展新能源要求智能电网应具有坚强可靠,高效发电,环境友好等核心价值,智能电网的发展必须适应新能源发展的要求。
2.2 智能电网的应用使新能源革命成为可能
智能电网技术可提高电网管理大量间歇性新能源发电的能力,其原因在以下几点。
2.2.1 智能电网可对间歇性新能源发电的峰和谷做出即时反应
由于电网的所有元件都被通信系统和自动控制系统连接在一起,智能电网可利用储能手段和微网系统,在不同地区之间进行平衡,循环削减终端电力需求,接通当地分布式发电和其他发电资源网络等方式对间歇性新能源发电的峰和谷做出即时反应。
2.2.2 智能电网使得新能源发电真正“物有所值”
智能电网的普及,可使电力消费者根据电价选择电力,因此,新能源发电可通过市场这只“无形的手”来弥补间歇性带来的不足。在所需的自然条件不满足要求时提高电价,从而降低在自然条件不能满足发电条件时的电力需求;在电力供应充足时降低电价,从而增加在自然条件满足发电条件时的电力需求。这样,在满足系统安全稳定性的前提下,逐步使新能源的广泛应用成为可能。
3 智能电网在新能源发电中的具体应用
3.1 智能电网使新能源发电更稳定
电力生产过程是连续进行的,发电和负荷及损耗之间必须时刻保持基本平衡。而电网中用户对电力的需求却随着时间及气象因素的变化而变化。传统电力系统是通过对可控发电机组(如水电、火电)的出力来维持系统发电和负荷之间的平衡。但由于新能源发电大多受气候和天气影响较大,其出力难于控制。在新能源发电技术快速发展的大背景下,如果能在风力发电、太阳能发电等新能源发电设备备用储能装置,第一可以解决新能源发电自身出力不可控问题,通过储能元件对机组的出力曲线进行调整,减少出力变化对电网的冲击。第二可以在电力充沛时,储存电能,在负荷高峰期释放电能,达到削峰填谷、减少电力系统备用需求的作用。根据所转化的能源类型不同,目前主要的电能存储形式可分为机械储能(如抽水蓄能、压缩空气储能、飞轮储能等)、电化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池等)、电磁储能(如超导电磁储能、超级电容器等)和相变储能四类。
3.2 智能电网使新能源发电更经济
由于我国新能源分布与负荷需求呈现逆向分布的特点,要将新能源所发出的电能输送到相应负荷需求区,不可避免地会进行远距离输电。因此,如何针对新能源发电的特点减少此过程中的输电损耗,将是一个十分重要的问题。
针对间歇性新能源出力的随机性和波动性,采用新能源基地输电规划,是一个较为可行的方案。在保证系统安全性的同时,适当选择供电距离和接入电压等级,把相似电源特性的电站“打捆”后集中外送,能够提高经济性能;考虑不同新能源间以及新能源与常规能源间的合理配比,对大规模新能源的送端电源结构和布局进行优化,并“打捆”送出,可以平滑间歇性新能源的出力波动,并提高传输通道的利用率。
近年来国家电网公司在风电发展上全力解决风电并网问题,国网风电接入和配套送出工程投资近400亿元,共接入风电1 600 万kV;全力做好千万千瓦级风电基地输电规划,制订了甘肃酒泉、新疆哈密、河北、蒙东、蒙西、吉林、江苏沿海等七大风电基地输电规划。这便是新能源基地输电规划的一个实例。
3.3 智能电网使新能源发电调度更准确
3.3.1 大规模新能源发电功率预测技术
一个安全可靠的电力系统必须保证电力的生产与消耗在任意时刻的动态平衡。以风力发电和太阳能发电为主的新能源,其输出功率具有随机波动特征,大规模并入电网后,将给电力系统生产和运行带来极大的挑战,因此迫切需要展开对大规模新能源发电功率预测技术的研究。通过预测,风力发电和太阳能发电功率将从未知变为已知,这样可以提高电网的安全性和可靠性,增加风电并网容量,增强风电、太阳能发电在电力市场中的竞争力。
3.3.2 虚拟发电厂
虚拟发电厂是一系列分布式发电及可控负荷的集合,该集合由一个中央控制中心统一调控。通过这种管理和调度方式,交易中心和调度中心不再需要知道每一个分布式发电资源的信息,而只需对虚拟发电厂的中央控制中心进行统一调控,由虚拟发电厂的中央控制中心对各个分布式发电电源进行调整,交易中心也仅需与虚拟发电厂进行交易。对于电网侧来讲,虚拟发电厂将大量分布式发电资源整合在一起,将其作为传统电厂进行调度,这降低了风能、太阳能等可再生能源的不可控性,提高了系统的稳定性;对于拥有分布式发电的用户来讲,由于可根据具体情况选择合适的虚拟发电机供电,同时也可通过虚拟发电厂参与电力市场的交易,因此虚拟发电厂的实施同样可提高这些用户的收益。
4 结 语
可靠、优质、经济一直以来是对电网运行的基本要求,智能电网也不例外;新能源发电既可以解决当前的能源危机,又可以减少环境污染。相信通过国家,社会各界人士的共同努力,我们一定能通过智能电网为新能源发电开辟一片新的天地,为21世纪的能源史、人类的发展史书写下光辉篇章。
参考文献:
[1] 蔚芳,张粒子,王昀昀,等.与清洁能源协同发展的智能电网[R].国际清洁能源发展报告,2013,191-218.
[2] 何光宇,孙英云.智能电网基础[M].北京:中国电力出版社,2010.
[3] 刘振亚.智能电网知识读本[M].北京:中国电力出版社,2010.
新能源电力技术范文6
【关键词】智能电网;智能微电网;新能源;协调发展
近年来国际范围内逐步开展了智能电网的研究与实践计划,智能电网的概念首先是在欧美发达国家提出的。由于计算机、通信、电力电子等新技术的飞速发展,社会各行各业都已经应用这些新技术提高行业的现代化水平,电力工业是一个传统的产业,已经经历了上百年的历史,而且欧美发达国家的电网设备已经进入老化的时期,迫切要求更新改造,而这些新技术的发展使得实现电网智能化成为可能。
智能电网技术有机融合了高级传感、通信、自动控制等技术,具有自我管理与恢复、兼容性强等特点,其快速发展为分布式能源的无缝并网提供了良好的技术保障。通过合理利用各类高级控制技术,能推动各类分布式能源与现有电力系统的有机融合,实现“即插即用”、实时互动和协调运行。目前,分布式能源的开发利用多处于自治运行模式,缺乏一个长远的具体发展模式,进而实现分布式能源的大规模的开发利用。因此,积极研究智能电网环境下的分布式能源发展模式对未来实现分布式能源大规模的开发,缓解能源危机等战略目标具有重要的意义。
一、智能电网与微电网概述
所谓智能电网,就是电网的智能化,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。智能电网的核心内涵是实现电网的信息化、数字化、自动化和互动化,简称为“坚强的智能电网。
智能电网的智能化主要体现在:
可观测――采用先进的量测、传感技术;
可控制――对观测状态进行有效控制嵌入式自主处理技术;实时分析――完成数据到信息的提升;自适应和自愈等几个方面。
综合而言,智能电网具有以下主要特征:
1.坚强。在电网发生大扰动和故障时,电网仍能保持对用户的供电能力,而不发生大面积停电事故:在自然灾害和极端气候条件下或人为的外力破坏下仍能保证电网的安全运行:具有确保信息安全的能力和防计算机病毒破坏的能力。
2.自愈。具有实时、在线连续的安全评估和分析能力,强大的预警控制系统和预防控制能力,自动故障诊断、故障隔离和系统自我恢复的能力。
3.兼容。支持可再生能源的正确、合理的接入,适应分布式发电和微电网的接入,能使需求侧管理的功能更加完善和提高,实现与用户的交互和高效互动,满足用户多样化的电力需求。
4.经济。支持电力市场和电力交易的有效开展;实现资源的合理配置;降低电网损耗;提高能源利用效率;为用户提供可承受电价水平的电力。
5.集成。实现包括监视、控制、维护、EMS、DMS、MOS等电网信息的高度集成和共享,采用统一的平台和模型,实现标准化、规范化和精细化管理。
6.协调。实现电网与批发电力市场和零售电力市场问的无缝衔接,提高电办系统的规划、运行和可靠性管理水平,促进电力市场竞争效率的提高。
7.优化。优化资产的利用,提高资产利用效率,降低投资成本和运行维护成本。
8.优质。电力用户的电能质量得到有效保障,实现电能质量的差别定价。
9.交互。实现电网与用户设备和行为间的交互,促使电力用户发挥积极作用,实现电力运行和环境保护等多方面收益。
为整合分布式发电的优势,削弱分布式电源对电网的冲击和负面影响,充分发挥分布式能源的效益和价值,应积极构建基于分布式能源的微电网。
微电网是一种由负荷和微型电源共同组成的系统,它可同时提供电能和热量;微电网内部的电源主要是由电力电子装置负责能量转换,并提供必须的控制;微电网相对外部大电网表现为单一的可控单元,同时满足用户对电能质量和供电可靠性、安全性的要求。
智能电网和微电网是21世纪新兴的两个概念,随着世界多个国家的积极探索和研究,已迅速延伸至政府、电力、信息、经济、金融等多个行业和领域,成为电力系统未来发展的重要方向。智能电网和微电网在国际上的蓬勃发展,对中国未来电网的规划和建设有着很好的启示和借鉴意义。随着中国电力体制改革的深入完善、电网结构的不断调整和发展方式的逐步转变,将给建设智能电网和微电网带来巨大的发展机遇。
二、智能电网与微电网的关系
微电网是智能电网的重要组成部分,理由如下:
1.智能电网首要的特点是自愈,即不论发生什么事故,它都能通过自身解决,保证电力系统的安全性。而微电网是一个集成了分布式电源、负荷、储能以及保护和控制等一系列环节的小型供能系统,它最大的特点是能够自治运行,这一特点与智能电网的自愈特点相类似。2.智能电网鼓励终端用户参与电网进行互动,实现资源的优化合理配置。微电网作为一个独立的供能网络,也需要根据用户的信息进行动态调整,实现供需平衡。3.智能电网具有全方位的安全决策,能够抵御物理攻击和网络攻击。同样,微电网不仅能够作为备用电源对受端网络提供有效支撑,还能在遭受极端灾害条件下提高整个电网的抗灾能力和灾后应急能力。4.智能电网的可兼容性允许接入不同类型的发电和储能系统。而微电网本身就是分布式电源和分布式储能的集合体,正是基于这个条件微电网才能实现系统内部的能量存储和转化。5.智能电网能够提供满足未来用户需求的电能质量。而微电网构建的条件之一是靠近负荷中心,对负荷进行分级。微电网可以对不同级别的负荷实现个性化供电,即能够为重要用户提供优质可靠的电力服务。
三、新能源与智能电网
目前煤炭在我国一次能源消费中占比高达70%,远高于29%的世界平均水平。在当前日益严峻的环保和减排压力下,加快新能源的发展,改变现有的能源结构已成为我国当务之急:进入21世纪后,美国电力科学研究院、美国能源部以及欧盟委员会等纷纷提出各自对未来智能电网的设想和框架,用以推进新能源的发展进程。但是如果新能源发电大规模接入就会引起电网电能质量下降、电网电压、频率的不稳定等问题。因此,如何优化新能源与智能电网的配置成为亟待解决的问题。
发展新能源和建设智能电网已成为世界的潮流。新能源与智能的电网发展是相辅相成的。从新能源利用方式来看,新能源主要通过转化为电能实现其终端的利用,且新能源发电有着不同于常规电源的出力特性;电网作为电力输送的载体,智能电网代表未来电网的发展方向,是实现新能源发展的平台和重要保障。新能源与智能电网协调发展是我国转变能源和电力发展方式,实现可持续性发展的内在要求。在我国,风能、太阳能资源多集中分布在远离负荷中心的西部地区,更需要通过建设坚强智能电网,全面提升电网的大范围资源优化配置能力,满足新能源大规模接入和消纳的需求。智能电网切合新能源产业发展,对经济具有强大的拉动作用.智能电网应从我国的历史背景和经济背景出发,探索高效的发展模式。
新能源指在技术基础上开发利用的能源,有太阳能、风能、生物质能、地热能、海洋能水能等非化石能源,具体即是能量的转化,将太阳能、风能、生物质能等转换成电能。新源的主要特征是可再生,而且分布广、品种多,可当地化开发和分散式利用。更为突出的优点是不含碳或含碳少:缺点是能量密度低,开发利用需要较大的空间,而且具有波动性、间隙性及不稳定性等特征。智能电网的成熟成为新能源产业根本突破发展瓶颈的前提。
大力发展分布式能源势必给当前电网的正常运行带来巨大的挑战。多数分布式能源的输出功率具有较强的随机性和间歇性,如风能发电、太阳能发电等。大规模清洁电源的并入会导致电网电压水平变动、线路传输功率超出极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。智能电网技术有机融合了高级传感、通信、自动控制等技术,具有自我管理与恢复、兼容性强等特点,其快速发展为分布式能源的无缝并网提供了良好的技术保障。通过合理利用各类高级控制技术,能推动各类分布式能源与现有电力系统的有机融合,实现“即插即用”、实时互动和协调运行。目前,分布式能源的开发利用多处于自治运行模式,缺乏一个长远的具体发展模式,进而实现分布式能源的大规模的开发利用。因此,积极研究智能电网环境下的分布式能源发展模式对未来实现分布式能源大规模的开发,缓解能源危机等战略目标具有重要的意义
从利用角度来看,新能源只有当它实现能量的转化,才能发挥其作用。因此,新能源也期望能进入电网,实现自身的价值。然而,新能源如太阳能和风能在能量的转化过程中存在一个致命的弱点就是其自身的间歇性、不稳定性、不连续性等。这些必然降低电网的可调度性,甚至降低电网的安全运行,严重时甚至会造成电网的解裂,从而导致电网接入率低,风电场利用小时数低,无法形成规模效应等问题。因此,如何契合新能源与智能电网就成为当务之急。
从协调发展内涵来看,实现新能源与智能电网协调发展就是要求新能源发展与智能电网发展在速度上匹配、在规模上均衡、在技术上适应、在政策上配套。从新能源发展角度来看,新能源的发展要适应电网发展的要求,就是要建设电网友好型新能源电,全面提高新能源发电的可调、可控性,满足电网灵活调度运行的要求。从电网发展角度来看,电网的发展要适应新能源发展的要求,就是要建设新能源友好型电网,即智能电网,全面提高电网接纳新能源发电的能力,满足新能源大规模发展的要求。新能源与智能电网是电力系统的有机组成部分,从电力系统来看,涵盖了发电、电网、用电、调度等环节,新能源与智能电网协调发展应该是在电力系统各环节内相互适应、相互配合、相互促进的过程,只有实现新能源和智能电网在各个环节的协调发展,才能最终实现新能源与智能电网的总体协调发展。
从新能源与智能电网协调发展分析来看,电网和发电环节协调水平相对较高,而用电和调度环节的协调水平较低。表明目前实现新能源与智能电网协调发展的薄弱环节是用电,因此,我国新能源与智能电网协调发展的优先次序依次是用电、调度、发电和电网环节。从各环节协调发展分析来看,各指标对环节协调度的影响程度不同,从而决定了各环节新能源与智能电网协调发展的重点领域。发电环节的重点领域包括:建设电网友好型新能源电厂,提高新能源功率预测水平,加快调峰电源建设。电网环节的重点领域包括:加快配套电网建设,提高电网输送能力,提高电网自愈能力。用电环节的重点领域包括:实施灵活电价机制,加强需求侧管理,鼓励用户蓄能。调度环节的重点领域包括:实施灵活调度策略,加强新能源调控能力建设,将新能源全面纳入调度计划管理体系。
四、结语
从电网发展角度来看,电网的发展要适应新能源发展的要求,就是要建设新能源友好型电网,即智能电网,全面提高电网接纳新能源发电的能力,满足新能源大规模发展的要求。新能源与智能电网是电力系统的有机组成部分,从电力系统来看,涵盖了发电、电网、用电、调度等环节,新能源与智能电网协调发展应该是在电力系统各环节内相互适应、相互配合、相互促进的过程,只有实现新能源和智能电网在各个环节的协调发展,才能最终实现新能源与智能电网的总体协调发展。
参考文献
[1]李兴源,魏巍,王渝红,穆子龙,顾威.坚强智能电网发展技术的研究[J].电力系统保护与控制,2009(17).
[2]王振铭.我国热电联产的发展[C].热电联产学术交流会论文集1999,6.