前言:中文期刊网精心挑选了大学化学物质分类范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
大学化学物质分类范文1
关键词:大学化学;衔接教学;创新能力
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)36-0178-02
化学是药学专业学生的专业基础课,该课程的教学效果对学生专业课程的学习有较大的影响,因此选择合适的教学方法提高教学质量是教师的一项重要任务。与中学相比,由于学生学习素养和化学知识体系的较大差异,使得中学和大学化学教学有一个较大的跨度,对于刚接触大学化学的大一新生来讲,很多学生仍然停留在中学化学的教学模式中,仍在沿用中学的思维方式和学习方法应对大学化学的学习,造成学习效率低下而影响教学效果。如何降低学生在不同成长阶段的教学坡度,使中学化学教学和大学化学教学有机地衔接起来,使学生尽快地适应大学化学的学习,度过大学新生学学化学的难关,是摆在大学化学教学面前的一个现实而紧迫的课题。由于化学学科特点使《无机化学》在化学中一直处于基础和母体地位[1],《无机化学》又是药学专业几门必修化学课中学生最先接触的课程,是联系中学化学和大学化学的桥梁,做好《无机化学》与中学化学的衔接教学就显得尤其重要。
一、中学化学与无机化学教学的差异
中学化学教学和大学化学教学属于化学教学体系中两个不同的教育阶段,都有各自特定的特点和教学目的。然而,由于受到应试教育模式和客观教学特点的影响,两个化学教学阶段在教学目标、教学内容和教学方法上存在较大的差异,导致教学衔接中存在一系列问题。
1.教学目标的差异。中学化学的教学目标是让学生掌握一些化学基础知识和基本技能,了解化学与社会、生活、生产、科学技术等的密切联系以及重要应用。大学不仅要求学生掌握化学基础理论,更要求掌握化学思想与学习化学的方法,培养、锻炼学生的归纳能力、实际应用能力和探索创新能力。但由于受功利驱动,中学化学教学仍重结论,轻过程;重考试,轻能力培养,造成本该由中学教学完成的培养目标缺失。而升入大学以后,学生需要从为考试学习转变成为应用、为提高能力学习,这样巨大的反差,学生短期内难以适应。
2.教学内容的差异。大学化学教学和中学化学教学存在教学内容脱节和重叠的问题。新课程改革以来,中学化学课程内容从身边的化学物质出发,呈现一些事实性的化学知识。其主要特点从内容上来讲,涉及的概念不多,要求较低,注重对概念的宏观理解和运用,但对概念是“怎么来的”,“为什么是这样”常以事实叙述的形式呈现[2]。总之,中学化学是属于描述性化学,特点是重记忆,轻理解,少计算。大学化学内容在深度和广度上都有较大的变化,由直观到抽象;由单一到复杂;由宏观到微观,注重反应机理的介绍,由物质的内部结构了解理化性质及其变化规律,并强调与其他学科的交叉。无机化学作为药学专业的基础课程,还要重视与后续化学课程和专业课程的联系,以及相关化学知识点在临床用药上的应用。
3.教学方法的差异。教学方法包括教师的教授方法和学生的学习方法两个方面,教学方法服务于教学目的和教学任务。虽然我国提出全面推进素质教育已经二十多年,但是受社会普遍追求高考升学率的影响,各地方中学化学教学依然执行应试教育,教师“满堂灌”地讲解解题技巧,学生“题海战术”训练提高,基本上是为了高考能考出一个理想的成绩,不会顾及与大学化学的联系。大学化学教学是以教师为导向的学生自主学习过程,注重培养学生的自学能力。相比于中学化学,《无机化学》知识容量大,课时量少,教师的授课速度比中学提高很多,不仅如此,大学化学课堂更注重知识的扩展与延伸,强调学生对知识的理解和思考,多数问题留给学生自主思考,培养学生自主解决问题的能力[3]。
二、大学化学教学的衔接
教学是一个连续的过程,中学化学教学是大学化学教学的基础,大学化学教学是中学化学教学的深化和发展,是先行与后续的关系[2]。各个阶段的化学教学须有机衔接才能产生良好的教学效果,因此二者的衔接非常重要。
1.准确把握教学目标,为提高学生综合能力进行有效衔接。中学化学和大学化学教学目标各有侧重点,但总的教学目的是通过化学教学,让学生对化学有一个正确的认识和理解,从而提高学生的化学素养,为社会培养专门的应用型人才。学生对知识的认识是一个从简单到复杂、从低级到高级、从量变到质变、不断上升和积累的过程[4]。中学的化学教学基本是让学生学会考试,离应用相距甚远,这就更要求大学教师在《无机化学》教学过程中准确把握教学目标,有的放矢地进行衔接教学,始终贯穿学以致用的教学思想,比如学习渗透压知识,教师就要介绍渗透压原理在临床输液和药物选择性吸收应用;化学动力学学习就要渗透专业课程中药代动力学的知识等。明确的教学目标也有利于学生学习目标的建立,消除那种基础课程只要能应付考试过关就可以的错误思想。
2.确切理清教学内容,为提高学生化学素养进行有效衔接。教学内容的衔接主要是指,根据学生身心发展的规律和培养需要,科学、合理地安排教学内容,使两个教学阶段的教学内容连贯统一,循序渐进[5]。大学化学知识是在中学化学基础上的提高,由于中学教师化学教学仅仅围绕高考内容,不会主动考虑与大学化学内容的衔接,因此,大学教师在进行《无机化学》教学时,应该理清中学教材内容,查缺补漏完善《无机化学》教学所需要的基础化学知识,以便学生能由中学化学顺利过渡到大学化学知识的学习。开课初始阶段,可以先复习中学化学知识,然后指出中学所学的描述性化学的局限性,从而引入新知识,比如氢气和氧气的反应,中学研究的是反应产物是什么,反应伴随什么样的反应现象,利用某已知量计算某一成分消耗量或生成量,以及反应的有益用处和危害之处。内容直观易懂,但不涉及反应现象的原因。大学则是研究反应方向、反应速率和反应过程以及反应过程伴随的热量变化。这样就可以由中学化学知识比较顺利地过渡到热力学和动力学的学习。学习化学的目的是用现有理论来指导生产实践或者预测未知的领域,显然,中学化学离化学科学还有不小的差距,只有进一步学好《无机化学》,才能获得系统的化学知识,为以后药物临床应用或科研开发打下坚实的化学科学基础。教学过程中,教师应该及时、准确、适度地进行教学内容的更新,既体现学科发展成果的先进性,又开阔学生的视野[6],让学生掌握足够的化学知识,提高学生的化学素养。
3.合理改善教学方法,为提高学生化学思维能力进行有效衔接。教学方法的衔接主要是指,根据大学与中学不同的教学目标,综合运用多种教学手段,使学生逐步适应两个阶段不同教学方法的转换,为学生适应大学化学教学提供一个缓冲期。大学教师无法选择学生,只能了解并对学生实际情况进行分析,根据学生的实际情况和客观条件,合理选择教学方法进行因材施教。
兴趣是最好的教师,如果对某一学科感兴趣就比较容易掌握。大学化学毕竟不是特色技能,而是一门高等学科,教师很难也没有时间真正能培养出大多数学生对大学化学的兴趣,因此,教师在上课时,需要强调大学课程的学习不能只凭兴趣而学,学习好计划内的课程是一种责任,学习《无机化学》就是自己的责任和义务。
大一新生在抽象思维和逻辑推理方面不够擅长,面对完全不同于中学化学的《无机化学》,往往有畏难情绪影响学习。针对学生的特点,大学教师应积极调动学生的学习情绪,激发学生的求知欲,提高教学效果[7]。在教学过程中,多结合学生比较感兴趣的环境、营养、食品和化妆品等的问题和与专业关联的化学问题,采用“提出问题、学习知识、分析并解决问题”的方式进行,让学生利用所学知识解决实际问题,达到学以致用,培养学生创新能力。教学过程中要灌输学生辩证性思维,存在既有其合理性的一面,比如,中学化学中反应完全的概念在学生头脑中印象深刻,但《无机化学》强调的是反应的可逆性,除了爆炸和核反应之外,其他反应几乎都具有可逆性。通过多角度、多视野的例子冲击,达到提高学生化学思维能力的目的。
教学是教与学的良性互动,再好的教学方法都需要有合适学习方法的配合,而大学教育的本质也正是在学校完成个人学习方法的积累。但是,大一新生在刚开始学习化学时,往往有懈怠和依赖教师的思想,因此,增强学生学习的主动性和培养自学能力就显得特别重要。开始阶段,教师可以向学生推荐基本不同类型的课后学习参考书目,并要求学生紧跟教学进度完成参考教材的阅读和习题册的作业,个别相对容易章节安排学生自学内容后,完成教师布置的任务。逐步培养学生学习的积极性和主动性。
三、结语
在课时量减少,社会需要多元化人才的大背景下,大学化学和中学化学的教学衔接是个普遍存在的问题,也是一个大的系统工程,这就更需要教师开拓思维,积极借鉴前人的教学改革成果,并发挥本身优势,大胆尝试改革化学教学,培养出更多未来社会发展所需要的高素质、创新型人才。
参考文献:
[1]刘璐,牛丽红,刘淑红.药学专业化学课程结构的相关分析[J].中国高等医学教育,2009,(1):64-65.
[2]刘林,朱斌.试论高师院校与中学化学教学的衔接问题[J].时代教育,2016,(1):3-5.
[3]阳洁.谈大学数学与高中数学教学衔接[J].教学方法,2015,(11):25.
[4]吕成云.高中思想政治课与大学政治理论课教学目标衔接研究[D].武汉:华中师范大学,2015:11.
[5]曹琼方.中学与大学有效衔接的策略研究[D].曲阜师范大学,2008:5.
大学化学物质分类范文2
1问题的提出
世界著名学术期刊Nature的顾问编委员Philip Ball在对多位世界著名化学家就什么是化学学科的大问题进行专题访谈后,撰写了题为“化学家想知道什么(What chemists want to know)的专论[1]”。设问的中心议题是:化学在绝大多数科学技术领域中已经成为具有关键作用的学科组成之一,是否意味着它将被视为仅仅是一种得心应手的“工具?”或者说它仍然有着自身的主要化学问题等待着继续深入和突破?该文发表在2006年8月3日出版的Nature上[Nature 442, 3 August(2006)50-52]。所谈及的问题和学者们的真知灼见,对于化学学科的建设、发展以及化学教育的改革都有参考价值。
人们所以关注这个问题,起因很多,主要可以归结为以下两个方面,一个是有志于就读大学化学专业的优秀学生生源出现持续下降的趋势,迫使国外多所院校的化学系改变名称,或者缩小招生规模;另一方面,化学家在配合其他领域的发展方面,存在着过分关注具有强烈应用背景的课题的倾向。在融入其他学科或相关技术领域的过程中,呈现出化学的基础科学面貌变得模糊不清的问题。而和化学同为基础学科的物理学和生物学,在积极参与相关先进科学技术的前期研究、发明或开发的同时,对本学科中的大问题的研究热情却一直有增无减。例如物理学家始终热衷于诸如宇宙起源、以及从原子到天体的整个尺度范围内的空间、时间和物质是由什么来控制的等问题;又如生物学家在试图通过DNA的解码、以及如何支配蛋白质的结构和相互作用来回答Erwin Schroedinger提出的“什么是生命”的问题等。面对公众对化学的日益漠视,甚至认为化学作为一门基础学科的时代已经结束等误解,化学界必须正视并认真回答这个问题,也就是作为三大基础科学之一的化学,还是一门富有生命力的基础学科吗?它的大问题又是什么呢?
此外,近年来人类社会一直受到能源、资源和环境等问题的严重困扰,其中,涉及人们日常生活的各个方面的环境问题,不仅关系到人类社会的持续发展,而且直接影响到人体的健康和寿命的长短,更是日益受到社会的普遍关注。尽管环境问题的产生和作为自然科学之一的化学并无直接的关系,但是由于人们在谈及污染问题时,多以污染物的存在和危害性为依据(例如上个世纪70年现的与臭氧空洞生成有关的氟里昂和近日由有毒奶粉引出的三聚氰胺事件),自然会联想到与研究和合成物质密切相关的化学,当人们不能严格分清化学学科和包含着化学过程的物质生产过程之间的差别时,把环境污染问题更多地归因于化学,应当是一种可以理解的误解。从污染物的源头来看,它可能是人工合成的,也可能是原来就存在于自然界的,即所谓“纯天然的”。它们的发现、分离、分析和化学合成工作属于经典的化学工作。化学家从物质组成、结构和变化等方面帮助人们认识了它们,并且学会了利用现有的物质作为原材料合成它们和新的物质,或通过化学修饰以改善它们的性能和某些功能,以及发现或发明能够对抗某些有毒或有害物质和病虫害的药物等。通过化学家们几百年的工作,人类社会所能应用和享用的化学物质日益丰富,以科学技术为基础的社会生产力和人类的生活质量也因此得以持续发展。但是必须明确的是:科学技术的应用、社会生产力发展所选择的主要途径、对社会各界需求的物质资源和生活资源的生产和分配等等任务,并不是化学科学的基本任务。所以,依据一切(化学)物质都是化学的研究对象,因而简单地把化学物质的存在等同于化学,即由所谓“处处有化学”推衍出来的“因为我们生活在一个物质世界中,化学不可须臾别离,所以化学是最重要的基础学科”和“因为所有的污染物都是化学物质,所以化学是环境污染的罪魁祸首”两种极端而片面的看法的同时存在,就不足为奇了。
由于对化学的误解一直没有得到彻底的澄清,而且以上两种相互对立的极端观点依然在通过教学、科普活动及大众媒体广为散布,不仅导致所谓厌化学症(chemophobia)的形成,并致使国内外不少高校化学系的招生质量逐年下降(尽管就业比率仍然保持中等水平)和纷纷改变系名(就连美国化学会在2004年都曾经有过改名为分子科学与工程学会的建议[1])等现象的存在,应当认为都是事出有因的了。因此,化学是否仍然是一门基础的自然科学,是否绝大部分的重要化学问题通过融入其他学科领域后,仅仅保留为一种“化学”视角?已经成为一个迫切需要面对并回答的问题,而且必须以化学是否仍然有着亟待解决的、富有挑战性的大问题来回答。Ball所写专论的重要性也在于此。
2什么是化学中的大问题
文中简要介绍的大问题,非常具有启发性和前瞻性,通过它们可以预见到化学在今后20年或更长一点的时期将呈现于世人之前的新面貌,同时它作为中心科学的作用将得到进一步地发展和深化。如果化学界和化学教育界能够就此形成共识,必将对化学专业建设和人才培养起到振聋发聩的作用。不仅如此,它对于初等化学教育和教学改革也有重要的指导作用,因为这是现在的中小学生未来步入社会时将要面对的实际啊!Ball根据专家访谈时收集到的意见和看法,归纳为以下几个方面的大问题。兹分述如下,为了有助于读者理解专家们的意见并形成自己的看法,在撰写本文时将尽可能地引用他们的原话。
2.1化学合成虽然无可替代仍然有着亟待解决的大问题
和其他“发现”科学如物理学、生物学、天文学以及地球科学相比,化学合成一直被认为是化学的最独特之处,而且通常是无可代替的。1890年法国化学家Marcelin就曾经自豪地用“Chemistry creats its objects”来描述化学的这个特点。曾经担任美国化学会会长的Ron Breslow(美国哥伦比亚大学的有机化学教授)进一步扩展了Marcelin的说法,他指出:“化学合成使得化学得以设立一个大多数其他学科无法企及的目标。”并提出“是否可以创立一门合成天文学?即通过改变引力常数来影响宇宙万物的性质,从而使其优化”的建议。尽管目前合成生物学也已经成为一门独立学科,但是在化学家看来,它不过是应用化学的另一个基于如DNA合成和蛋白质设计的分支而已。加州理工学院的核酸化学家Jacqueline Barton则强调:“化学是唯一能够制备前所未有的物质的科学”。
但是过于关注合成化学有可能使得化学家们不自觉地扮演着“修补匠”的角色,为了满足好奇心或者为了获利做着玩转分子世界的工作。由于工业发展带来的挑战已成为科学创造的重要推动力,因而致使工业化学和学科化学的分界线变得模糊不清。所以Barton指出:“化学是为工业添加燃料的科学事业。例如石油化工,还有制药、生物技术以及计算机芯片”。Breslow同意化学面对的大问题不如实际生活中提出的挑战性问题来得多的看法。例如从日光获取能量的实用方法,制造能够荷载大电流的室温超导体;还有迫切需要学习如何在完成生产过程的同时不至于损害环境等问题,都是些面对实际的挑战性问题。
没有人会低估应用和工业化学的重要性。但是如果化学家们对什么是我们能够知道的问题的关注远远不如什么是我们能够做的问题时,亦即过分关注为特定问题寻求特定解决方案的现状,是否会影响到化学作为一门基础科学的发展前景和进展的步伐?这是一个值得认真思考的问题。
伦敦皇家研究所有无机化学家John Meurig Thomas认为,化学是一门很特别的科学,例如,人们可以认同化学键的一般原理但是在特殊的分子中,却经常会遇到必须做出新的规定或修改原有理论的情况。他还说:“如果想找到一个能够普遍适用于酶、材料、表面等等的催化理论是一件荒谬可笑的事情”。值得关注的是,在大部分化学家垂青于实际问题和一些领域逐渐偏离化学的形势下,化学是否还存在某些大问题?如果是这样,它能否和物理学及生物学的学科前沿问题一样具有强烈的激励作用?
2.2细胞的化学基础和功能分子的结构功能关系问题
对于其他领域中的前沿问题,化学家确有协助解答的能力和义务。Nature所征得的比较一致的意见是,化学家们最关心的问题中有很大一部分被认为是属于生物学的。Stanford大学的物理化学家Richard Zare说:“对我来说,最大的有待回答的问题是关于生命过程的化学”。Barton对此表示同意,他说:“要真正地了解生命过程,一定要回归到化学”。
Harvard大学的化学家,George Whitesides的看法更加明确。他说:“细胞的本质完全是一个分子层次的问题”,而且“只靠生物学真的解决不了”。他认为生物学中“真正需要着力的”部分,如精确定量和分子层次的探究一直受到忽视的原因在于生物学家研究的是整个器官。Salk Institute for Biological Studies (San Diego, California)的分子生物学家,诺贝尔奖得主Sydney Brenner对此持有相同的看法。
对于分子生物学中基本过程的认识至今依然存在着许多困惑:如蛋白质折叠、生物分子功能的基因标记、以及高度选择性的分子识别等,基本上都属于分子层次的问题,即化学问题。尽管分子生物学家可以认为对于上述过程已经有了较全面的了解,但是从化学来看,却并非如此。生物医学和药物开发迫切需要的、基于分子层次的、合理且有预见性的科学依据的不足,就是最有力的例证之一。
University of California(Santa Barbara)的化学工程师Matthew Tirrell认为,涉及生物分子过程化学本质的信号传递是一个关键问题。也就在这个意义上,化学被视为一门信息科学。1894年德国化学家Emil Fischer用于解释生物分子识别的锁钥概念,可以看成是法国University of Louis Pasteur (Strasbourg)的超分子化学家,诺贝尔奖得主Jean-Marie Lehn把化学称作信息物质科学的由起。
自组织现象使得化学家产生了这样的认识,即分子可以按照某种程序相互作用并以某种特定方式聚集,而人工复制的分子聚集体则隐含着化学信息具有定向传递和放大的可能。Lehn说:“就我而言,认为化学对于所有的大问题都有着最重要的贡献,包括研究自组织过程是如何产生的,以及它又如何使得宇宙成为一个能够反映其母源物种的物质世界等在内。”Lehn相信,下一步的工作将是设计分子的‘学习体系’,这种体系不仅可以编程,而且可以训练。事实上,很多化学家所关注的另一个化学生物学关键问题就是记忆的化学基础。Barton认为:“当我们一旦得到答案之后,就有可能设计新的思维和记忆方式,至少做到学会如何保存旧有的思想和记忆。”Whiteside则希望知道如何能够运用化学使硅电子器件和灰质结合在一起,他问道:“怎样才能把我的计算机装入我的大脑?”这类问题看起来似乎应该属于神经科学家和电子工程师研究的范畴,但是神经元之间的信号传递则属于化学过程;这种类型的中介过程需要用化学语言提供指令。
呈现在化学家们面前的这些研究方向,能否确认为真正的化学问题?Whiteside持完全肯定的态度,他说:“我所持的观点就是,目前令人感兴趣的科学,就是化学”。因为即使是那些明显和化学相去甚远的领域例如天文学中的关键问题,就像‘还有多少类似于地球的星球’或‘土星的月球Titan上面有什么?’等基本上都属于分子层面的问题。当谈及学科交叉问题时,他认为由于物理学和生物学在解决分子层次的机制问题时存在着某些困难。促使化学家致力于了解(或预测)分子结构和功能之间的关系,从而成为对化学的最重要挑战之一,例如构效关系对于药物分子设计的重要性。Barton问道:“我们怎样能够对特定的细胞、器官或组织的分子做上特定的标记?又怎样能够使得在需要分子移动时,它就会移动?”构效关系的深入了解,对于工业合成用催化剂的设计也很重要,目前仅对简单小分子合成用的催化剂所涉及的构效关系了解比较充分,而且遗留的细节问题仍然不少。
2.3分子的动态特性和难以穷尽的化学物质世界
诺贝尔奖获得者,加州理工学院的物理化学家Ahmed Zewail指出,分子的动态行为和它们的分子结构一样,对于分子的活动性有着重大的影响。显然,生物分子间的相互作用并不像锁钥匹配关系(亦即只要在结合部位和底物分子间达到很好的几何匹配,就可以有效地完成整个过程)那样简单。例如分子和溶剂间相互作用时的动态学就有可能起着关键的作用。
目前,化学家对化学反应的动态过程研究,是以复杂的多维势能面(类似于崎岖的山地)为基础的。例如把蛋白质折叠的问题简约成为分子中肽链跨越势能面时的轨迹问题,以及它最后是如何停在和正确折叠构象对应的“能谷”中的问题等。Thomas说:“生物学对构效关系的考虑一般是不充分的,必须了解分子在势能面上的运动情况。”换句话说,动态学才是关键。即使化学家破解了分子设计的原理,化学家又能怎样运用它们呢?Barton说:“即使达到了这样的阶段,例如人们能够在实验室中以100%的产率合成任何一种分子,不再需要研究生花上一年的时间来完成它时,也不能算是真正地掌握了合成。所以涉及使原子能够按照预先设定的方式并有效地聚集成为新分子的过程和规律是个大问题。只有解决了这个大问题,我们才能够制造任何我们所想要的物质。”同时,能源、资源以及其他生产成本都达到最优化,而且对环境最友好的化工生产工艺和企业的诞生,将成为现实。这个涉及到化学合成的大问题,不仅具有重大的学科价值,而且可以极大程度地体现出化学在解决人类社会发展中所能起到的无可替代的作用。
只有化学家才知道加工原子和分子到底有多么困难,而有些分子是很多其他学科所依存的。例如,物理学家和生物学家是不会去制造室温超导体和人造微生物的。但是,如果化学被肢解并分属于其他学科,这类能够触及物质奥秘的训练基础也就不复存在了。认为化学的核心-推理式合成缺乏智慧的看法是错误的。有关化学家除了试图了解这个世界,还试图了解所有可能的世界的学科特色,Breslow说得好:“化学有其实用的方面,但是这不是基础科学。当我们确定地知道,自然界能够提供的分子和反应是非常有限,相对于处在继续创造和发现过程中的奇妙化学世界而言,不过是一个巨大无比的水桶中的一滴微小水珠时,化学的基础科学的性质就再也明白不过了。”
根据访谈,Ball在文中归纳出化学应当面对的6个方面的大问题,它们分别是:
(1)如何设计出具有特定功能和动态特性的分子?
(2)什么是细胞的化学基础?
(3)怎样制造未来在能源、空间或医药领域所需要的材料?
(4)什么是思维和记忆的化学基础?
(5)地球上的生命起源问题,以及在其他星球上如何才能够出现生命?
(6)如何才能够查明所有元素间的可能组合?
3化学学科发展的主线和对化学教育及教学改革的启示
Philip Ball在这篇专论中所提及的化学大问题,虽然涉及化学学科的很多领域,但是未必已经穷尽。参与访谈的化学家们各自由本领域的视角出发,提出的问题非常精辟,视角独到,脉络清晰,不仅有振聋发聩的作用,而且具有很好的启示作用,却也未必能够完全覆盖化学学科的所有领域。但是他们针对化学学科发展提出的意见和设想,不仅能够开阔我们的视野,更有很好的示范和启示作用。未尽之处,应当是留给我们的思考和想象空间。它将有助于人们从现代化学的众多成就中,辨明学科的发展主线和前进的轨迹。
例如根据估算,由常见元素组成的,和典型药物分子大小相当的分子总数,可能达到1040的量级。Breslow说:“目前,已知的化学世界,包括化学家已经使之‘膨胀’了的自然界在内的分子总数,还不到它的1%。”这是反对试图把化学还原为一种目标狭窄的学科的主要原因。诺贝尔奖得主,Cornell大学(Ithaca,NY)的理论化学家Roald Hoffmann则明确指出:“不能把宇宙还原为少数几种基本粒子或者是数以百计的元素,应当扩展到所有可能被合成的数量无限的分子。分子能够具有的结构和性能是难以穷尽的。”
此外,查明并制备化学元素之间可能生成的所有分子和使化学合成产率都能达到100%,本身就是一个大问题。而且是化学所特有的大问题。由于化学物质的性质决定于分子的组成和结构(有时还要考虑体系所处的环境),分子的形成过程则取决于相应组分在给定反应体系中的动态历程和作用机制。因此仅仅满足于经典的活化分子有效碰撞理论和依据缺乏‘柔性’的锁钥关系而做出的分子设计,显然是难以完成这个历史任务的。Lehn近年来提出的Constitutional Dynamic Chemistry(组分动态化学)Adaptive Chemistry(适配化学)思想[2],以及在这个思想指导下完成的一系列组成和结构都相当复杂的化学合成研究,为他在上个世纪80年代提出的化学信息论提供了新的实验证明。从中可以隐约地看到解决化学合成领域中大问题的一线曙光。
我们可以把目前化学学科发展中最值得重视的问题归结为:对什么是我们能够知道的问题的关注远不及于什么是我们能够做的问题。其实,这也是我们在目前进行的化学专业教育以及中学化学教学改革中,同样应该关注的问题啊!
参考文献:
大学化学物质分类范文3
关键词:教学改革;计算化学;化学教学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)05-0059-02 一、教育现状
化学是一门以实验为基础而发展起来的学科,研究的主要内容是通过物质的转化以产生新的物质。由于分子间化学转化的微观性和抽象性等特点,在传统的化学教学中,教师多用比喻、实物分子模型等方法对分子进行展示和讲解。这种教学方法虽然可以使学生学到一些化学知识,但对化学知识的理解主要停留在记忆层次上,对化学知识抽象原理的进一步深入理解存在困难。随着计算化学的迅速发展,不断地有许多新的理论方法和软件得到开发[1]。通过计算化学的模拟研究,不仅能从分子及量子水平解释实验现象中无法解释的问题,还可以通过计算化学对实验中的一些性质或现象总结出一定的规律,进而对化学实验起到指导及预测作用。这不但可以避免科研工作者进行盲目的科学研究,也在很大程度上节省时间、人力和财力,提高科研效率,也使化学学科发展的更加成熟和完善。
二、计算化学与化学教学相结合
为了弥补传统化学教学的不足,将计算化学与化学教学相结合的教育方式,将对化学课程的发展、化学教学的改革及学生创新能力的培养起到推动作用。近几年,随着教学体制的改革,我国已不断地将计算化学教学纳入化学课程中[2-6]。对于传统的化学教学手段,难以生动地表现出抽象的化学概念。采用计算化学模拟及相关的可视化软件分析,则可将这些抽象的概念表达的更具体,使化学变化的本质与过程更形象地展现在学生眼前,从而打破了化学反应的“黑匣子”传统观念。在国际上已有不少高校将计算化学作为一门独立的学科纳入化学课程体系中。在我国一些大学中,计算化学也相继走进化学课堂,如北京化工大学。由于计算化学的高效、形象化和易于理解等特点,在化学教学中,人们主要是采用计算化学的各种软件并进行一些简单的计算练习来辅助教学。这不仅可以激发学生学习化学的兴趣,还可以加强学生对化学知识的理解。
计算化学所使用的一些可视化软件主要有Gaussian View、Chemcraft、ChemOffice等。老师及学生通过对选定的分子进行简单的计算后,就可以通过这些软件对其分子结构、电子密度和轨道等进行可视化分析。这不但使化学教学变得更加灵活,也使这些抽象的概念得到形象具体的展现,化学课程不再枯燥乏味,也降低了教学的难度,帮助学生理解复杂的现象与机理,进而增加学生探索化学微观世界的兴趣,提高了教学质量。
三、计算化学在化学教学中的应用
在大学的化学课程中,如有机化学、无机化学、立体化学、分析化学等[7,8],都可以通过计算化学的应用提高教学质量。以下通过相关化学知识实例来简单介绍一些计算化学在化学教学中的作用。
1.分子轨道。1,3-丁二烯的分子轨道图是大学化学课本上讲解分子轨道的一个典型实例。在分子中每个碳原子都含有一个未占据的p轨道,四个碳原子的四个未杂化的p轨道线性组合成四个不同的分子轨道,即两个占据轨道和两个非占据轨道。由于分子轨道概念较抽象,单凭老师的口述,很难让学生很深入地理解其含义,但通过计算化学软件进行可视化分析后,这个问题可以得到很好的解决,采用Gaussian View对分子轨道进行可视化后得出的图形如下:
图1左侧的四个分子轨道图分别对应着右侧的14-17号轨道。通过鼠标选中一个轨道号,相应的轨道图就会显示出来。从轨道图可以看出,分子轨道的节面越多,能量越高。
2.分子光谱。在有机化学实验中,常通过光谱来鉴定不同的化学物质,如红外光谱、拉曼光谱和核磁共振氢谱等。红外光谱是通过不同种键的不同振动方式而产生的。由于大多分子含有较多化学键且键的类型较多,因此光谱图的峰种较多,学生对于光谱的学习比较困难。通过计算化学软件的辅助作用可加强学生对光谱的理解与记忆。图2为计算得到的丙醛和丙酮的红外光谱图。在计算化学软件显示的光谱图中,用鼠标点击峰的位置,即可显示分子相应键的振动。因此,在教学的过程中可以进行现场的计算模拟,使学生快速地了解并掌握不同分子的红外光谱特征。通过红外光谱也可以对两个不同的分子进行区分,如丙醛与丙酮的分子式相同且都含有一个羰基,因此在1750cm-1附近都有一个较强的吸收峰。两个分子的不同之处主要在于丙醛分子的羰基上含有一个C-H键,此键在2800cm-1处有特征吸收,而丙酮分子中没有,从而将两分子区别开。
3.分子的立体构型。同一分子往往具有不同的立体构象,如烷烃的重叠构象和交叉构象等。由于大多分子含有的原子数较多,学生很难想象出分子的立体结构,这使学生对立体化学知识望而生畏。但通过计算化学的应用,这个问题很容易得到解决。
在基础有机化学中,环己烷的构象是一个比较难于理解及掌握的知识点。学生往往缺乏对分子结构直观的认识,难于在头脑中形成正确的立体几何构型,因而很难正确地书写出环己烷的椅式构象和船式构象。通过计算模拟可以优化得到环己烷的两种构型,采用Chemcraft等可视化软件则可以将其形象地展现在学生眼前。使用此可视化软件查看构型时,可以通过鼠标随意地对分子进行平移和反转等操作,进而使学生对分子的空间构型有较好的认识,也加强了学生空间思维能力的培养。
4.化学反应。物质的生成离不开化学反应,有些反应机理复杂,一个反应因不同的反应方式而得到多种产物。在传统教学中,学生只能通过课本中的化学方程式进行记忆,学生在化学实验课上,也仅能通过溶液颜色或状态的变化判断反应是否进行及是否得到产物,对于分子的微观反应过程并不了解,这使化学在学生心中变得很神秘。然而通过计算化学模拟,采用一些化学可视化软件则可以将微观的化学变化形象地展现在学生面前,使学生对化学反应的本质有深入的理解。
以甲醛的异构化反应为例,通过计算模拟优化得到甲醛分子的两种异构过程,如图3所示。通过Gaussian View可视化软件可以查看两个过渡态TS的振动情况。图4为通过对过渡态(Transition State,TS)做内禀坐标(Intrinsic Reaction Coordinates,IRC)计算得到的反应势能面,纵坐标为反应体系的总能量,横坐标为反应内禀坐标。最高点为过渡态TS对应的点,沿着反应坐标两侧分别是导致反应物和产物的方向。曲线上的每个点对应着一个结构。在可视化软件中通过鼠标选择不同的点可以查看相应的结构。从图4中可以明显看出甲醛分子的异构化过程伴随着键的断裂和形成,也可以通过反应最高点对应的能量粗略地比较两个反应的难易,最高点能量较低的反应路径为主反应通道,相反则为副反应通道。
综上所述,计算化学在国际上已成为一个独立的研究领域,而在我国发展相对滞后。因此,将计算化学纳入到化学课程教学中,使学生体会到计算化学所发挥的重要作用,树立计算化学在学生心目中的位置,激起一些计算化学的兴趣爱好者,也为培养具有分子模拟及运用计算化学能力的新一代化学专业人才奠定基础。
参考文献:
[1]苏培峰,谭凯,吴安安,等.理论与计算化学研究进展[J].厦门大学学报,2011,50(2):311-318.
[2]鄢红,郭广生,张常群.开展交叉学科教学实践,培养新世纪创新人才[J].化工高等教育,2002,(2):42-43.
[3]李中华,陈刚.计算化学新课程体系的构建[J].大学化学,2008,23(1):11-16.
[4]仲梁维,熊敏,董小虎.计算机辅助设计实践教学的改革探讨[J].教改创新,2012,(6):19-20.
[5]王祖浩.化学学科教学策略的构想[J].教育研究,1996,(9):72-76.
[6]罗华军.《计算机在化学中的应用》课程改革和探索[J].甘肃联合大学学报,2005,19(1):80-81.
大学化学物质分类范文4
关键词:普通化学;教学;农林高校;大一新生
中图分类号:G642.0 文献标识码:A
1 概述
《普通化学》课程是农林高校茶学、林学、动物科学、生命科学和环境科学等农林专业的一门重要基础课程,具有基础性、理论性、先导性和综合性等特点,对农林后续专业课程学习的影响极其重大[1]。随着现代学科领域相互交叉渗透,化学因其独特的研究方法和追逐前沿的特征而迅速向农林学科领域扩张,是当今农林学科寻求突破和求得发展的重要途径[2]。但目前农林高校的《普通化学》课程存在着以下这些矛盾。
1.1 基础化学知识与学生专业知识的脱节
《普通化学》知识点零散和内容枯燥,与学生专业知识联系不紧密,针对性不强,导致学生的学习主动性差,进而影响学习兴趣与学习效果。
1.2 理论教学与实验实践教学脱节
大多数教师在讲授《普通化学》课程时主要精力放在讲基本理论,与实验知识联系较少,认为实验教学是实验课的事,与自己不相关,使基础化学教学处于不正常状态,且理论教学与实验教学的安排不合理,影响学生学习积极性和学习效果,甚至使学生丧失学习兴趣。
1.3 教与学的脱节
由于大学教师教学方法及授课方式与中学的差异性较大,且课时较少,教师没有足够的时间进行过渡性教学,教学内容跳跃性较大,影响学生学习过程中的主动参与意识,造成了教与学的严重脱节[3,4]。这些问题是应该值得思考和需要解决的。
在农林科技发展日新月异的今天,《普通化学》课程如何适应21世纪人才培养方向,将培养目标由以前传授基础理论和知识转向现在培养能力和提高素质,使所传授的知识可转化为社会需要的实际工作能力,使《普通化学》教学和学习具有更大的主动性,是当前《普通化学》教学面临的关键问题[5]。因此,从基础课自身特点和当代人才素质培养的要求出发,转变教育思想与观念,由计划经济下的被动模式转变为市场经济下的面向社会求职的主动模式,提高老师和学生对《普通化学》的认识就显得至关重要。在这种形势下,如何适应目前的改革浪潮,就本人的教学方法和措施,对《普通化学》课程谈一些个人的教学经验。
2 重视绪论课教学
“良好的开始是成功的一半”,化学是一门承上启下的中心科学,而《普通化学》课程是学生进入大学后第1学期开设的,处于中学和大学教育的衔接点上,具有承前启后的特殊地位[6]。《普通化学》绪论课是新生的第一节“入门”课,授好绪论课,将学生的思想认识带到1个与我们的社会、生活和专业密不可分的深度,则既能开阔学生的视野,又激发学生的学习动力和学习兴趣,对学生学好《普通化学》具有重要意义。
针对大一学生要完成从高中到大学过渡的特点,在绪论课上除了要介绍课程内容、化学学科分支以及化学对人类社会的贡献和意义外,还需介绍相关农林专业的研究领域和发展趋势。要特别强调化学的“中心科学”地位,特别是化学学科与农林学科的紧密联系和相互渗透。对于环境科学专业的学生,可介绍环境元素的循环、有害化学物质的控制和治理和以“零排放”为目标的绿色化学和化工等。对于生物科学专业的学生,可介绍生物材料和人工器官的合成以及神经细胞生理调控的化学机理等相关内容。这不但增强学生对化学学科的了解,也有助于学生对其专业方向的初步印象。且举出本校化学系老师利用化学解决农林问题的实例,使学生充分认识本课程对专业课程学习的必要性。化学重要的学科地位、广泛的研究范围和空前繁荣的发展趋势,对渴求知识的大一新生有巨大的激励作用。因此,授好绪论课,对于培养学生对课程的兴趣乃至专业思想的确立极其重要,可激励他们在大一学习阶段努力学好《普通化学》。
3 端正学习态度,明确学习目标
大一新生往往较难适应大学教师的授课方式,而自身又未能及时调整学习态度和学习方法,导致学生的学习自觉性和主动性不足。学生虽然也接受过入学教育和思想品德教育等,但有相当部分大学生的学习目的动机仍只是为考试及格和获取学历,不肯付出努力坚持自主学习,有的甚至平时就根本不学,把希望寄托在考前突击。
结合大一新生这一特殊的教学对象,任课教师应经常强调大学学习态度和学习方法,督促学生提高学习《普通化学》的自觉性和主动性,这不仅有利于学生学好《普通化学》,而且有利于增强他们学好专业课程的能力。表1为大学与中学教学上的不同。可以看到:在中学的教学活动中,教师和学生主要围绕着高考的指挥棒转,学生沉溺于题海战术,缺少学习的主动性和自觉性。而大学的培养目标是向社会输送合格的人才,要求对象具有很高的主动性和能动性。因此,教师应在教学过程中加强学生学习目的和专业思想教育,促使学生端正学习态度,明确学习目标,培养学生顽强的学习意志、大胆的创新精神和求实的科研态度,全面调动学生学习的积极性,培养学生自学能力及归纳总结能力[7]。“授人以鱼不如授之以渔”,教师不但要教给学生知识,更要培养学生养成良好学习习惯,掌握科学的思维方式和终身受用的学习方法,以提高学生的自学能力、实践能力和创造能力。
表1 大学与中学教学的不同
中学 大学
培养目标 升学率,考上大学 培养社会需要的人才
教学内容 授课内容少,练习多 授课内容多,练习少
学习态度 老师安排,家长督促,学生从属、被动地位 需要自觉,主动地位
学习方法 死记硬背,掌握基础知识 自学,掌握学习技能
考试类型 能力考试 水平考试
4 普通化学知识与农林专业知识相结合
农林院校的化学教师一般毕业于师范院校或综合性大学的化学专业,缺乏农林专业知识背景,不能很好地将《普通化学》教学贯穿于农林教学体系中,因此教师在备课时需多关注农林科技的进展来实现《普通化学》理论课教学上与农林科技知识相融合,同时还需在自身科研方向上寻找化学与农林学科的交叉,不断充实和完善自身的知识结构,与学生在专业上的共同语言也多了,教学也就更有针对性,进而提高自己的教学水平。
《普通化学》教师不但要重视化学在农林领域的最新科研进展,还要重视化学与农林实际生产中科技知识相结合,现有的《普通化学》教学,都忽视了化学知识与农林专业知识的联系,使学生在以后的专业课程学习、实践和工作中碰到相关化学问题也束手无策,不能学以致用。因此,应该针对各农林专业的特点,致力于将化学基本理论和知识应用到学生的专业知识中去,促进化学教学和农林科技知识的有机结合,使学生明确化学在其专业领域中的作用,培养学生农林科技意识和经济意识。例如在教授“溶液依数性”时提出在农业生产中如何增强植物的抗旱性和耐寒性的问题。在农业生产时干旱严寒来临前农民通常给农作物施肥,多种可溶物使植物体细胞液浓度上升,进而使细胞液溶液蒸气压下降和凝固点降低,从而使植物表现出一定的抗旱和耐寒性。在《普通化学》教学中紧密联系农业生产实际知识,不仅引导学生掌握农业生产中的化学知识和技能,还培养了学生的创新思维和社会实践能力。将农林专业知识融合进自己的教学中,可使《普通化学》教学不断与时俱进,适应现代知识结构更新和人才培养的需要[8]。
5 现代教学手段与传统教学手段相结合
传统教学手段―黑板板书教学具有灵活性、易把握课堂节奏、易突出重难点和便于学生对课堂知识的领悟和掌握等优点,但是效率低,内容有限。多媒体教学作为一种新型的教学手段因其内容丰富、界面生动形象以及课堂气氛活跃的特点,具有传统教学手段不可比拟的优越性,近年来已广泛应用于《普通化学》教学中。多媒体教学能够把某些微观抽象的内容形象化和生动化,增进学生的理解和记忆,有利于学生想象力和思维能力的培养,但存在着界面切换快、师生交流少和重点不突出等问题。如果过分依赖多媒体教学,教师始终照念屏幕,只能起到一台扬声器的作用,而学生不能及时理解教学内容,不能与教师形成良性互动,造成学生的思维跟不上教师讲课的步伐,使教学效果受到影响[9]。
因此,多媒体教学需和传统教学手段有机融合,相互补充,取长补短,才能更好地提高教学质量,改善教学效果。在教学活动中应以学生为主体,在课堂上注意师生的沟通,变被动学习为主动学习。重要的概念和公式在屏幕上显示,而这些概念、公式等的说明和解释可在黑板上分析;例题的题目应在屏幕上显示,而例题的讲解则应在黑板上分析推导,使整个教学过程都让学生处于一种积极思维的状态。板书教学与多媒体教学有机结合不但增进学生对所学知识的理解和记忆,有利于其想象力和思维能力的培养,进而激发学生学习兴趣。只有这2种教学手段相互融合,优势互补,教师才能把握好自己在教学中的主导地位,提高教学质量与教学效果。
6 理论教学与实验教学相结合
化学是一门以实验为基础的自然科学,直观的化学实验可帮助学生从实验现象中获得化学知识、巩固学习成果和培养实验技能。为了更好地培养学生实践能力和创新能力,许多院校把化学实验教学从理论教学中分离出来,独立开设实验课程来改变实验教学的落后局面。《普通化学实验》从理论教学的附属品走向独立,有力地促进了自身的发展,也取得了良好的效果。但本该统一的理论教学和实验教学被分割成2个独立的教学环节,导致理论教学与实验教学严重脱节。且目前,实验教学方法落后,依然是教师现场讲解示范,学生“照方抓药”;实验内容比较陈旧;很少涉及到化学学科的最新成就和发展趋势,学生理论水平与动手能力不能相互促进,相互补充,这与设立基础化学实验课程的初衷是相违背的[10]。
教师应在《普通化学》教学中将理论教学与实验教学相互渗透并有机融合,使理论教学与实验教学相辅相成、相互促进,最终提高学生理论水平和实践能力。理论教学时可通过多媒体技术将实验现象、产物和实验数据展现在学生的面前,并采用多媒体技术模拟实验,结合录像播放、图片和图表等形式,在课堂教学中讲解实验。例如在讲授缓冲溶液性质时,学生做实验时缓冲溶液遇到少量酸碱时其pH值变化很小,加了指示剂的溶液颜色不发生变化,学生对这一实验结果印象不深刻。而在理论课时教师指出50mL纯水和0.1mol・L-1pH=4.74的HAc-NaAc加入1滴(0.05mL)1mol・L-1HCl和NaOH,其pH值变化量为0.01和4,相差400倍,相对于实验现象,这样使实验知识更加清晰化,效果更明显,学生更易接受。
教师在理论教学时可借助实验加强学生对较复杂的化学概念的理解和掌握,进而去解决实验中的化学问题。例如在教授胶体概念时,提到AgNO3与KCl反应生成AgCl胶体,学生对这一知识点很困惑,因为学生中学知识是AgNO3与KCl反应会生成AgCl沉淀。这时就要强调胶体和沉淀的区别在于固体颗粒的大小,并将此与实验“粗食盐的提纯”相结合,在实验中有很多学生粗食盐提纯的最终产物并不是白色结晶状的纯NaCl,而是白色粉末状固体。这是由于在实验中学生向溶液中加入Ca2+、Ba2+、CO32-等生成CaCO3、BaCO3胶粒,如果此时过滤,胶粒会透过滤纸,不能从溶液中分离出来,导致最后不能与NaCl晶体分离开来。因此,实验时学生需将液体多煮沸一段时间,胶粒会发生碰撞长大成大颗粒而沉淀下来,过滤时会留在滤纸上与NaCl溶液分开,最后得到的是白色结晶状NaCl。这样通过理论知识和实验现象相结合,可以使学生很好地理解胶体这一知识点。在《普通化学》教学过程中应积极寻找理论教学和实验教学的结合点,使学生将零散的理论知识综合应用于实践中,学习到一些常规实验中涉及不到的知识和内容,可提高学生对理论知识的应用能力。
总之,《普通化学》教师应不断提高自身的知识水平和综合素质,精心组织好课堂教学内容,灵活应用多种教学手段,展示化学领域的最新成果和最新动态,将化学理论知识与学生专业知识、实验知识和生产实践知识相融合,激发学生学习兴趣和学习动力,树立学生的学习主体地位,才能更好地提高他们的化学素养,更好地为专业课的教学服务,使《普通化学》教学更好地适应当代人才培养需要,培养出适应时展的高素质人才。
参考文献
[1] 杨玉玲,杨昱,徐雅琴.农业院校无机化学教学方法探索[M].北京:化工高等教育,2010,114(4): 94-96.
[2] 许晶,付颖,赵青山.注重化学在农业中的应用深化普通化学教学改革[J].黑龙江教育学院学报,2010,29(9):77-79.
[3] 吴华.提高农业职业院校学生化学课程学习动力的研究[J].吉林农业科技学院学报,2009,18(2):116-118.
[4] 苟如虎,王亚玲,卢新生,等.模块化分层次推进无机化学理论教学[J].大学化学,2011,26(1):26-28.
[5] 邓玉恒,李夏,王少亭,等.普通化学原理绪论课的一点教学体会[J].首都师范大学学报(自然科学版),2007,28:6-11.
[6] 龚孟濂,乔正平,巢晖.基础无机化学教学的思考与实践[J].大学化学,2011,26(1):20-22.
[7] 董斌,吕仁庆,曹作刚.无机化学研究的前沿领域在教学中的应用[J].高等函授学报(自然科学版),2011,24(2):29-32.
[8] 刘艳菊,杨怀霞,王霞.多媒体与板书相结合提高无机化学教学效果[J].中国西部科技,2011,10(14):74-75.
[9] 张树永,张剑荣,陈六平.大学化学实验教学改革的基本问题和措施初探[J].大学化学,2009,24(4):24-28.
大学化学物质分类范文5
关键词:初高中教学衔接 衔接与盲点 学习方法 学生心理
中图分类号:G633.8 文献标识码:A 文章编号:1003-9082(2015)11-0254-01
俗话说“万事开头难”"好的开头等于成功了一半",而作为高一新生的教师,这关重要的就是第一节课,这节课将关系到今后老师在学生中的地位。而偏偏高一化学按大纲要求就是连续九课时的去复习初中所学到的知识,就学生的角度来说,开学的第一节课都很好奇,希望可以尽快学习到不久前刚发下的自己已"看"过好几遍的的新课本,这时课程大纲却让他们去复习初中所学过的知识,就会打压学生学习的积极性。其中一部分老师也觉得很有压力,主要是因为高中的老师不清楚初中化学的教学流程,甚至一部分教师会产生"何苦呢"的思想,有的教师认为花九节课复习,太浪费时间,到具体章节用到初中知识时稍加点拨即可,花这么多时间"炒旧饭"不值。
初高中衔接复习是非常必要的。主要的原因,是因为初中的化学主要强调的是定性分析,学生只要记住化学现象与结论就可以,而高中的的化学要较抽象些,不仅要进行定性分析,还要结合定量分析,且明确高中除了记住"是什么"外,还要求弄清"为什么"和"是什么"和"是多少",初中化学要求形象思维,通常从熟悉、具体、直观的自然现象或示范实验,建立化学概念和规律,而高中化学除了加强形象思维,还通过抽象、理想化的模式建立化学概念和规律,这需要给学生一个学前教育的提醒。提高初中阶段的记忆知识,许多学生的学习方法是不合理的,学习只靠教师,不独立思考,不会总结知识学习,最终养成被动接受知识的习惯;到了高中阶段,要求学生有一个强大的理解、记忆和学习知识的能力,从一个例子,又一个例子中深刻理解化学。如果我们还是死记硬背的方式来学习高中的化学,会提高学习的效率。故利用复习时间灌输高中化学学习思想和学习方法应是最佳时机。除了要逐渐适应高中化学学习的要求,还要适应高中教师的教学方法和高中化学的学习方法。与初中的教学,高中教学过程能力的大、进展快、知识点的全面性、教学性强的课堂教学。高中老师的要求也与初中相异,注重方法的点拨而"稍轻视"不断地反复多次。利用学前复习时间来适应学生的新要求,对教师的教学方式和适应教师的教学习惯,建立良好的师生关系影响初高中化学教学衔接问题的原因是多方面的,经过调查研究笔者发现,西北地区的化学教学衔接问题成因主要可以从以下几个方面来分析:
一、初高中化学教学目标及知识体系的差别
1.教学目标的差别
初中化学是属于启蒙学科,同时也是属于九年义务教育阶段的素质教育。就其教科书以及教学实际中都明显比高中化学简单,其只要求学生去掌握一些基本的、简单的化学知识与实验技能,其涉及到的方程式、计算公式也比较简单,主要的知识层次大多是以要求学生“知其然”为主。
而高中所学的化学,是在九年义务教育的基础上实施的较高层次的基础教育,化学知识也开始向系统化、理论化逐渐靠近,这就要求学生对化学知识要进一步的去认识,不仅仅要“知其然”,还要“知其所以然”。此外,学生还要运用所学到的化学知识去解决具体的问题,最好是能发挥自身的创新精神。
2.知识体系的差别
从上述初中化学与高中化学在教学目标可以清楚地认识到:他们的知识体系存在很大的不同。准确掌握初中化学知识体系与高中化学知识体系,这有利于对高中化学学科的研究。初中化学主要是对生产和生活实践中,遇到的一些化学现象的学习和探索;其中化学实验是学生学习的化学基础手段,因此,初中的化学知识系统不是很完善的系统。教材主要着重于从感性认识到总结归纳到理性认识这一条构建初中化学知识体系。
而高中的化学主要以试验为主,结合基础化学知识,来构建全新的化学知识体系,继而去探究高中化学中的基本规律与方法,这样就可以强化对化学知识的学习。教材着重于从“生活实际化学实验化学原理问题探究方法化学规律”来构建高中化学知识体系。
我研究初高中化学教材发现:高中化学对初中化学知识进行了合理的延伸与拓展,对初中化学教材许多之处进行很好的衔接,但是也发现存在一些盲点区。
二、初、高中化学课程标准的要求和教科书内容的编排上的差异
初中的化学主要注重基础,学生是在初中的学习中逐渐开始认识化学、了解化学与生活的联系,通过对化学常识与基本概念的掌握,然后慢慢去运用它们。所以,应对初中化学提出主要的五个主题:科学探究、身边的化学物质、物质构成的奥秘、物质的化学变化、化学与社会发展。新课改下的初中化学教学内容与物理生物等一起编排在《自然科学》中,它没有以独立的学科形式出现,更没有以高中或大学化学专业教育的预备教育为目标来选取教学内容。教学的知识内容大都贴近学生日常生活实际,遵循从感性熟悉上升到理性熟悉的规律,轻易理解、接受和把握。教材语言比较通俗,直观性、趣味性强。