计算机数控技术范例6篇

前言:中文期刊网精心挑选了计算机数控技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

计算机数控技术

计算机数控技术范文1

 

数控关键技术的运用能够提升数控机床的生产效率,实现数控机床的自动化、智能化作业,从而优化生产工艺,不断提升生产质量。

 

在数控机床中,智能集成数控关键技术的运用能够有效地提升零部件生产的效率和质量,提升零部件生产工艺的水准。随着计算机技术的不断进步,传统的数控机床技术已经难以适应生产的需要,智能集成计算机数控关键技术成为发展的趋势,并逐步运用在实际的数控机床的零部件加工和生产中。

 

1 新型数控关键技术中的智能要素

 

在新型数控系统中,现有的数控关键技术突破了传统的数控技术的弊端和不足之处,增加了很多智能化的要素,进一步提升了数控机床的生产效率,优化了数控机床的生产工艺。例如特征技术,图形用户接口以及高级的语言概念和数据库结构都应该包含于此。

 

1.1 任务规划的智能化

 

任务智能化是指数控机床将接受的任务,变为数控机床随环境的变化而不断调整的目标任务。这样一来在数控机床加工零部件时,可以根据自身的相关性能而随时做出改变,以有效地提升零部件的生产工艺,减少不合格率,综合提升其生产性能。

 

1.2 自适应的人机界面

 

在数控机床中,利用智能集成化的数控关键技术能够极大地提升其自动性和自主性,从而优化其管理模式及生产模式,提升数控机床的运作效率,提升数控机床的运作水平,不断提升其运作能力。

 

特别是在智能化的主导因素下,利用数控关键技术能够提升机床作业的人机互动性,便于数控机床可以自动化识别不同的人员,根据不同人员的使用习惯及方法来进行一定的自我适应,提升数控机床运作的整体实力和水平。

 

1.3 加工环节的智能控制

 

提升了数控机床的智能化运转,最明显的体现在于,在数控机床的运转过程中,利用智能化的因素能够有效地提升数控机床加工环节中的质量和效率。在数控机床中,加工环节是非常关键的,也是非常核心的区域,提升加工环节的质量,能够有效地提升数控机床的运转效率,提升加工环节的质量,能够实现最大程度的再生产能力。

 

在加工环节中,智能化数控关键技术,能够使得数控机床的加工自动化和智能化。数控机床可以自主地识别程序交代的任务,然后根据目标进行深加工,在保障加工质量的前提下,智能化数控关键技术还植入了一定的自检程序,及时检测出数控机床生产中的不符合质量或不达标准的零部件。

 

此外,在数控机床的加工环节,智能化数控关键技术还可以对所生产的零部件进行一定的检测与分析,以此来获取这些零部件中存在的影响质量的因素,及时采用关键的措施来纠正这些不良因素。

 

1.4 故障自动诊断功能

 

提升数控机床的故障检测能力,能够不断优化数控机床的故障检测水平,以此来提升数控机床的运作效率和运作质量。当数控机床在运转的过程中,智能集成化数控关键技术能够及时找出故障的原因,及时分析出故障发生的具置,根据数控机床中的故障及相关特征来查明其主要诱发原因,并根据不同的原因采取针对性的措施,以此来提升数控机床的整体运作能力。

 

在数控机床中,通过智能集成化系统自动检测出来的故障,数控关键技术会根据故障的特点和原因,自动或指导排除故障。

 

2 智能集成数控特点与关键技术

 

在数控机床中,智能集成数控关键技术能够极大地提升数控机床的运作能力,能够极大地提升数控机床的生产效率,确保数控机床的生产质量,保障数控机床的整体运作水平,从而提升数控机床生产零部件的质量,减少零部件的不合格率。在数控机床中,智能集成数控关键技术无论是在技术标准还是在集成智能等方面都采用了新的方法,其技术标准越来越高,智能集成水平也在不断提升中,与传统方法相比,智能集成数控关键技术消除了传统方法的后置处理器。

 

2.1智能识别产品的特征并进行生产

 

在数控机床的生产过程中,根据零部件的特征来进行自动化的生产与制造。一般而言,在数控机床中,零部件的生产模型是固定的,是通过技术考核,是符合质量标准的。智能集成数控关键技术能够使得零部件在生产作业的过程中,自动化地根据模型的特点和特征来进行零部件的生产,自动剔除零部件材料中不符合形状和特点的多余材料,从而提升数控机床的生产效率,从而不断改良数控机床的生产工艺。

 

在数控机床中,智能识别零部件的生产工艺后,为了提升零部件的批量生产能力,还需要对零部件的设计模型或者零部件的初始模型通过相关的技术标准,通过智能识别零部件的一些特征,如孔洞、卡槽等来生成符合STEP的标准文件,以此来作为初始文件进行批量的零部件生产,以此来综合性地提升生产效率。此外,这种标准化的文件也是数控机床后续加工工艺的初始点和设计参考标准。

 

此外,在数控机床中,智能集成数控关键技术能够极大地优化生产工艺,不断提升生产标准的科学性,智能识别数控机床零部件的特征,特别是一些精细的特征,在复制信息的基础上,对零部件的相关特征进行复制和临摹,并依据智能集成所遵循的标准来形成一定的标准文件,作为后续工艺流程设计的基础。

 

2.2 CAD和CAM的智能集成接口

 

优化CAD和CAM的集成接口,提升接口的效率和质量,从而依据一定的标准来优化接口的质量,确保数控机床的智能化集成。在数控机床中,通过对加工零部件的信息复制,从而生成了一定标准的加工零部件标准文件。这个标准文件的形成可以在很大程度上优化了两个接口的连接质量,通过连接来实现智能化集成计算机的智能化集成水平。

 

在数控机床的智能化集成中,加工环节是核心部位,加工环节是关键程序,通过对加工环节零部件的科学生产,特别是对待加工零部件的精准复制相关信息,来制定科学标准的零部件生产文件,这些生产文件是数控机床生产的前提,也是数控机床生产加工的依据。通过这种标准文件可以在很大程度上优化CAD/CAM接口的质量,从而将二者有效的连接在一起。在数控机床中,两者连接的质量直接影响着数控机床数控关键技术的集成质量。

 

2.3 新的解释器的集成

 

在数控机床中,智能集成数控关键技术的运用很难在第一时间,全面覆盖到数控机床的整体系统中。因此,在这个中间往往需要一定的过渡环节,从而优化新老标准之间的连接,提升智能集成的数控关键技术水准。

 

因此在其解释器的集成过程中,必须要兼顾新旧不同的标准文件,既要对STEP AP238文件进行科学的解释,并依据解释结果构建一定的模型,同时也应该对传统的标准文件进行科学的解释。这种兼顾性的集成方法,在一定程度上优化了数控关键技术的智能集成水平,使智能集成达到了一定的水准,避免出现不符合质量标准或者不符合相关工艺的问题。

 

还能够扩展智能集成的方法,提升智能集成的整体效率。这种兼具新旧不同标准的智能集成方法除了对新的标准文件进行一定的解释外,还可以依据解释而对新的标准文件进行一定的修改,从而确保标准文件符合智能集成的需要。

 

此外,由于这种标准文件的信息量非常大,不仅具有一定的基础信息,同时还具备其他的零部件的相关信息。正因为标准文件的信息量较大,要求数控关键技术的智能集成必须具备一定的开放性和高标准性。

 

2.4 全过程闭环控制系统

 

在数控机床中,智能化数控关键技术在实际的作业过程中,它的整体系统必须是完整的,必须是紧密连接的,只有这样才能综合性地发挥智能集成的整体作用。在数控机床中,智能集成数控关键技术的运用,其作用力最大程度的发挥必须依据一定的闭环系统,通过闭环结构来实现不同功能的无缝对接,通过完整的系统结构来实现智能集成的整体功用。

 

3 结语

 

在数控机床中,智能集成的数控关键技术的运用能够极大地提升数控机床的生产工艺,能够有效地提升数控机床的生产效率,确保数控机床的生产质量。数控关键技术的主要智能因素包括明确任务,对任务进行科学细分,还包括可以根据不同使用者的特征进行不同的接口设计,同时还包括故障诊断与分析等。

 

在数控机床中,智能化数控关键技术主要体现在智能识别产品特征,复制零部件的信息,产生标准文件,作为数控机床生产的主要标准,同时还包括不同接口的智能集成及过渡环节的解释器集成等。

计算机数控技术范文2

【关键词】控制;算法;仿真

0 引言

《计算机控制技术》是工业电气自动化、自动控制、计算机应用等专业的主要专业课程之一[1]。具有实践性和综合性强、课程抽象、学习难度大等特点。尤其是其中的控制算法,既是计算机控制系统的核心,也是整个计算机控制系统设计中的难点,并且由于控制算法数量多,理论性强,采用常规的讲授方法,学生不易理解,教学效果不是很理想。基于此,本文以MATLAB为工具,通过编写M文件、构建SIMULINK框图对主要算法进行仿真实现,并通过 GUI (图形用户界面 )设计友好的人机交互界面,实现控制算法的选择、参数的设置、动态仿真以及不同算法的控制效果对比等。在建模仿真的过程中将抽象的理论知识变成直观的感性认识,使学生可以更直观、高效地理解和掌握所学知识,培养学生的学习兴趣和能力,提高教学质量。

1 仿真平台规划

MATLAB是目前应用最广泛的科学工程运算软件,内嵌的SIMULINK是MATLAB的重要组件之一,无需大量的程序代码,只需建立仿真框图即可实现对复杂系统的交互式动态建模、仿真以及综合分析,令繁琐的仿真实现过程变得清晰可见。MATLAB的M文件工作方式,可以将MATLAB的语言代码全部写在一个文本文件――M文件中运行,用户还可以根据需要自编一些函数,方便程序的修改与维护,提高代码的可重用性。MATLAB GUI是MATLAB的图形用户界面开发环境[2],使用它,用户无需了解图形实现的细节内容,便可以绘制复杂的图形以及设计出美观、方便的菜单化和控件式的人机交互界面。本文使用SIMULINK、M文件以及GUI实现《计算机控制技术》课程中的控制算法仿真平台设计。

2 控制算法的M文件仿真

《计算机控制技术》课程中的控制算法主要有数字PID的各类控制算法、Smith补偿算法、最少拍控制器的设计方法、大林算法以及滞后过程的预估控制算法等。数字PID控制算法有常规算法和改进算法两大类,常规算法分为位置型和增量型,改进算法主要有积分分离PID算法、抗积分饱和PID算法、变速积分PID算法等,这部分使用M文件进行仿真。M文件仿真时,首先新建一个空M文件,之后依据算法表达式在空M文件中输入MATLAB程序并以.m后缀保存,最后在命令窗口键入保存的文件名即可以运行该文件。之后通过 GUI开发环境设计友好的人机交互界面,实现控制算法的选择、算法参数的设置、系统的动态仿真以及不同算法效果对比等。

仿真平台中的人机交互界面之一如图1所示。在该界面中点击相应按钮可以选择不同的PID算法,算法改进前后的效果对比也可以直观地得以呈现。此外,通过修改算法的参数,可以让学生高效地理解不同参数对系统性能的影响。图1的曲线是积分分离PID控制算法的仿真结果,被控对象为,采样时间为1ms,rin(k)=1.0。

3 控制算法的SIMULINK仿真

《计算机控制技术》课程中的Smith补偿算法、最少拍数字控制器、大林算法以及滞后过程的预估控制算法等使用SIMULINK进行仿真。之后在 GUI开发环境中设计友好的人机交互界面,实现控制算法的选择、参数的设置以及系统的动态仿真等,如图2所示。图中的曲线是未消除振铃的Dahlin算法的仿真结果,被控对象,采样周期T=0.08s。

4 编译GUI生成应用程序

为了能够在没有安装MATLAB的计算机上使用该仿真平台,需要将以上设计文件编译成可以独立执行的应用程序。该过程分三个步骤:安装Lcc编译器(MATLAB自带),配置编译器,编译脚本。最后生成的后缀为.ctf和.exe的文件即为脱离MATLAB环境运行必需的文件。此后若要在未安装MATLAB的机器上运行该可执行程序,只需将MATLAB安装目录下的\toolbox\compiler\deploy\win32中的MCRinstaller.exe安装到该计算机后,点击执行编译生成的.exe文件即可。

5 结论

本文针对《计算机控制技术》课程中控制算法数量多,理论性强,采用常规的讲授方法,学生不易理解、教学效果不理想的问题,设计了该课程的控制算法仿真平台,让抽象的理论得以直观、生动的呈现,使学生深入、高效地理解和掌握所学内容,在教学中取得了良好的教学效果。

【参考文献】

[1]赖寿宏,主编.微型计算机控制技术[M].北京:机械工业出版社,2008.

[2]赵景波,主编.MATLAB控制系统仿真与设计[M].北京:机械工业出版社,2010.

[3].基于Simulink的电力系统仿真研究[J].科技视界,2013(11):160,166.

[4]陈光,等.精通MATLAB GUI设计[M].2版.北京:电子工业出版社,2011.

计算机数控技术范文3

【关键词】计算机通信 传输控制技术

计算机通信即利用一种数据通信传输形式,在计算机与计算机之间或者计算机与终端之间进行有效的数据信息传输,为生产生活带来非常大的便利,现在已经被有效应用到各个领域中。在整个传输过程中,想要保证信息数据传输高效性和可靠性,必须要依靠计算机检测以及控制技术来实现,需要基于实际情况来对相关技术进行优化分析。

1 计算机通信分析

计算机通信为现代通信和计算机技术相互融合产生的产物,可以实现计算机与计算机、计算机与终端设备之间数据信息的传输,现在已经被利用到情报检索系统、信息处理系统等,对促进社会整体发展水平的进一步提高具有重要意义。想要实现计算机通信,其过程就是先进行电信号与逻辑信号之间的转化,利用不同二进制序列来表示数据信息。其中,转换方式为将高低电平表示成二进制数中的1和0,即通过二进制中的1和0比特流电压来表示数据,产生的脉冲通过通讯设备,来达到数据传输的目的。

2 传输控制技术要点

2.1 数据传输技术

2.1.1 集中式令牌技术

此种技术本质上就是时间出发的机制访问控制机制,通过内部任务调度表来决定总线上具有总线仲裁权的节点,并在判决以后,保证该节点可以获取信道使用权限,保证节点缓存的信息可以被可靠发送到总线上,这样便可以节省大量的时间,避免了繁琐等待循环判断的过程。

2.1.2 CSMA技术

CSMA技术为计算机总线争用技术的一种,在应用此种技术时,对于任何节点来说,均不存在固定发送时间,但是可以随时向计算机总线传输数据信息。并且如果是在同一时间有多个节点向计算机总线进行数据传输,计算机便可以通过自身固有规则来决定各节点发送前后顺序,不会对数据传输质量产生影响。并且,对于CSMA技术来说,无论是任何节点,其在向计算机总线传输数据前,必须要对检测确定计算机总线是否出现繁忙状态,确定空闲状态时可以立即传输,而繁忙状态则需要等待传输。此种技术在实际应用中,具有较高的反应速度,并且实际操作难度低,具有较高的应用效果。

2.2 差错控制技术

2.2.1 差错原因

数据信息在传输过程无法保证所传输数据的完整性,受损是不可避免的,产生各种差错问题,是提高计算机通信质量必须要解决的问题。计算机数据传输过程中,会因为各项因素的影响而产生差错,且以通信信号强弱影响最为严重,假如通信过程中信号强度不断衰减,将会导致信息数据无法有效传输,严重的甚至造成传输中断。如果在传输过程中,存在波形变化便可确定信息失真,包括振幅失真和延迟失真,影响信号传输质量。并且在传输过程中如果收到噪音干扰,也会对信号传输质量产生影响,例如热噪声、串音、交调噪声、脉冲噪声等。其中,热噪声无法安全消除,而交调噪声则是因为通信系统非线性因素造成的不同频率叠加,影响通信信号强度。交调噪声则是因为通信系统内非线性因素造成的不同频率叠加,对通信信号强度产生严重影响,降低传输质量。而串音早市因为在不同信道内,信号受到电磁辐射干扰,影响传输信号质量。

2.2.2 差错控制

差错控制技术主要在数链路层内实现,通过差错控制相关机制针对传送过来的数据信息进行核对检查,将出错的数据帧丢弃,同时做出相应反馈,保证完成可靠的数据传输。

(1)ARQ方式

在数据接收端检测到数据传输差错后,会及时通知发送端重发码子,直到最终接收到正确码子为止。此种控制方法,主要是利用检错码,但是仅仅适用于数据传输过程中存在的差错问题,通过双向通道来将差错信息反馈给发送端,同时要求发送端设有数据缓冲区来对已经发送的数据信息进行存储,便于在检测出差错后进行重发。

(2)FEC方式

应用FEC方式来进行差错控制,不仅能够检测出数据传输过程中的差错,还可以对二进制码中发生错误的位置进行判断,对产生的差错进行及时自动纠正,保证信息传输质量。此种控制方式主要应用纠错码来实现差错检测,不需要设置数据缓冲区来对原始数据进行存储,但是对比ARQ方式来说,其编码效率比较小,并且所需设置的纠错设备复杂度高。

3 传输控制技术实施措施

3.1 功能模块松散耦合设计

数据传输控制服务模块主要分为信道检测与优选、协议封装与解析、信息与安全处理等几部分,能够根据数据传输实际需求来对不同模块进行选择和配置、对功能模块松散耦合设计,可以对以往设计方式中功能模块之间依赖性强以及边界不清紧密耦合限制进行突破,实现了不同功能模块的独立性以及可调性,同时还可以赋予系统集成人员安装功能构建的可选择性,保证功能模块信息传递要求可以得到实现,在信息传输过程中如果出现问题,维护人员也可以更及时的发现,并采取有效措施进行修复和优化管理,提高信息传输质量。

3.2 多协议透明封装解析

利用多个相对立协议封装和解析模块功能,来有效分离协议封装与解析模功能和业务应用软件,提高业务软件应用的透明度,降低核心处理技术的复杂性,可以更灵活的应对信息传输要求。实现多协议透明封装和解析,为上层信息安全处理软件提供保障,在交换服务中完成相应格式的转换,实现传输协议在传输服务层中的封装与解析。

4 结束语

传输控制技术对计算机通信综合效果有着重要影响,总结以往经验,确定通信传输中存在的问题,并采取相应技术进行有效处理,争取从根本上来提高信息传输质量。在计算机通信技术水平不断提高背景下,提高通信数据传输安全性已经成为技术研究要点,要在现有基础基础上不断加深研究,确保可以更好的消除外部各因素干扰,满足不同行业的通信需求。

参考文献

[1]陆文超.计算机通信中的传输控制技术[J].科技经济导刊,2016(23):32+31.

[2]张颖南.浅析计算机通信中的传输控制技术[J].信息化建设,2015(06):101.

[3]孙长波.计算机通信中的传输控制技术研究[J].科技与企业,2014(14):160.

作者简介

李琳(1989-),女,陕西省延安市人。硕士学位。助理工程师。主要研究方向为信息安全。

计算机数控技术范文4

1计算机通信技术

1.1计算机通信技术的定义

计算机通信技术就是将现代计算机技术与通信技术进行有机融合,从而实现计算机与计算机之间或者计算机与终端之间的信息传输。在不断发展的今天,计算机通信技术不仅在生活上得到广泛应用,而且在学习、工作上也得到广泛应用。计算机通信技术运用到信息处理系统可以将庞大且复杂的信息进行处理和传递,除此还可以运用到办公自动化系统以及军队指挥自动化系统等。

1.2计算机通信技术的原理

计算机通信技术的基本原理是将计算机中的电信号转变成逻辑信号。计算机中的数据一般都是由二进制来表示,其转换的方式是将高低电平用0和1进行表示,即用二进制中0和1的比特流的电压表示,所产生的脉冲通过通讯设备来完成数据的传输,从而达到通信功能。

2计算机通信中的传输控制技术研究

2.1数据传输技术

MAC主要定义了数据包怎样在介质中传输。MAC位于OSI中第七层协议数据链路层的下半部分,主要负责将物理层中的物理介质进行连接和控制。在中文中我们通常将MAC解释为介质访问控制子层协议。在如今,MAC已经被广泛用于传统有线局域网和当前无线局域网。本文主要阐述了MAC层中的数据传输技术,其中包括总线争用技术与令牌控制技术于一体的主导技术以及其他辅助技术,辅助技术必须同主要技术一起使用。下面简要介绍了几种主导技术。

2.1.1ICMA技术

ICMA技术属于总线争用技术,它的中文释义是载波侦听多路访问。ICMA是使用分散式的控制方法来使附近节点争用总线的使用权,它的特点是各节点可以在任意时间向总线传输数据。但是当多个节点同时向总线传输数据时,需要按照计算机所规定的规则进行先后传输,即各节点在准备向计算机总线进行数据传输时,需要先检测一下总线是否是繁忙的状态。如果是空闲,便可以立刻进行传输;如果是繁忙,则需要等待一段时间,从而确保数据能够传输成功。这种方法的优点是响应快和技术容易实现,缺点是数据的传输不稳定,一旦网络负载量过大,信息容易延迟发送。

2.1.2令牌轮询技术

令牌轮询技术又被称为分散式令牌技术,作为主导技术中的最典型的令牌技术,它是以时间触发的介质访问机制,主要用于多主站系统。这种技术的特点是在主站中能构成逻辑环中的循环,网上的各个主机地位平等,只有通过一定的调度算法获得令牌的主机才能进行数据的发送。它的优点是可以确定或预测最大网络延时,缺点是无法处理突发事件。

2.1.3集中式令牌技术

集中式令牌技术也是一种以时间触发的介质访问机制。这种技术的特点是以内部的任务调度表来决定哪一个节点可以获得传输数据的信道,从而将缓存的信息发送到总线上。它的优点是相比令牌轮询技术拥有更精确的数据响应时间和确定的网络延时,缺点是无法处理突发事件。

2.2差错控制技术

计算机在进行数据传输时,一些突发的事件经常会使数据传输失误,因此需要有效的差错控制技术。数据在传输中首先要经过物理层,最后到达数据链路层。在通过某种方式进行检验时,传输的数据会被计算机进行检验,从而检查出错误并把出错的数据帧删除。所以数据链路层在面对数据丢失时能做出更快的反应。数据传输产生差错的原因有很多,其中一条最重要的是与计算机通信信号的强弱有关,如果信号在传输过程中不断减弱,那么就会影响数据传输的质量。通常我们将信号的这种变化称为失真。失真又分为振幅失真和延迟失真。其中振幅失真是通信信号频率不稳定而引起的信号减弱,延迟失真是通信信号传播速度不稳定而引起的信号减弱。差错控制不仅可以使被删除或被损坏的数据得到恢复,而且可以调节数据通信网络中的数据流,从而避免网络负载过重。在进行差错检验过程中,我们可以使用ARQ和FEC两种方式。ARQ方式又被称为自动回复请求,它的工作原理是使用检错码进行检错,检查出数据在传输过程中产生的差错。当数据接收端检查出差错,就会通知发送端重新发送数据。这是一种依靠双向通道进行信息反馈的方式,并且要求发送端设有数据缓冲区来保存已发送数据,避免数据在传输过程中出现错误而重发。这种方法适用于出错率较低的线路使用,假如在出错率高的线路使用,数据包在大量重复上传时会引起网络堵塞。FEC方法又称为前向错误纠正,它的工作原理是使用纠错码进行检错,不仅能够检查出ARQ能检查出的错误,还能够检查出二进制编码中发生错误的位置,并能够自动、及时的修改正确。这种方法的优点是依靠发送数据块上的附加冗余量来重建数据包的错误部分,从而使错误的数据包得到修正,从而不用重复发送数据包。缺点是编码效率比较低,纠错设备也比较复杂,特别是在链路状态良好时,较多的冗余量将会延迟数据的传输速度。

3总结

随着科技的不断发展,计算机技术已经成为人们生活中不可或缺的部分,计算机通信技术也被广泛应用于各个领域。计算机通信技术不仅可以实现高效率的数据传输,而且可以促进计算机通信技术的可持续发展。我们要认清计算机通信中传输控制的类型,有效的调节网络的数据流,从而保证数据传输的可靠和有效。同时要不断完善数据传输控制技术,使计算机通信为社会带来更多的便利。

作者:李红 单位:南阳医学高等专科学校

参考文献:

计算机数控技术范文5

关键词:计算机技术;机械控制系统;应用途径

如今机械控制系统逐渐融入了计算机技术,使得机械控制系统在运行的效率上有了很大的提升,给该行业的发展提供了技术方面的支持,产生的效果较为显著。计算机技术在机械行业中的运用,有效提升了机械设备运行的自动化与智能化水平,改善了以往机械化工业生产的陈旧模式,提高了机械控制的精准度,从而提升了现阶段机械工业在生产过程中的整体效率[1]。因此,基于该发展现状对计算机技术在机械控制系统中的应用展开分析研究具有重要的现实意义。

1计算机技术机械控制系统概述

计算机技术机械控制系统是在机械控制系统中融入计算机技术,利用计算机对机械运行过程进行系统性的控制,针对信息数据和传输的过程进行操作升级,从而提高机械生产过程中的控制效率,促进现阶段我国机械控制系统的不断优化。如今,计算机技术整体水平不断提高,该技术在机械控制领域中的使用频率也越来越高,在整个机械控制系统的运行过程中计算机技术成为必不可少的技术辅助。要想进一步提高机械控制系统在应用过程中的便捷性,需要进一步将计算机技术与机械控制系统进行融合。从机械生产环节入手,首先,在机械生产线中改良自动控制技术,将操作系统进行整体性的升级和优化,确保机械生产能够以自动化流水线的模式发展[2];其次,在机械生产中,对于高标准的生产环节需要通过精确的操作来完成,避免因人工操作失误而出现数据方面的误差,确保机械生产的经济效益。

2计算机网络技术的应用现状

在计算机网络技术水平逐渐提高的同时,我国的机械控制在数据与信息等内容上也有了很大的变动。在机械控制中,采用计算机网络技术能够对整个机械生产环节的内容进行精准控制,相关工作人员可以结合具体的生产情况进行下一步生产步骤的变动,该方式不仅能够将机械控制系统的作用发挥到极致,同时还能够减少机械生产企业的资金投入,从而增加企业的经济效益[3]。此外,机械控制系统所采用的计算机网络化控制是对计算机中的程序进行系统控制,促进程序管理规模的优化,同时扩大整个系统的管理范围,及时发现机械控制系统在管理过程中存在的问题,并第一时间对问题进行解决和处理,实现计算机技术在机械控制系统中的深入运用。

3计算机技术机械控制系统的实现

3.1利用数字化控制技术

利用数字化控制技术能够将机械控制系统的作用充分发挥出来,同时能够对整个机械控制环节进行优化。数字化控制技术有着较大的应用优势,其作用主要体现在计算机对工业相关数据进行收集的环节,融入数字化控制技术能够将计算机控制系统的整体运行效率提升到更高的层次,从而确保机械控制系统的稳定运行[4]。在采用数字化控制技术时,机械控制操作者需要在实际的生产环节中应用控制系统,由此将数字化控制技术的价值充分发挥出来,确保生产需求能够得到满足。

3.2建立运行安全控制体系

安全控制体系在机械控制系统中发挥着关键性作用,能够有效处理计算机方面的问题。系统在运行的过程中经常会面临一些安全管理上的问题,如果问题长时间无法得到解决将会造成安全事故的发生。与此同时,机械控制工作过程中因管理人员日常工作中的疏忽,也会导致机械生产存在问题[5]。对此,在解决计算机机械控制系统运行过程中的问题时,首先,需要提高相关人员对安全知识的重视程度,树立良好的安全观念;其次,需要定期对机械设备展开检测和维修,确保机械设备能够安全运行;最后,需要对产品质量标准进行明确规定,以规章制度对生产人员进行约束和管理。

4计算机技术在机械控制系统中的作用

4.1提高机械控制的整体质量

当前,计算机技术在机械控制系统中的使用很大程度上提高了机械控制的整体质量。然而,现阶段我国机械生产控制水平与发达国家之间仍存在很大的差距[6]。因此,需要企业在机械控制系统的运行过程中融入计算机技术,实现机械控制的自动化生产,这样不但能够提升机械控制系统的整体运行效率,而且能够提高工业产品的生产质量,从而确保我国机械生产总体水平的提升。

4.2提升机械控制生产的效率

目前我国机械生产程序主要是由人工来完成的,在整体的工作效率上有待提升,同时由人工控制的系统在精确度上也难以达到现阶段的工业要求。因此,将计算机技术融入机械系统,能够显著提高工业生产效率。此外,应用编程软件可以改善当前的工业生产环节,使后续的系统运行与程序控制具有更大的发展潜能。

5计算机技术在机械控制系统中的应用途径

5.1设计流程

在生产生活实践中,机械控制系统在服务于工业、农业生产的同时,还体现在日常生活的方方面面。对于不同的应用场景,要想发挥机械控制系统最大的效能,就必须在设计流程中融入计算机技术,使其更符合实际应用要求,以此满足人们日益增长的多层次需求[7]。在这一进程中,软件基础功能可以作为辅助,进一步通过计算机技术实现创新设计,从而完善机械控制系统设计过程的功能。通过结合计算机技术的优点及特长,利用建模和三维形状和实体拼装图的形式,可展示设计过程中的一些缺陷,以满足开发相关产品的高质量需求。

5.2生产流程

在机械自动化生产过程中,利用计算机技术可对系统进行控制,有利于提升整个系统的智能化程度,也有利于提升产品的质量及精密程度。与此同时,通过对该技术的更深层次运用能够结合市场具体需求以及生产效率等多方面数据,为企业创造更多的经济效益,有效避免各方面数据动态变化所带来的各种成本、效率产出问题[8]。此外,计算机技术工业生产过程体系还有着推动性作用。工业生产体系变革的大方向是柔性化生产,传统工业生产设备将难以适应未来生产流程对设备的高标准需求,故应该利用计算机技术制造出误差小、数据传递效率高、错误率低的先进生产设备。

5.3使用流程

在日常生产中使用机械控制系统时,可以通过计算机技术提升设备的工作效率,优化工作流程,提高参数显示的准确性,使操作人员能更方便快捷地判断设备是否正常运行。机械控制系统相较于传统的指针表,能够更为精密准确地反映设备运行状态,有利于操作人员及时发现并排除机械运转进程中出现的故障。应用计算机技术可更精细合理地控制运用机械设备,减少各种因操作人员违规操作对机器造成的伤害,同时提升产品质量[9]。计算机技术辅助设备运行在日常生产实践过程中也很常见,能够有效规避机械设备运行中存在的隐患,从而提高机械设备生产效率,延长设备使用寿命。

5.4智能化发展

传统的工业生产模式在机械控制系统以及计算机技术应用的融合潮流中已经发生了很大的变化,朝着日益智能化的方向发展。在许多常见事例中都可以展现出其鲜明的优势,比如国家电力公司通过大数据的应用,建立数据分析平台,凭借平台的数据流变化反映各地区电力设备实时状态。在对数据流的实时监控进程中,可以迅速有效地初步排查各地设备故障,第一时间对故障设备进行维护抢修,降低安全隐患,保证生产生活秩序。在快递物流业,依托大数据平台,各种智能化机器人的应用显著提高了行业配送效率,降低了公司的人力成本,同时提高了工作效率及物流派件的准确率。

6计算机技术在机械控制系统中的应用前景

在经济全球化不断发展过程中,机械制造业水平也得到了很大的提升。计算机技术在我国机械制造行业中发挥了巨大的作用,为该行业创造了良好的经济效益。随着未来两者融合程度的进一步加深,加之5G、物联网等各种其他技术元素的不断融合,新型的工业体系必将更加精密化、智能化。近些年各种智能辅助设备的产出,已经向世界证明计算机技术融入机械控制的所发挥的巨大潜力。随着第三次科技革命的深入发展,各种技术元素将深层次融入机械控制,更多的重复单一的人力劳动将会被机器替代,从而减轻人类生产创新的负担。市场需求的变化导致机械控制系统变革,逐渐以模块化的形式生产,这种生产方式的优势在于能够减少生产过程中的成本问题,同时使各种技术能够有更加便利的融合平台,增强各种技术的融合度。此外,随着国家生态战略相关要求的提出,工业生产需要在原料的使用上符合生态要求,同时需要严格控制好资源消耗,在生产的过程中做好对生态环境的保护。在未来发展进程中,机械生产必然和计算机技术有着密切的联系,主要通过新兴技术的形式提高机械生产制造的总体水平,降低工业能耗,全面提升人们的生活质量。因此,机械行业在未来发展中,需要提高对计算机技术的重视。

7结束语

总而言之,虽然现阶段计算机技术在机械控制系统中的应用水平有了很大的提升,但面对当前机械控制系统运行的需求,仍需要在质量与精准度两个方面进行改良,同时降低生产方案设计环节的依赖性。针对计算机技术在当前机械控制系统中的应用情况,生产管理工作人员需要加强日常管理,对相关工作进行规范,并对计算机技术在机械控制系统中的运用情况进行优化,在保证安全性的前提下实现机械生产效率的提升,最终实现企业经济效益的提升。此外,还需规范机械控制系统中计算机技术的使用方法,确保该技术能够在机械控制系统环节中得到全面高效的应用,从而使机械相关企业可以在激烈的市场竞争中获得优势地位。

参考文献:

[1]刘馥,于文强.计算机辅助技术在农业机械设计中的应用[J].南方农机,2020,51(24):42+50-51.

[2]杨荣彬.计算机检测控制技术在汽车电子控制系统中的应用分析[J].科技经济导刊,2020,28(34):33-34.

[3]姜苏.计算机技术在机械设计制造及其自动化中的应用分析[J].信息与电脑(理论版),2020,32(20):14-16.

[4]仲雪伟,范运峰.计算机技术在机械设计制造及其自动化中的应用[J].南方农机,2020,51(16):186-187.

[5]沈宇.计算机技术在农业机械管理中的应用及积极影响[J].农机使用与维修,2020(8):66.

[6]董春晖,董钰.计算机智能控制技术在工程机械领域中的应用分析[J].南方农机,2020,51(6):156.

[7]周小浩,张莺莺.计算机技术在机械控制系统中的应用分析[J].电脑知识与技术,2020,16(5):261-262.

[8]唐士杰.计算机远动控制技术在电力系统自动化技术中的应用分析[J].南方农机,2018,49(9):150.

计算机数控技术范文6

随着数字化技术和互联网的发展,数据管理和计算模式呈现出新的特点。第一个数据特点是海量。全球的数据量在以指数的趋势迅猛增长,保守估计,目前每年全球至少产生15亿TB的新数据。第二是数据多样化。今天人们所面临的数据已不再是关系模型下纯粹的结构化数据,图片、音频、视频、文档等非结构化数据大量地涌入到人们的应用中来。与数据特点相适应,人们对信息的管理能力和服务模式也提出了新的要求。云计算和数据空间是在这一背景下提出的新的概念和技术。

云计算相关概念

数字技术和互联网的发展,特别是Web2.0的发展导致数据量高速增长,人们对计算能力和服务方式提出了更高的要求。此外,计算资源的利用率处于一种不平衡的状态,一方面一些应用需要大量的计算资源和存储资源,同时大量的计算设备和存储资源没有得到充分利用。云计算就是为了应对这一问题而提出的。其基本思想是通过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统计算分析之后,将处理结果回传给用户,以充分利用互联网资源,建立功能强大的计算中心,并基于此提供多种多样的计算服务。

虽然云计算作为一个新的概念被提出来。但是目前众多的Web应用及服务早已经体现了其思想。最简单的云计算技术在网络服务中已经随处可见,例如搜寻引擎、网络信箱等。进一步的云计算不仅只做资料搜寻、分析的功能,而且能够帮助用户完成众多复杂应用。

作为一种新的计算模式和服务模式,云计算已经引起IBM、EMC、微软、Google等公司的重视。Google的云计算中心是由几十万甚至上百万台廉价的服务器所组成的网络。Google的搜索引擎可以视为云计算的早期产品。IBM宣布推出的“蓝云”计划,是一种软件和硬件的组合产品,让企业用户可以对“云”计算模式进行实验。与此同时,全世界有数以亿计的Windows用户,微软所要做的就是将这些用户通过互联网更紧密地连接起来,并向他们提供云计算服务。

数据空间技术

云计算为我们描绘出了诱人的蓝图。实现这一蓝图,还有许多技术问题需要解决,首先就是数据管理问题。在云计算环境下,需要管理的数据对象不同于以往的数据。传统的DBMS在这些挑战面前显得无能为力。现在,管理着世界上最大、最丰富的数据集合,而且主要为个人服务的Google、MSN、Yahoo均不使用传统DBMS,而是另辟蹊径去寻找能更好地满足数据管理需求的方法。随着企业内部非结构化数据信息越来越多,企业数据管理问题会更加突出。个人信息管理同样面临这一问题,由于个人能够支配的时间有限和缺乏数据管理技术的支持,个人数据量的剧增使个人信息管理效率下降,人们将大量的时间耗费在信息的收集和查找方面。数据管理面临的挑战促使我们去寻求一种新的数据管理技术:数据空间(Dataspace)。

数据空间是与主体相关的数据及其关系的集合,数据空间中的所有数据对于主体来说都是可以控制的。主体相关性和可控性是数据空间中数据项的基本属性。我们所说的数据空间实际是指主体数据空间,与之相对的是公共数据空间。主体数据空间是公共数据空间的一个子集,随着主体需求的不断变化,数据项不断从公共数据空间纳入到主体数据空间中。主体、数据集、服务是数据空间的三个要素。主体是指数据空间的所有者,可以是一个人或一个群组,也可以是一个企业。数据集是与主体相关的所有可控数据的集合,其中既包括对象,也包括对象之间的关系。主体通过服务对数据空间进行管理,例如数据分类、查询、更新、索引等,都需要通过数据空间提供的服务完成。由此可见,数据空间是一种不同于传统数据管理的新的数据管理理念,是一种面向主体的数据管理技术。与传统的数据管理技术类似,数据空间管理也面临数据模型、数据集成、查询与索引等各种技术的研究。

基于数据空间的云计算