机械密封的作用和原理范例6篇

前言:中文期刊网精心挑选了机械密封的作用和原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

机械密封的作用和原理

机械密封的作用和原理范文1

【关键词】水泵;密封;问题;对策

【中图分类号】U464.138+. 【文献标识码】A 【文章编号】1672—5158(2012)08—0129-01

1.机械密封装置的原理

机械密封是靠一对相对运动的环的端面A(一个固定,另一个与轴一起旋转)相互贴合形成的微小轴向间隙起密封作用,这种装置称为机械密封机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使中开泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙B、静环与压盖的间隙c的作用,同时对中开泵的振动、冲击起缓冲作用。机械密封在实际运行中不是一个孤立的部件,它是与中开泵的其它零部件一起组合起来运行的,同时通过其基本原理可以看出,机械密封的正常运行是有条件的,例如:泵轴的窜量不能太大,否则摩擦副端面不能形成正常要求的比压;机械密封处的中开泵轴不能有太大的挠度,否则端面比压会不均匀等等。只有满足类似这样的外部条件,再加上良好的机械密封自身性能,才能达到理想的密封效果。

2.水泵密封存在的问题

2.1 机械密封装置管系的焊接质量差严重影响给水泵的安全,当运行中管系轻微泄漏使机械密封液温度缓慢升高(由于经热交换器的机械密封液减少,或机械密封液得不到良好的冷却);当管系严重泄漏使机械密封液温度急剧升高。这些都使机械密封动环和静环及贴和面得不到很好的冷却,使动静环过热而损坏。运行中多次发生由于机械密封管系泄漏导致给水泵跳闸,也加重了机械密封的磨损。因此对机械密封装置管系的焊接质量提出了更高的要求。

2.2 给水水质对机械密封装置的影响。由于机械密封装置对水质的要求较高,当水质恶化时,由于机械密封装置的循环管系比较细,使机械密封装置急易堵塞造成机械密封液温度升高;当给水泵在低转速运行时,当水质恶化时,由于高鲁皮夫(Golubiev)反向螺旋槽的提升压力较低,使杂质不能被水及时带走,导致杂质沉积在机械密封贴和面处,划伤机械密封动静环的贴和面,使机械密封泄漏。因此必须加强机组启停机和正常运行的水质的监督。

2.3 运行方式对机械密封装置的影响。

2.3.1 当机组处于经常性的负荷调整,使给水泵处于变工况状态或给水泵经常处于启停状态时,导致给水泵泵轴的瞬间窜动,使给水泵动静环间的贴和面间隙过小,不足以形成流动膜,而造成动静环的干摩擦,使机械密封装置损坏。

2.3.2 当给水泵处于正常备用状态时,此时该泵静止。由于泵备用时必须投入暖泵装置,这时虽然投入了机械密封装置的冷却水,但由于泵组未转动,因此机械密封装置中的水不可能流动,所以机械密封装置的石墨环(静环)处于100℃以上的高温中,而当备用泵联启立即带负荷时,100℃以上水突然流动起来经过冷却器后变成30℃以上的回水流过机械密封装置的石墨环,使石墨环骤冷而产生裂纹,导致机械密封装置泄漏。因此在泵组正常备用时可加一个小的循环泵使机械密封装置的水流动起来,避免上述现象的发生。

3.水泵密封存在问题的成因分析

3.1 泵轴的轴向窜量大

平衡盘平衡轴向力的工作原理平衡盘工作时自动改变平衡盘与平衡环之间的轴向间隙b,从而改变平衡盘前后两侧的压差,产生一个与轴向力方向相反的作用力来平衡轴向力。由于转子窜动的惯性作用和瞬态中开泵工况的波动,运转的转子不会静止在某一轴向平衡位置。平衡盘始终处在左右窜动的状态。平衡盘在正常工作中的轴向窜量只有0105~011mm,满足机械密封的允许轴向窜量015mm的要求,但平衡盘在泵启动、停机、工况剧变时的轴向窜量可能大大超过机械密封允许的轴向窜量。泵经过长时间运行后,平衡盘与平衡环摩擦磨损,间隙b随着增大,机械密封轴向窜量不断增加。由于轴向力的作用,吸入侧的密封面的压紧力增加,密封面磨损加剧,直至密封面损坏,失去密封作用。吐出侧的机械密封,随着平衡盘的磨损,转子部件的轴向窜量大于密封要求的轴向窜量,密封面的压紧力减小,达不到密封要求,最终使泵两侧的机械密封全部失去密封作用。

3.2 中开泵轴的挠度偏大

机械密封又称端面密封,是一种旋转轴向的接触式动密封,它是在流体介质和弹性元件的作用下,两个垂直于轴心线的密封端面紧密贴合、相对旋转,从而达到密封效果,因此要求两个密封之间要受力均匀。但由于泵产品设计的不合理,泵轴运转时,在机械密封安装处产生的挠度较大,使密封面之间的受力不均匀,导致密封效果不好。

3.3 没有辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计员没有合理地配置辅助冲洗系统,达不到密封效果;有时虽然设计人员设计了辅助系统,但由于冲洗液中有杂质,冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

4.解决对策

4.1 消除泵轴窜量大的对策

合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心中开泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对中开泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对中开泵轴进行轴向限位。第二种方案的关键是合理地设计平衡鼓,使之能够真正平衡掉大部分轴向力。对于其它单级中开泵、中开中开泵等产品,在设计时采取一些措施保证中开泵轴的窜量在机械密封所要求的范围之内。

4.2 消除中开泵轴挠度偏大的对策

首先,减少两端轴承之间的距离。中开泵叶轮的级数不要太多,在中开泵总扬程要求较高的情况下,尽量提高每级叶轮的扬程,减少级数;其次,增加中开泵轴的直径。在设计中开泵轴直径的时候,不要简单地仅考虑传递功率的大小,而要考虑机械密封、轴挠度、起动方法和有关惯性负荷、径向力等因素。很多设计员没有充分认识到这一点。

4.3 增加辅助冲洗系统

机械密封的作用和原理范文2

关键词:机械密封;原理;新技术

引言

随着科学技术的不断发展以及新型材料的出现,机械密封技术随之迅速发展起来。近年来人们对环境保护日益关注,引起对机械密封的泄露要求越来越高,同时为了延长装置的检修周期,要求机械密封的使用寿命随之延长。因此,发展机械密封的新技术、新产品以满足人们对高性能机械密封的要求。

机械密封技术简介

1.1 机械密封基本原理

机械密封也叫做端面密封,是一种旋转机械的封油装置。由于传动轴贯穿在整个设备内外,轴与设备之间就会产生空隙,将两个密封元件置于垂直于轴线的平面上,流体介质就不会通过空隙向外泄露,密封元件反而会在流体介质的静压力以及弹簧力的作用下,保持相互贴合并相对运动从而达到防止流体泄露的目的。

密封环是构成机械密封的主要元件,它在很大程度上决定了机械密封的使用性能及使用寿命,因此对于密封环有严格的使用要求:要有足够的强度和刚度;应有较小的摩擦系数和良好的自性;密封端面应有足够的硬度和耐腐蚀性;密封环应有良好的耐热冲击性能;密封环要容易加工制造。

1.2 机械密封的特点

使用寿命长。机械密封在油、水类介质中使用时间长达1~2年或者更长时间,在化工介质中的使用寿命通常也能达到半年以上。

密封可靠。机械密封在长时间的运行中,密封状态稳定且泄漏量很小,通常机械密封的泄露量可以控制在3~5mL/h,与软填料密封相比,泄露量小很多。

摩擦功率损耗小。由于机械密封接触端面面积较小,其摩擦功率消耗仅为软填料密封的10%~50%。

适用范围广。机械密封适用于高温、低温、真空、不同转速以及各种腐蚀性介质和含有磨粒介质等情况的密封。

抗振性强。随着波纹管式和全补偿式机械密封的发展,机械密封的抗振性越来越强,缓冲性也越来越好。

无需经常调整。使用机械密封的维修周期长,端面磨损后能够自动补偿,通常情况下无需经常维修。

机械密封技术

2.1 密封端面改形技术

干运转气体密封技术。干运转气体密封就是将开槽密封技术应用于气体密封。干运转气体密封除结构相对简单,安装维护费用较低,运行无磨损,功耗小等特点以外,还能够实现零泄漏或者零溢出,系统运行可靠。克兰公司首先研制的28型螺旋槽干运转气体密封主要用于汽轮机、搅拌机及离心压缩机。后来又研制了用于泵中的2800和2800E系列干运转气体端面密封。

上游泵送密封技术。上游泵送密封的工作原理与干气密封类似,是利用密封面上开流槽在旋转条件下将下游少量的泄露流体介质泵送回上游。主要产品有美国约翰克兰公司研制生产的8000系列螺旋槽上游泵送机械密封,以及我国石油大学研制的泵出式圆弧槽端面密封。

密封面开深槽流体静压型机械密封。就是为了将外界流体或者密封流体引入到密封端面,以便对密封端面进行充分的和冷却,而在密封端面上开几组深槽和压力介质引入孔。虽然此种方法泄漏量较大,但此技术仍广泛应用于高压、高温、高速等普通机械密封难以满足工程要求的情况中。

流体动压密封技术。就是在密封环上开出1~2mm的沟槽,利用密封面流槽,形成局部热变形和力变形,然后在密封面上产生流体动力楔效应。其优点是利用槽可以增强承载能力,降低摩擦热,适宜用于高参数密封。美国克兰公司获得流体动压垫高压旋转机械密封专利,将流体动压垫应用于轻烃密封中。国内的石油大学利用有限元对热流体动压密封做了相应的研究。

2.2窄环刃边机械密封

窄环刃边密封的结构特点是动环密封面的宽度很窄,仅0.2~0.6mm,而且平衡比是B=0~0.5。这样由于密封面很窄,就能够限制固体杂物的形成,即使已经形成的固体物质或者纤维也能够背尖边切断而排除。在石化企业中不仅应用国外产品还应用了国内产品,比如在锦州和齐鲁橡胶厂的工艺装置中已经推广应用

2.3 流体阻塞密封技术

在过去经常是用液体阻塞液体或者气体,叫做液封液或者液封气技术。而现在采用气体阻塞液体或者气体,即气封液或者气封气技术。流体阻塞技术有以下几个特点:密封环的选用材料具有自且不胶合性,典型材料是石磨;在密封面由于摩擦而产生的热量能够及时的散发出去;阻塞气体通常采用空气或者氮气、二氧化碳等惰性气体;为了减少备件量并且要避免左右的错装,开槽密封应尽可能选择双向旋转结构;在开车或者停车过程中会产生一定量的干摩擦,为了有利于清除磨粒,应注意环槽的几何形状。主要产品有天津鼎名密封公司研制的螺旋槽液体阻塞密封,以及齐鲁石化公司和石油大学研制的蒸汽阻塞密封。

2.4 零逸出密封技术

所谓零逸出技术就是指使工艺流体不逸出的密封技术。通常情况下,零逸出密封采用干运转密封,可以是接触式的干运转密封也可以是非接触式干运转密封。其密封特点是利用流槽的各种流体的静动压效应来增加流体膜的承载能力,与此同时还要利用浅槽形成较薄的流体膜和较小的泄漏量。主要产品有美国杜拉密泰列克公司最近生产的泵用SB-200型干运转控制逸出集装式密封和GF-200型节能零逸出气体阻塞密封。

结论

随着先进科学技术和先进制造技术的发展,我国工程机械也会有较大发展,因此我国机械密封技术将广泛应用于各个机械行业中去,对机械密封的密封要求越来越高,因此,机械密封要朝着零逸出、高可靠性、长寿命及高性能方向发展。

参考文献

[1] 张文平.机械密封的应用探讨.科技情报开发与经济,2010(2):220-221.[2] 顾伯勤,蒋小文,孙见君,陈晔.机械密封技术最新进展.化工进展,2003(22):1160.

[3] 左振亮,李楠.机械密封技术与研发方向.辽宁化工,2008(10):698-700.

机械密封的作用和原理范文3

[关键词]TRIZ理论;釜用机械密封;弹簧

Abstract: The good seal performance of mechanical seal is very important on the reaction kettle. But the seal parts were always failure due to wear. The study is to investigate spring modified options with TRIZ to improve the sealing performance and life time.

keywords: TRIZ, reaction kettle mechanical seal, spring

1、引言

机械密封是一种功耗小、泄漏率低、密封性能可靠、使用寿命长的旋转轴密封,在泵、反应釜、压缩机上已经大量使用[1]。反应釜是综合反应容器,反应过程中产生的压力对容器的密封要求极高。在一般中等压力或抽真空情况都会使用机械密封,而机械密封的密封效果将直接影响反应釜的运行,严重的将造成停产、安全事故及环境污染等不可估量的损失[2]。

本文利用TRIZ理论分析问题和解决问题的方法对机械密封中的弹簧断裂失效进行了分析及改进,旨在有效改善反应釜的密封性能,提高其可靠性和使用寿命。

2、TRIZ理论简介

TRIZ理论是发明问题解决理论的俄文缩写,是前苏联发明家根里奇・阿奇舒勒(G.S.Altshuler)及其领导的一批研究人员,自1946年开始,花费1500人/年的时间,在分析研究世界各国250万件专利的基础上所提出的一套发现问题解决问题的发明理论。在TRIZ中提出了用39个通用工程参数来描述技术矛盾,用40条发明创造原理来指导设计人员的创新设计,并且建立了对应关系,即矛盾矩阵。

应用矛盾矩阵解决实际问题时,须将设计中的特定问题预先处理,即用TRIZ的39个工程参数描述矛盾,并且要对使用矛盾矩阵得到的原理解进行后处理,即把原理解转化为领域解,以得到需要的特定解。

3、基于TRIZ的设计过程

3.1问题描述

搪瓷釜由釜体和搅拌系统组成,釜体和搅拌系统之间由机械密封进行密封。机械密封由紧固螺丝在压盖作用下压紧弹簧座,弹簧座固定弹簧,弹簧压紧动环,动环压紧静环起到密封的作用[3]。由于搪瓷釜搅拌系统没有固定支撑,在启动和搅拌过程中压盖和弹簧座存在扭动,晃动大,容易造成弹簧断裂,从而造成了泄漏。

3.2确定技术参数

存在的问题是:弹簧在工作中受到了额外大的扭转力发生了断裂损坏。如果在搅拌系统中增加固定支撑,使得搅拌轴晃动减少,从而可以改善弹簧的受力状况,减少弹簧的断裂几率。可是增加固定支撑会增加系统的复杂性。故选择“参数10-力”作为改善的参数,“参数36-系统的复杂性”作为恶化参数。

3.3查找矛盾矩阵

与发明原理序号对应的是:10预先作用原理,18机械振动原理,26复制原理,35物理或化学参数改变原理。

3.4发明原理分析

原理10为预先作用。此原理体现在二个方面:(1)预先对物体(全部或部分)施加必要的改变;(2)预先安置物体,使其在最方便的位置发挥作用而不浪费运送的时间。根据此原理,可能采用的方法有:在压盖和动环之间安装定位销,阻止压盖和动环之间发生扭动。

原理18为机械振动原理。此原理体现在五个方面:(1)使物体处于振动状态;(2)如果已处于振动状态,提高振动频率;(3)利用共振现象;(4)用压电振动代替机械振动;(5)使用超声波和电磁场振动耦合。根据此原理,可能采用的方法有:采用磁力密封代替机械密封。

原理26为复制原理。此原理体现在三个方面:(1)用简化的廉价复制品代替;(2)用光学复制品(图像)代替实物或实物系统;(3)如果已使用可见光拷贝,用红外线或紫外线代替。此原理对问题的解决贡献有限。

原理35为物理或化学参数改变。此原理体现在改变物体的物理或化学状态,如聚集态、浓度、密度、柔性和温度等。根据此原理,可能采用的方法有:采用刚度更好的弹簧。

4、基于TRIZ的设计方案完善

综合以上分析,形成了3个方案。

方案1:在压盖和动环之间预先安装定位销,使得连接的弹簧不易发生扭动。该方案简单易行,单独实施后,弹簧的寿命增加了近3倍。但是搅拌时物料除了作水平回转流动,还产生上下方向的循环流动,使得搅拌轴有径向摆动和轴向窜动,在这种工况的持续作用下还是不能保证弹簧的较长寿命。

方案2:采用磁力密封。该方案能进一步提升密封效果,免去弹簧断裂的几率,只是成本会稍微增加。

磁力密封技术是指初始闭合力来自磁性力,利用磁体能够吸引铁磁性物质的性质或者相同磁性之间的排斥力,通过轴向的补偿,使密封端面紧密贴合,来达到密封目的。它延用机械密封的工作模式,采用全新的浮动式设计理念,使密封结构更简单,功能更完善,有较好的密封效果,较长的使用寿命,基本不会损坏旋转轴外表面。对旋转轴在工作工程中产生的振动、偏摆、偏斜等不敏感,密封效果不会受到明显的影响。节省能耗同时又能保证设备的安全运行,适用于多种工况条件[4]。

图1所示为一种典型的磁力密封装置结构图,图2是磁力密封的实物图。其主要由静环、动环和密封圈组成。其中,静环为磁性材料,由高剩磁铝镍合金材料制成,其表面光滑,具有良好的热稳定性,且耐磨性好;动环为石墨,耐磨性和性能好,镶嵌在磁性金属材料的动环座里;O型圈对径向配合进行密封,防止泄漏[5]。

方案3:采用刚度更好的弹簧。可选的有蝶形弹簧,斜圈弹簧等。

蝶形弹簧简称碟簧,它是一种由钢板冲压成碟形的薄板弹簧,体积小、承载能力大、加压均匀、缓冲和减震能力强。采用不同的组合(叠合或对合)可以得到不同刚度的变性特性曲线,最显著的优点是能在很小的变形条件下,承受范围变化很大的载荷,广泛应用于钻机、模具、液压件、制动器及军工中[6]。

此处可采用稍作改进的对合组合碟簧,见图3,即在一对蝶形弹簧之间加一垫片,将一对蝶形弹簧隔开,蝶形弹簧的锐角作用在垫片的平面上,与垫片平面全部接触,克服了蝶形弹簧失稳、扭曲变形的状态,提高了蝶形弹簧的强度。

斜圈弹簧,该弹簧的横截面为椭圆,受压时斜圈弹簧短轴方向受压。斜圈弹簧沿轴向绕制时上升和下降两个过程交替进行,同时具有正圈弹簧的升角和渐变的倾角,这种结构类型使斜圈弹簧具有优良的连接特性和力学性能。在饶性偏差较大的情况下,斜圈弹簧仍能保持恒定的力,该特性能够减小弹簧的变形量,并能最大程度的补偿表面不平及公差的影响。此外,斜圈弹簧能够承受一定的压缩变形,能够在震动、冲击等恶劣工作环境下正常运作。目前主要用于电力连接件和高温动密封件上[7]。

斜圈弹簧根据压缩变形方向可分为径向和轴向,此处作为密封件可以选用轴向斜圈弹簧,见图4。斜圈弹簧在压缩的过程中,每个线圈的受力和变形几乎都是独立的,可以很好地适应压缩面间的平整度误差,如图5所示。

为了使斜圈弹簧机械获得较好的密封性能和较长的使用寿命,要选择合适的斜圈弹簧的压缩量,保证斜圈弹簧始终处于 10%~35%的压缩位置。由于受到轴向力平衡的影响,斜圈弹簧也在不断变化,因此,在设计斜圈弹簧机械密封时,应高度重视介质压力对端面比压的影响。

5、结束语

TRIZ理论在解决实际工程问题上具有不可替代的优势。它不但能够帮助我们系统地分析问题的情境,快速地发现问题的本质和矛盾所在,而且它能够帮助我们打破思维定势,以一个全新的视角看待问题,促进产品的创新设计,提高产品在市场上的竞争力。

参考文献

[1]唐建兵.对机械密封在化工反应釜上的应用的探讨[J].化工管理,2014:152

[2]李昌根,邵婧,尚鸿昊.釜用机械密封的结构分析与改进[J].工业科技,2013,42(10):37-39

[3]刘毅.反应釜搅拌轴上的密封[J].皮革化工,1994,(4):11-12

[4]金浩,曲家惠,岳明凯.磁力密封装置的研究与应用[J].制造业自动化,2011,33(9):114-116

[5]周永生.磁力机械密封设计方法及存在的问题[J].机械,2004,31(5):63-64

[6]王晓波.碟形弹簧的力学性能研究(硕士论文)[D].郑州大学,2007

[7]张旭龙.斜圈弹簧在机械密封中的应用研究(硕士论文)[D].长安大学,2013

机械密封的作用和原理范文4

关键词:螺杆式冷冻机组 机械密封 泄漏 技术改造

一、引言

亚洲硅业(青海)有限公司2008年6月安装了4台JYSLG25FZ型螺杆式冷冻盐水机组,主要作用是将质量浓度约21%的氯化钙水溶液通过螺杆机组冷却为-20℃,再将-20℃的氯化钙盐水循环打入合成和精馏工序的换热设备,用于生产系统换热设备的制冷剂。自投用以来,螺杆压缩机机械密封曾多次发生油、R22泄漏故障。虽经多次检修,更换新的机械密封部件,但效果甚微。该机械密封频繁故障,不但损耗了大量油和R22,增加了检修费用,而且还给整个生产装置的安全稳定运行带来了很大的隐患。我们通过对造成机械密封泄漏的原因进行分析,提出并采取针对性的改进措施,从根本上解决了机械密封泄漏问题,确保了机组长周期安全运行。

二、机组的结构、及工作原理及工作过程

1.螺杆式制冷式压缩机组包括

螺杆式制冷压缩机、气路系统、油路系统和控制系统,这些设备(除启动柜之外)装在同一公共底座上,构成机组。螺杆式制冷压缩机主要由机体、转子、滑阀、轴封和联轴器五个部分组成。为了机械密封摩擦副端面,机械密封油采用油,由油站供油。

2.工作原理

螺杆式制冷压缩机的机体内装有两只互相啮合的平行转子——阳转子和阴转子。当两转子转动时,两转子的齿部相互插入到对方的齿槽内,随着转子的旋转,插入的长度越来越大,容纳气体槽的容积越来越小,从而达到压缩气体制冷剂的目的。为使压缩机正常工作,需要向压缩机内喷油,向压缩机工作腔喷油,可以起到密封和冷却的作用;轴承、轴封、平衡活塞的工作也需要提供油。

3.工作过程

3.1吸气过程

气体经过吸气孔口分别进入阴阳螺杆的齿间容积,随着两个齿间容积各自不断扩大,当其达到最大值时,齿间容积与吸气孔口断开,吸气过程结束。阳转子每旋转一周,压缩机完成四个吸气、压缩、排气过程。

3.2压缩过程

转子继续回转,“V”型的齿间容积对,因齿的相互侵入,其容积逐渐缩小,从而实现气体的压缩过程。

3.3排气过程

在齿间容积与排气孔口连通后,由于转子回转时容积的不断缩小,将压缩的气体送至排气管。

4.压缩机的主要技术参数为

制冷剂:R22;名义工况:-26/38℃;吸气压力,-0.06~2MPa;进气温度,-10~45℃;排气压力,≤1.5MPa;排气温度,≤70℃;制冷量:920KW;主电机转速,2960r/min;额定功率,500kW;主电机电压,10KV;油压力,-0.12~1.5MPa。

三、机械密封泄漏原因分析

2010年7月,我们对螺杆压缩机进行了解体检查,轴封为机械式密封,机械密封的冷却及均由高压油来完成,进入的油压力比排气压力高0.15~0.30MPa.由于机械密封是在较高的压力区工作,所用摩擦材料具有足够的刚性和强度,静环选用耐压强度较高的碳化硅,动环选用石墨制成,它的弹性模数较大,其密封口端面经研磨和抛光加工,可达较高的光洁度。动、静环密封圈为O型环,材料为氯醇橡胶。经检测,动、静环及密封圈也没有损坏,故机械密封泄漏与其结构、材质选用无关。

为了保证机械密封面的良好贴合,需要保持一定的端面比压;但该端面比压又不能太高或过低,太高会使机械密封磨损加剧,过低又会使密封面开启失效。一般情况下机械密封推荐的端面比压值[1]为:一般介质,0.3~0.6MPa;低粘度介质,0.2~0.4MPa;高粘度介质,0.4~0.7Mpa。

经过计算,螺杆压缩机机械密封密封端面比压为0.35Mpa。因对于粘度大的油端面比压取值在0.4~0.7MPa比较适合,而本压缩机的机械密封实际端面比压值偏小,故在运行过程中,机械密封的密封面可能会开启,失去密封能力,造成油泄漏。故认为机械密封泄漏的主要原因是端面比压太小造成的。

四、改进措施

根据查得,内装内流旋转式平衡型机械密封端面比压计算公式:P b= P t +(k-λ)P1,及K=d22-d02/ d22-d12得知:要增加机械密封端面比压值,提高密封性能的有效途径最有效的方案是增大弹簧比压P t和增加机械密封静环端面载荷系数。要增大弹簧比压需要改动机械密封动环弹簧座,比较不合理,因此在机械密封原结构基础上,其它尺寸不变,增加原静环密封端面的有效面积,是增大载荷系数进而增加端面比压的有效手段。改进前该机械密封结构参数为:机械密封动环密封面外径90mm。静环密封面外径91.2mm,密封面内径81.3mm。

1.扩大静环内径,增大机械密封端面比压

通过对机械密封静环密封面内径进行车削将内经扩大1mm,静环密封端面内径由81.6mm扩大到82.6mm,其它尺寸未变。经计算,机械密封内径车削后的载荷系数K=0.91,λ=0.6,弹簧比压P t选0.2MPa,代入公式P b=P t+(k-λ)P 1计算,机械密封端面比压P b=0.63MPa,螺杆压缩机端机械密封端面比压满足密封油所要求端面比压推荐值0.4~0.7MPa,符合密封要求。

2.校核PV值

为了使机械密封达到长期安全运转的目的,还要求密封副的工作PV值小于许用[PV]值。由于该机组机械密封摩擦副采用的材质为碳石墨—碳化硅,查文献《实用机械密封技术问答》手册可知,该机械密封的许用[PV]值为180MPa·m/s,经计算得机械密封端面平均速度12.56m/s。PV值校核:端面比压与平均速度的乘积(端面比压出口端的P为1.5 MP),计算得到PV值为18.84MPa.m/s。

由上述计算结果可知,端面比压与平均速度的乘积在许用的[PV]值区间内,符合要求。

五、改进后的运行效果

自2010年7月,对螺杆压缩机的机械密封的静环进行车削改进投用后,机械密封效果良好无泄漏,投入运行后运转至今,运转状况良好,保证了压缩机安全运行,累计正常运行时间超过2年,至今未发生泄漏,密封效果非常好。仅配件和安装方面的经济效益就非常著。这种方法对解决工况相似的设备泄漏问题,有一定的参考价值。

参考文献

机械密封的作用和原理范文5

关键词:机械密封 泄漏 原因 措施

目前机械密封在泵类产品中的应用非常广泛,而随着产品技术水平的提高和节约能源的要求,机械密封的应用前景将更加广泛。机械密封的密封效果将直接影响整机的运行,尤其是在石油化工领域内,因存在易燃、易爆、易挥发、剧毒等介质,机械密封出现泄漏,将严重影响生产正常进行,严重的还将出现重大安全事故。人们在分析质量故障原因时,往往习惯在机械密封自身方面查找原因,例如:机械密封的选型是否合适,材料选择是否正确,密封面的比压是否正确,摩擦副的选择是否合理等等。而很少在机械密封的外部条件方面去查找原因,例如:泵给机械密封创造的条件是否合适,辅助系统的配置是否合适,而这些方面的原因往往是非常重要的。本文将从泵用机械密封的外在因素分析导致密封泄漏的原因及应采取的合理措施。

一、机械密封的原理及要求

机械密封是靠一对相对运动的环的端面 (一个固定,另一个与轴一起旋转,) 相互贴合形成的微小轴向间隙起密封作用,这种装置称为机械密封。

机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时对泵的振动、冲击起缓冲作用。机械密封在实际运行中不是一个孤立的部件,它是与泵的其它零部件一起组合起来运行的,同时通过其基本原理可以看出,机械密封的正常运行是有条件的,例如:泵轴的窜量不能太大,否则摩擦副端面不能形成正常要求的比压;机械密封处的泵轴不能有太大的挠度,否则端面比压会不均匀等等。只有满足类似这样的外部条件,再加上良好的机械密封自身性能,才能达到理想的密封效果。

二、泵用机械密封泄漏的外在原因分析

1、泵轴的轴向窜量大

机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.5 mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。这种现象往往出现在多级离心泵中,尤其是在泵启动过程中,窜量比较大。

用平衡盘方法平衡轴向力是如何产生轴向窜量的?平衡盘工作时自动改变平衡盘与平衡环之间的轴向间隙,从而改变平衡盘前后两侧的压差,产生一个与轴向力方向相反的作用力来平衡轴向力。由于转子窜动的惯性作用和瞬态泵工况的波动,运转的转子不会静止在某一轴向平衡位置。平衡盘始终处在左右窜动的状态。平衡盘在正常工作中的轴向窜量只有0.105 ~0.11 mm,满足机械密封的允许轴向窜量小于0.15 mm的要求,但平衡盘在泵启动、停机、工况剧变时的轴向窜量可能大大超过机械密封允许的轴向窜量。

泵经过长时间运行后,平衡盘与平衡环摩擦磨损,间隙随着增大,机械密封轴向窜量不断增加。由于轴向力的作用,吸入侧的密封面的压紧力增加,密封面磨损加剧,直至密封面损坏,失去密封作用。突出侧的机械密封,随着平衡盘的磨损,转子部件的轴向窜量大于密封要求的轴向窜量,密封面的压紧力减小,达不到密封要求,最终使泵两侧的机械密封全部失去密封作用。

2 、轴向力偏大

机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。有时由于泵的轴向力平衡机构设计的不合理及制造、安装、使用等方面的原因,造成轴向力没有被平衡掉。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔化,因此泵启动后很快就失去密封效果,泵静止时则密封端面出现间断的喷漏现象。

3、泵轴的挠度偏大

机械密封,是一种旋转的接触式动密封,它是在流体介质和弹性元件的作用下,两个垂直于轴心线的密封端面紧密贴合、相对旋转,从而达到密封效果的,因此要求两个密封之间要受力均匀。但由于泵产品设计的不合理,泵轴运转时,在机械密封安装处产生的挠度较大,使密封面之间的受力不均匀,导致密封效果不好。

4、没有辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计员没有合理地配置辅助冲洗系统,达不到密封效果; 有时虽然设计人员设计了辅助系统,但由于冲洗液中有杂质,冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

5、振动偏大

机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,泵的其它零部件是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

三、解决泄漏应采取的对策

1、消除泵轴窜量大的措施

合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位; 另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。第二种方案的关键是合理地设计平衡鼓,使之能够真正平衡掉大部分轴向力。对于其它单级泵、中开泵等产品,在设计时采取一些措施保证泵轴的窜量在机械密封所要求的范围之内。

2、消除轴向力偏大的措施

合理地设计轴向力平衡机构,使之能够真正充分地平衡掉轴向力,给机械密封创造一个良好的条件。对于一些电厂、石油、化工等领域应用的重要产品,在产品出厂之前,必须做到台台试验检测和发现问题和解决问题。有些重要的泵可以在转子上设计一个轴向测力环,对轴向力的大小进行随时监测,发现问题及时解决。

3、消除泵轴挠度偏大的措施

这种现象大多存在卧式多级离心泵中,在设计时采取以下措施:

① 减少两端轴承之间的距离。泵叶轮的级数不要太多,在泵总扬程要求较高的情况下,尽量提高每级叶轮的扬程,减少级数。② 增加泵轴的直径。在设计泵轴直径的时候,不要简单地仅考虑传递功率的大小,而要考虑机械密封、轴挠度、起动方法和有关惯性负荷、径向力等因素。很多设计员没有充分认识到这一点。③提高泵轴材料的等级。 ④ 泵轴设计完成后,对泵轴的挠度要进行校核检验计算。

4、增加辅助冲洗系统

在条件允许的情况下,尽量设计辅助冲洗系统。冲洗压力一般要求高于密封腔压力0.107 ~0.11 MPa,如果输送介质属于易汽化的,则应高于汽化压力0.1175~0.12 MPa。密封腔压力要根据每种泵的结构型式、系统压力等因素来计算。轴封腔压力很高时或者压力几乎接近该密封使用最高极限时,也可由密封腔引液体至低压区,使轴封液体流动以带走摩擦热。

根据每种泵的操作条件,合理地配置管路和附件。如冷却器、孔板、过滤器、阀门、流量指示器、压力表、温度等。实际上密封的可靠性和寿命,在很大程度上取决于密封辅助系统的配置。

5、消除泵进口汽蚀的措施

① 提高泵的汽蚀性能水平,满足现场装置的汽蚀性能的要求。② 现场试验装置的要求要与泵汽蚀性能水平匹配。③ 现场安装和工况调节要给泵创造有利的条件。

6、消除泵振动的措施

机械密封的作用和原理范文6

我厂每年都能接到上海某设计院终缩聚釜传动端制造的批量定单。此设备是物料搅拌釜的传动装置,反应釜内要求绝对密封,不允许有其它杂质和气体混入,否则会影响物料的纯度,降低产品质量。而釜腔内所有的密封性都靠传动端上的一套机械密封来保证,所以机械密封的制造质量是终缩聚釜能否正常运行生产出合格产品的关键。机械密封我厂外协由天津一家专业厂家制造,传动端上的其它零部件在我厂加工制造,最后在我厂装配并发货。

二、机械密封密封性试验原理

以下是机械密封装配及密封试验原理示意图

1―筒体 2―静环O形圈 3―矩形O形圈 4―静环 5―聚四氟乙烯 6―硬质合金

7―动环 8―结构支撑 9―弹簧座 10、11、12―法兰、螺栓、螺母 13―精密压力表

14、15―阀门、进气管 16―动环O形圈 17―传动轴 18―弹簧 19―接管

由上图可知:一套机械密封由一对动环和一对静环组成,在设备使用时动静结合。当传动轴在电机的带动下转动时,弹簧座靠传动轴上的销子与传动轴连为一体一起转动,同时靠销子的作用动环也与轴同步转动,静环静止不动。弹簧的作用是使动环与静环密封面始终保持一定的压力,同时给矩形O形圈一定的预紧力,保证良好的密封效果。设备的密封由动静环的接触面与O形圈来保证。密封试验原理即设备实际使用过程中的密封原理.我们用氮气进行气密性试验。密封试验时气体从进气管进入,当压力表示值为0.15Mp时,将阀门关闭。密封试验合格的标准是每小时泄露量在0.002Mp以内。进入筒体内的气体有三条路径可以产生泄露如上图所示。(1) 动环O形圈 (2) 动静结合面 (3) 静环O形圈和矩形O形圈。从我们这些年的装配经验来看,如果密封试验不合格,一般情况下是动静结合面产生的泄露。我们只需将机械密封从筒体内拆下来,在研磨好的铸铁平板上配合航空煤油和细研磨膏手工研磨静环的四氟面,然后在研磨好的四氟面上涂色,使动环密封面与静环密封面结合,用力按压,随后检验动环密封面上色痕的宽度与均匀度,如果色痕宽度适中、均匀无明显细纹,断层,那么重新装配后基本上密封试验都可以成功。

三、静环密封性工装设计

1.初始工装

2009年年初我们在装配一套机械密封时拆装反复了数次之后,密封试验总是不能成功。我们检查了所有的和装配相关的尺寸,及O形圈的线径,厚度,都符合图纸的要求。并且动、静环都重新返厂对密封面进行了二次机械研磨,我们也对经二次机械研磨过的静环密封面进行了手工研磨。涂色试验验证密封面效果非常理想,可就是在装配后总是产生泄露。后来我分析可能是动、静环本身密封性不合格。以下是动、静环的结构示意图

1―YG3合金块 2―O形圈 3―动环不锈钢基体 4―聚四氟乙烯块 5―静环不锈钢基体

动环制造工艺为:(1) 制作动环的不锈钢基体,YG3合金块 (2)在动环不锈钢基体上安装O形圈,将YG3合金块过赢配合压入 (3) 机械研磨YG3合金面 (4) 光谱检验密封面研磨质量。

静环制造工艺为:(1) 制作静环的不锈钢基体,聚四氟乙烯块(2)将聚四氟乙烯块过渡配合压入不锈钢基体,如图所示在装配缝隙处均匀涂抹高强度,耐腐蚀胶水密封(3) 机械研磨聚四氟乙烯面 (4) 光谱检验密封面研磨质量。从动、静环的制造工艺及结构来看,如果动、静环本身密封性不合格的话,那么问题应该出在镶装处,为了检测我的推断,于是我设计了一套简易密封试验工装,下图是工装示意图:

如图所示气体从进气管进入到密封腔内,当压力表示值为0.15Mp时,关闭阀门保压。整个密封腔由O形圈和胶皮圈来密封。如果动环镶合金块、静环镶聚四氟乙烯块处泄露的话,那么气体的泄露轨迹如上图箭头所示。在密封试验时用肥皂水浸湿合金和聚四氟乙烯块外圆,我们发现动环密封性合格,合金外圆没有气泡冒出。而静环四氟外圆有几点有连续气泡冒出,试验证明静环本身密封不合格,在镶装处泄露。静环返机械密封制造厂对外圆漏点进行处理并重新涂抹胶水修复后,我厂一次装配密封试验合格发货。

此后机封厂家所供几套机械密封静环都不同程度的出现了类似的问题,且经修复合格的静环在装置开车运行数月后也都有微漏的情况出现。我在分析原因时认为机械密封静环的制造质量不合格,要求机械密封制造厂家查找原因,改进制造工艺,提供质量合格的产品。可是机封制造厂家在分析原因时认为他们的静环制造工艺及所用密封胶水(国内某知名企业生产)的质量是可靠的,原因可能出在我厂对静环密封试验工装的使用上。机械密封制造厂家指出:机械密封静环在实际使用时受力点是均匀分布的,静环共受到48条弹簧的均匀作用力,每点作用力的大小也是相同的,且受力值是一个可以计算的稳定数值,而用我厂的静环试压工装进行密封试验时,用8个压板对静环施加压力,首先受力点不能做到和实际工况一样均匀分布,其次用螺栓预紧的力或大,或小8个压板预紧力不平衡,其压力值也不能准确控制。这样有可能在试验的过程中将密封胶水损坏,导致机封静环泄露。机封制造厂家建议四氟块在密封试验时最好不受压力,以防止把胶水粘连密封压坏。

2. 改进工装

虽然机封制造厂家的原因分析有一定的道理,但是我坚信问题不可能出在试压工装上,原因肯定是机封制造质量不合格。为避免和机封制造厂家扯皮,我按照机封厂要求又重新设计了一套工装。示意图如下:

如上图所示:新工装用托板和角钢焊了一个架子,在托板上钻孔攻丝,拧上长螺柱,把横梁架在两个螺柱上用螺栓拧紧。转动手轮压紧上压板,上下压板之间的O形圈受到压力作用之后,胀紧在上下压板的两个锥面及四氟镶块的内壁上起到密封作用,其它两个O形圈靠压力作用直接密封。所以在密封试验时,气体只能从镶四氟块处泄露,这就达到了静环四氟在不受压力情况下测试其密封性的目的。

四. 结语