计算机视觉感知技术范例6篇

前言:中文期刊网精心挑选了计算机视觉感知技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

计算机视觉感知技术

计算机视觉感知技术范文1

在我国市场经济不断发展的盛况下,我国科技发展水平也紧随其后,成为世界上的科技强国之一。在计算机水平的不断提高下,计算机视觉技术应运而生。其中,计算机视觉技术被应用与各个领域,并在各个领域都得到广泛有效的应用,比如军事领域、医疗领域、工业领域等。本文针对计算机视觉技术在交通领域中的应用进行分析。

【关键词】计算机视觉 交通领域 探究

近年来,随着科技水平的提高,计算机视觉技术逐渐被人们熟知并广泛应用。相较于其他传感器来说,视觉能获得更多的信息。因此,在我国交通领域中,也对计算机视觉技术进行研究完善,将计算机视觉技术应用在交通领域各个方面中,并取得了显著的成效。

1 计算机视觉的概述及基本体系结构

1.1 计算机视觉概述

通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。

计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知

计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。

1.2 计算机视觉领域基本体系结构

提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。

2 计算机视觉在交通领域的应用

2.1 牌照识别

车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。

2.2 车辆检测

目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。

2.3 统计公交乘客人数

城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。

2.4 对车道偏离程度和驾驶员工作状态判断

交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。

2.5 路面破损检测

最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。

3 结论

本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。

参考文献

[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).

[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).

[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).

[4]马良红.三维物体影像的摄取与分析[J].中国公路学报,2014(05).

[5]朱学君,沈睿.关于计算机视觉在交通领域中的探讨[J].信息通信,2013(01):123.

[6]王大勇.关于计算机视觉在交通领域中的应用分析[J].科技与企业,2013(01):115.

作者简介

夏栋(1988-),男,湖北省孝感市人。现为同济大学软件学院在读硕士。研究方向为计算机视觉。

计算机视觉感知技术范文2

关键词:计算机视觉技术 铁路检测 应用

中图分类号:TP391 文献标识码:A 文章编号:1007-3973(2012)002-075-03

1 前言

自1825年世界第一条铁路在英国出现以来,铁路已经成为人们不可或缺的交通工具,越来越多的人在使用铁路出行,由于近年来铁路事故频频发生,促使了计算机视觉技术在铁路检测上的广泛使用并大力发展。

传统的铁路检测一直是靠人工和静态检测,这种检测缺乏实时性和准确性,并且效率低下,根本无法满足铁路的发展。这就要求研究一种新的检测方法来适应环境的发展,人们就试图将计算机视觉技术应用于铁路检测上,并取得了很好的效果。将计算机视觉技术应用在铁路检测上显著提高了铁路检测的实时性、准确性,有效的减轻了人工检测中工作条件恶劣,工作量大等缺点。它能在列车行驶的过程中就能对铁路和列车状况进行检测,并及时的做出预警,防止安全事故的发生。目前有关铁路检测主要集中在铁路信号检测、轨道检测、接触网检测、电力机车检测及站台环境监测等五个方面。

2 计算机视觉技术

计算机视觉,也称机器视觉。它是利用一个代替人眼的图像传感器获取物体的图像,将图像转换成数字图像,并利用计算机模拟人的判别准则去理解和识别图像,达到分析图像和作出结论的目的。

计算机视觉是多学科的交叉和结合,涉及到数学、光学、人工智能、神经生物学、心理物理学、计算机科学、图像处理、图像理解、模式识别等多个领域。计算机视觉已有多年的发展历程。随着计算机、控制理论、模式识别、人工智能和生物技术的发展,计算机视觉在机器人、工业检测、物体识别的应用越来越广,研究方向也从二维到三维,从串行到并行,从直接依赖于输入信号的低层处理到依赖于特征、结构、关系和知识的高层处理。

一般的计算机视觉系统是有CCD(电荷耦合器件)摄像机、装备有图像采集板的计算机、光照系统以及专用图像处理软件等组成。CCD摄像机将所要研究的对象和背景以图像的形式记录下来,这其实是一个光电传感器,将光学信号转成电信号,图像采集板把采集的电信号转为数字信号,即数字化,一般情况下在摄取图像时都需要一个照明系统提供光照,然后再用专用的图像处理软件对图像进行处理,输出分析结果。

3 计算机视觉技术在铁路信号中的应用

铁路信号灯和现在的交通公路上的红绿灯是一个功能,但铁路和公路不同,铁路有限定的道路,列车必须在限定的股道上行驶,所以一旦与其他车辆相遇的话根本没有办法避让,如果发生车祸将会对国家和人民的生命和财产造成严重的损失,因此列车必须严格按照信号灯的指示行驶。

铁路信号灯识别主要是利用了信号灯在不同情况下会发出特定色彩光的特点。文献[1]在HSV空间中对S分量图像边缘检测和膨胀等,结合各种信号灯色调H分量的取值范围得到信号灯区域,然后多次腐蚀直到消除孤立点得到信号灯的边缘,最后填充信号灯区域,从而实现了信号灯的识别。在文献[2]也与此类似。文献[3]将彩色图像由RGB模式转化为HSI模式,用彩色特征聚类分析法来对图像进行分割,文中提出了基于颜色和形状相结合的复杂环境中目标检测与识别方法,用Hough变化来提取目标边界,从而提取出特定目标,而后得到指示灯区域所有像素的H,S统计值确定信号灯的颜色。在文献[4]提出一种基于改进的Hough变化的吊车信号灯识别算法。Roberto将摄取的图片转换到HIS颜色空间,用基于形状特征和模板匹配的方法探测到相关的铁路标志而放弃无关的基础设施。

为了部分消除因为光照条件、背景和拍摄角度对目标识别的影响,文献[5]提出使用一种利用sift特征的方法,它首先建立已知样本模型的特征集,然后将视频流每帧灰度图像的sift特征与之比较,从而实现对目标的检测或跟踪。实验表明该方法不仅能避免目标的错误识别,而且也明显优于基于边缘检测的算法,在识别准确率上达到了90%。

4 计算机视觉技术在轨道检测中的应用

随着世界铁路运营速度的不断提高,列车在行驶时对轨道的撞击、摩擦加剧,这就会造成轨道的变形、零件松动、磨损乃至缺失等,这些都会对列车的安全性造成严重影响,极有可能会造成铁路安全事故的发生。因此轨道设备具备良好的状态是铁路运输安全的重要保证。

随着电子技术和检测技术的发展,轨道检测技术也经历了翻天覆地的变化,其中也有不少研究机构将计算机视觉技术应用于轨道检测上,且取得了若干有效的检测方法。

轨道表面缺陷对列车行驶的质量和铁路系统的安全性会造成严重的影响,文献[7]提出了一种轨道表面缺陷检测的实时视觉检测系统。利用跟踪提取算法分割出轨道的灰度图像,然后用局部归一化法增强轨道图像的对比度,最后用基于投影轮廓的缺陷定位法检测缺陷。该算法对噪声有较强的鲁棒性和计算速度快,在一定程度上克服了光照不均和轨道表面反射性质不同对图像的影响,但对局部归一化过程中参数的选择有待进一步研究,以使该系统有更强的鲁棒性。该系统在216km/h速度下能进行实时检测,但随着检测速度的提高检测的准确度会明显下降且缺乏实时性。

文献[8]利用一排结构光视觉传感器,将钢轨轮廓的大圆周和小圆周的中心作为检查点。首先结构光视觉传感器拍摄铁轨侧面并且将其标记 在参考坐标帧中,最后通过比较测量的钢轨轮廓与参考轮廓的比较计算出铁轨磨损程度。该方法简单快速精确且不需要特殊的图像处理设备,在列车较高速度时仍然能达到良好效果。

5 计算机视觉技术在接触网检测中的应用

接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路。其由接触悬挂、支持装置、定位装置、支柱与基础几部分组成。它是轨道交通的主要组成部分,主要为机车提供动力,接触网的连接件由于受外界因素的影响容易产生过热现象,严重时会导致供电中断,引发列车停运事故。

我国的计算机视觉技术的接触网检测系统是基于德国相关技术而建立起来的,目前基于计算机视觉技术的接触网磨耗检测主要有两种方案:(1)基于镜面反射,激光照射接触线,线性CCD照相机捕获反射图像;(2)基于漫反射原理和CMOS(互补金属氧化物半导体)照相机。由于长期的频繁摩擦,接触网与受电弓接触部分很少被空气氧化,所以用光进行照射时该部分光反射率明显高于其他部分,因此这也为计算机视觉技术用于接触网检测提供了可能。

基于机器视觉的接触网检测系统主要是建立在图像识别和图像处理等视觉技术基础之上的,检测的内容涵盖接触网的所有基本几何参数。随着铁路的发展,原有的检测系统已经暴露出了一些问题,已无法满足需求,所以研究人员在系统硬件设备不变的情况下提出了许多改进的算法,如文献[9]针对现行的接触网定位器倾斜度检测方法效率低下、精确度不高的缺点,提出了一种基于计算机视觉的接触网定位器倾斜度自动测量装置,应用图像分割、剔除干扰线、图像细化等算法,对采集的图像进行处理,然后利用改进的霍夫(Hough)变换检测细化后的图像,对相邻的特征像素点进行聚类并感知编组,最后用随机Hough变换使感知编组后的每条线段更接近直线,进而计算装置中定位器的倾斜度,实验证明该算法精度高、速度快。

6 计算机视觉技术在电力机车检测中的应用

在列车的行进过程中,机车车轮与钢轨接触面不断发生摩擦,也就是轮缘与踏面的摩擦。从而会造成踏面的擦伤或剥离,而剥离会严重影响列车运行的安全性和平稳性以及轨道设施的使用寿命,因此需要对轮缘进行定期的检测和维修。

传统的检测方法需要人工逐项检测,存在费时费力、工作量大、工作环境差、效率低等缺点,所以人们就提出了一种基于计算机视觉技术的检测技术,该技术是一种非接触式检测方法,它能检测出所有关于火车轮缘轮廓的几何参数,从而计算出火车轮缘的磨损情况。这种检测方法检测速度快、准确率高且大大减轻了劳动强度,在实验中取得了满意的效果,并且在实际检测中也得到了广泛的应用。

文献[10]中研发设计了一种利用CCD成像测量技术、图像处理理论和计算机控制等相关技术,提出了一种非接触式的在线测量系统。采用二元多项式方法对由于硬件装置引起的误差的图像进行几何校正,用统计均值法对图像进行分割,从而求出车轮踏面的各项参数,通过在实验室对标准物进行测试实验而得到的测量数据结果进行分析而得出。此系统能够完成对火车轮对几何参数的测量,并且可得到相对准确的测量结果。

为了解决检测轮缘高度和宽度存在精度难以保证及稳定性不高的问题,文献[11]提出了一种基于三角法测量的在线监测系统,该系统由CCD高速摄像机和结构光发射器完成数据的采集,然后利用三角测量原理导出测量模型和计算模型,根据轮缘高度和宽度的定义完成对高度和宽度的测量,最终对轮缘磨损程度进行量化,实验表明该算法测量精度高,结果稳定可靠。

7 计算机视觉技术在站台环境监测中的应用

近年来铁路交通事业发展迅速,铁路客流量也不断增大,如中国每年的春运期间都有上亿人次通过火车返乡,各种危害乘客安全的事故也时有发生,因此世界各国特别是中国站台监控就显得越来越重要,目前的站台监控主要是依靠安装在各个角落的闭路电视或专业技术人员,这不仅需要专业技术知识还需要大量的人力物力。随着计算机、图像处理等技术的快速发展,对站台的自动监控也逐渐成为发展趋势。

近年来人们做了许多关于站台人群检测的研究,这些研究大都使用铁路站台中的闭路电视(CCTV)系统,在现代的CCTV系统中基本上使用的是数字化图像,在人群监测过程中大量使用了数字图像处理技术,如边缘检测、细化、像素计算等,通过图像的处理可以轻易的得到想要的结果。

文献[12]仍采用原有的CCTV监控系统拍摄的灰度图像作为处理对象,利用基于视觉的经过最小二乘法和全局搜索的混合算法训练的工业的额神经网络来估算站台的拥挤程度,该系统在实际的运行中获得了较高的精确度,虽然不能计算人数但却能实时的预测人群的密度。

文献[13]所设计的系统就较为复杂,它利用多台摄像头对站台进行检测。首先判断站台上列车的四种状态,如:没有列车、有列车、列车正在出站、列车正在入站等,然后对物体或行人检测及跟踪,最后对所检测的结果综合分析,做出合理的预警或警告。

8 计算机视觉技术在铁路检测上的发展趋势

随着计算机视觉技术的铁路检测中的应用越来越广泛和深入,并且随着计算机视觉技术等关键技术的不断发展,计算机视觉技术在铁路检测上应用发挥更大的作用,它就目前而言在铁路检测的应用上仍然存在技术难题需要研究:

计算机视觉感知技术范文3

关键词:计算机视觉;地图匹配;SLAM;机器人导航;路径规划

1概述

计算机视觉在人工智能学科占据重要地位,为自主移动机器人视觉导航做了深厚的理论铺垫。目前,机器人导航技术有很多种,传感器导航技术如里程计、激光雷达、超声波、红外线、微波雷达、陀螺仪、指南针、速度、加速度计或触觉等得到了普遍应用,与上述非计算机视觉导航技术相比较,计算机视觉导航技术如人眼般具有灵敏度高且可捕获的信息量大以及成本低等优点。由于室内相对室外空间比较狭小且内部环境复杂,所以普通移动机器人在作业过程中,完成躲避眼前障碍物、自主导航以及为自身找出一条可行路径等一系列操作会相对比较困难。计算机视觉导航技术可利用本身的摄像头获得室内周围的环境信息,实时对其周身的场景进行快速反馈,对视野前方障碍物进行快速识别和检测,从而确定一条高效的可行的安全路径。本文对计算机视觉导航技术进行分类研究,主要分为3类:第一类是环境地图事先已知,提前对外界环境特征进行提取和处理,建立全局地图,并将地图信息存储在机器人内存数据库中,在导航的时候实时进行地图匹配;第二类是同时定位与地图构建,移动机器人在自身位置不确定的情况下根据自身的摄像头获取周围未知环境信息,在作业时逐步构建周围的环境地图,根据构建的增量式地图自主实时定位和导航;第三类是不依赖环境地图,自主移动机器人不需要依赖任何的环境地图,其在作业活动时的可行区域主要取决于摄像头实时识别和检测的环境相对信息。

2环境地图的表示方法

目前,计算机视觉导航技术多采用栅格地图、几何地图、拓扑地图和混合地图构建环境地图信息。

2.1栅格地图

栅格地图,将栅格图像考虑为一矩形,均分为一系列栅格单元,将每个栅格单元赋予一个平均概率值,并利用传感信息估计每个单元内部内存障碍物的概率。构建栅格地图的优点是其地图表达形式直观,创建和维护比较容易;但当划分的栅格单元数量不断增多时,实时性就会慢慢变差;当划分的栅格单元越大时,环境地图的分辨率越低。

2.2几何地图

几何地图利用几何特征如点、直线、平面等来构成环境主要框架,需要知道这些特征在环境中信息的具置,所以几何地图通常使用其对应的三维空间坐标来表示。几何地图构建过程相对简单,保留了室内环境的各种重要信息,是基于计算机视觉的定位与地图构建算法中最常用的一种表示方式。但是为了完成环境的建模需要标记大量的特征,从而计算量也非常的大,降低了实时性,其重建的地图也容易出现与全局不一致的情况。

2.3拓扑地图

拓扑地图用许多节点和连接这些节点的曲线来表示环境信息。其中,每个节点相对应真实环境中的特征点(如门角、窗户、椅子、桌子角及拐角等),而节点之间的曲线表示两个节点对应的地点是相联通的。拓扑地图把环境信息表上在一线图上,不需要精确表示不同节点间的地理位置关系,图像较为抽象,表示起来方便且简单。机器人首先识别这些节点进而根据识别的节点选择节点与节点间的曲线作为可作业的路径。

2.4混合地图

混合地图主要包括3种形式:栅格一几何地图、几何一拓扑地图以及栅格一拓扑地图。混合地图采用多种地图表示,可结合多种地图的优势,与单一的地图表示相比更具有灵活性、准确性和鲁棒性,但其不同类别的地图结合起来管理会比较复杂,难以协调,增加了地图构建的难度。文献针对室内环境所建立的模型分为全局拓扑和局部几何表述部分,整体环境通过拓扑节点串连起来,维护了整体环境表述的全局一致性;而以每个拓扑节点为核心所采用的几何表述则可确保局部精确定位的实现,这样建立的几何一拓扑混合环境模型可将二者的优势都表现出来,使得移动机器人定位和地图构建同时进行,实现容易。

3基于计算机视觉的室内导航

基于计算机视觉的室内导航技术可利用摄像头捕获机器人周围环境的全部信息,对其周身的场景进行反馈,对障碍物进行快速识别和检测,从而确定一条高效的可行的安全路径。本文将计算机视觉室内导航技术主要分为3类:第一类是环境地图事先已知;第二类是定位与地图构建同时进行;第三类是不依赖环境地图。

3.1环境地图事先已知

提前对外界环境特征进行提取和处理,建立全局地图,并将地图信息存储在机器人内存数据库中,在导航的时候实时进行地图匹配,即预存环境地图。在环境地图事先已知的导航中,路标信息保存在计算机内存的数据库中,视觉系统中心利用图像特征直接或间接向移动机器人提供一系列路标信息,一旦路标被确定后,通过匹配观察到的图像和所期望图像,机器人借助地图实现自身精确定位和导航。该导航技术过程可分为以下步骤:

a)图像获取:摄像头获取其周围的视频图像;

b)路标识别及检测:利用相关图像处理算法对图像进行一系列预处理如进行边缘检测和提取、平滑、滤波、区域分割;

c)路标匹配标志:在观察到的图像和所期望图像之间进行匹配,搜索现有的路标数据库进行标志路标;

d)位置计算:当有特征点进行匹配时,视觉系统会根据数据库中的路标位置进行自身精确定位和导航。

在基于计算机视觉的地图匹配定位过程中,主要有2种地图匹配较为典型。

①已知起点,已知地图。这种条件下的定位称为局部定位,采用的是一种相对定位的方法,如图1所示为其位姿估计过程,这种情况目前导航技术研究得最多。

②不知起点,已知地图。这种条件下的定位称为全局定位。当机器人需要重置时,通常使用这种定位方法来检索机器人的当前位置(即姿态初始化)。常用的辅助方法是在环境中添加一些人造信标,如无线收发器,几何信标,条码技术,红外或超声波接收系统进行位置识别,利用视觉系统识别自然标志,自主定位。

3.2定位与地图构建同时进行

不知起点,不知地图。SLAM技术最早由Smith等人于1986年提出,移动机器人在自身位置不确定的情况下根据自身的摄像头获取周围未知环境信息,在作业时逐步构建周围的环境地图,根据构建的增量式地图自主实时定位和导航。在日后的导航研究中,混合地图中的几何一拓扑混合环境模型被得到广泛应用,主要用来解决SLAM问题。

2003年,在解决SLAM技术难题上,Arras等人采用基于Kalman滤波器和最邻近(nearest neighbor)匹配策略的随机地图创建方法。下面是该算法步骤:

a)数据采集:首先初始化系统,从摄像头传感器采集距离数据;

b)状态预测:视觉系统预测机器人运动状态,实时返回新位姿信息和协方差矩阵,预测地图;

c)观测:从原始捕获的信息中提取主要特征信息并将此信息返回给局部地图;

d)测量预测:预测机器人当前位姿的全局地图;

e)位置匹配:应用最邻近滤波器匹配局部地图中的观测点和预测点;

f)估计:使用扩展Kalman滤波器更新地图;

g)创建:将非相关的观测点加入地图,对机器人返回增量式地图;

h)输出地图。

制约机器人视觉系统性能的重要因素是信息实时处理的计算复杂度和处理效率,SLAM算法需要在地图密度与计算效率之间取得权衡。

3.3无环境地图

在这类系统中,机器人不需要依赖任何的环境地图信息,机器人的活动取决于其当时识别和提取出来的环境信息,这些环境信息可能是桌子、椅子和门等,不需要知道这些环境元素的绝对位置。无环境地图的导航技术典型的技术有3大类:基于光流的导航技术、基于外观信息的导航技术、基于目标识别的导航技术和基于目标跟踪的导航技术。

3.3.1基于光流的导航技术

光流是三维空间运动物体在观测成像面上的像素运动的瞬时速度,也是图像亮度的运动信息描述。光流法计算最初是由Horn和Schunck于1981年提出的,其利用二维速度场与灰度,引入光流约束方程,得到光流计算的基本算法。光流计算基于物体移动的光学特性提出了2个假设:①运动物体的灰度在很短的间隔时间内保持不变;②给定邻域内的速度向量场变化是缓慢的。如Santos-Victor等人研发了一种基于光流的robee视觉系统,该系统模拟了蜜蜂的视觉行为。在robee视觉系统中,使用单独的双目视觉方法来模拟蜜蜂的中心反射(Centering Reflex):当机器人移动到走廊两侧的墙壁中心时,左眼捕获场景的瞬时速度与右眼捕获场景的瞬时速度是相同的,几乎没有差别,那么机器人就可以知道他们在走廊的中心。如果眼睛两侧的眼睛的瞬时变化速度不同,则机器人移动到较慢的速度。在自动机器人导航的实现中,基于这个想法是测量摄像机捕获图像场景瞬时速度差异。这种导航技术只能用于室内单通道直走道导航,不能引导机器人改变方向,具有一定的局限性。

3.3.2基于外观信息的导航技术

基于外观的机器人导航方法,不需要构建真实的地图导航,机器人通过自身所携带的摄像头和传感器感知周围目标的外观信息进行自主定位和导航。其中,所述的外观信息多为目标信息的颜色、亮度、形状、空间大小和物理纹路等。机器人在导航时存储连续视频帧的环境图像信息,并将连续视频帧与控制指令相关联,从而再执行指令规划有效路径到达目的地。

3.3.3基于目标识别导航技术

为了达到目标点或是识别目标,机器人很多时候只能获取少量的图像信息。Kim等人提出了一种用符号代替导航各个位置的赋值方法。该赋值方法中,机器人执行命令如“去窗边”“去你后面的椅子旁”等。这样,通过相关的符号命令,机器人自动识别并建立路标,通过符号指令到达目标点。例如“去你后面的椅子旁”,这样的命令就是告诉机器人路标是椅子、路径向后。该导航技术的难点在于目标是否可以准确实时识别路标。第一,识别大量不同类别的物体,室内环境有许多不同类别的物体,需要将它们组织到一个在给定的容易搜索图像数据结构中去,起到容易识别是用什么度量来区分物体;第二,识别大量不同背景下的物体,一个合适的物体表达式有助于将图像组织成片断,而这些片断来自于物体的种类且与物体无关的;第三,在抽象层次上识别物体,机器人可以不需要在看到一个具体的杯子之前便能知道它是一个杯子,相关程序能够类似的物体进行识别和区分。

3.3.4基于目标跟踪的导航技术

基于目标跟踪的导航技术,为机器人构造一个虚拟地图,机器人通过摄像头获取连续的视频序定一个跟踪的目标,为了达到对目标的精确定位和实时跟踪,可以利用粒子滤波算法对需要跟踪的目标进行建模。基于粒子滤波的目标跟踪主要包含四个阶段,分别是初始化目标区域,概率转移,目标区域权重计算,目标区域重采样。在机器人导航之前,通过视频序列的当前几帧标注机器人所需要跟踪的目标,在导航时,机器人通过连续的视频帧感知周围的待跟踪目标,同时对所需要跟踪的目标散播粒子,当获取的视频帧对目标区域重采样后足以让机器人确定所需要跟踪的目标时,机器人通过确定的目标为自己规划最有效的路径到达目的地。获取视频序列目标跟踪是算机视觉领域中的重要分支,它在工业生产、交通导航、国防建设、航空导航等各个领域有着广泛的应用。

计算机视觉感知技术范文4

关键词:计算机视觉系统 工业机器人 探究

中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2015)05-0000-00

计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。近年来,机器人已经广泛使用于工业生产,但是多数机器人都是通过“示教-再现”的模式工作,在工业机器人工作是都是由操作员进行操作示范再由机器人跟着示范进行工作。由于机器人缺乏对外界事物的识别能力,工作中经常发生偏差或者位移等情况。由于工作环境的恶劣以及各种阻碍,为了提高工业机器人的工作效率、灵活性、适应性等,让机器人更好的识别外部环境并及时调整运作方向,能更好的发挥其作用,在原有的机器人系统中添加了一套计算机视觉系统,利用计算机视觉图像装置的信息,通过图像使机器人进行外部环境的识别处理,采用三维的重建,通过作业中利用三维图像的信息进行计算,采用Motocom32软件和机器人控制柜通讯等设备,对工业机器人进行控制,更好的实现机器人对空间特点的跟踪与定位。

1系统的结构与原理

本文主要针对Motoman UP6工业机器人系统的二次研究,在原有的工业机器人的系统中,增加了一套计算机视觉系统, 使工业机器人更好的识别外界环境的系统。计算机视觉系统主要包括:Panasonic CCD摄像机、Motoman UP6工业机器人系统、工控机、OK C-50图像采集卡等外部设备。工业机器人的整个系统由原有系统与计算机视觉系统组成,在原有的系统中包含了YASNAC-XRC- UP6机器人控制柜、Motoman UP6工业机器人本体、示教编程器、Motocom32系统以及相关的外部设备等[1]。计算机视觉系统的设备主要有Panasonic CCTV摄像机、AVENIR TV镜头、OK系列C-50图像采集卡、工控机、AVENIR TV镜头、Panasonic CCD摄像机、OK系列C-50图像采集卡形成的视频采集系统主要是捕获物体的图像,该功能主要是分三个层次进行图像处理、计算、变换以及通信等功能来实施工控机。利用远程控制来对工业机器人进行Motocom32系统进行通信。

2计算机视觉系统的构建

2.1硬件的组成

CCD摄像头:选用的CCD摄像机采用PAP-VIVC810AOZ型彩色摄像头,如图1。摄像机的像素为P:500(H)x582(V),N:510(H)x 492(V),摄像机的分辨率为420。摄像机的成像器使用1/33"CCD,信噪>48 dB,同时摄像机具有自动背景光补偿、自动增益控制等功能。

图像采集卡:图像采集卡主要采用CCD摄像头配套的MV-200工业图像处理。如图2所示。MV-200图像采集卡的分辨率、图像清晰度具有较高的稳定性,其真彩色实施工业图像采集卡,该图像采集卡的硬件构造、地层函数都具有稳定性,同时在恶例的环境中都可以稳定运行[2]。图像采集卡的图像采集效果非常好,画面效果非常流畅。

MV-200图像采集卡性能特点:其分辨率为768 x 576,具有独特的视频过滤技术,使图像质量的采集、显示更加清晰流畅。主要支持的系统为Win98 /2K/XP,主要用于人工智能、事物识别、监控等多种领域。

工控机:工控机以奔4系列为主。

2.2软件组成

图像匹配软件。

图像处理与获取软件。

定标和定位算法软件,功能分布如图3所示。

3视觉系统的原理及流程图

工业机器人的主要系统包括是由工业机器人本体、相关的外部设备、控制器(供电系统、执行器等)计算机视觉系统主要由三部分组成:图像处理和获取、图像匹配、摄像机的定位等组成。通过借助OpenCV的视觉库进行VC++.NET实行,流程如下图表4所示。

在本视觉系统运行中,需要对摄像机实行定标,建立实际空间点和摄像机的对应点。在定标的过程中,就需要标记基准点,使摄像机在采集图像时可以准确的把这些基准点投放到摄像机的坐标上[3]。同时在采集卡的图像中,对图像进行处理并计算出该基准点图像的坐标,通过定标计算法,从而得出摄像机的参数。

在机器人系统中的反馈,计算机通过C语言的调节图像采集卡进行动态链接来控制函数[4]。同时,对摄像机中的数据、视频信号进行采集,构成数字化的图像资料,采用BMP格式存储进行计算,在计算机上显示活动视频,然后系统对获取的图像进行分析处理,以及对噪声的去除、图像的平滑等进行处理,利用二值化处理对那些灰度阀值的图像进行处理,同时检测计算机获取图像的特征量并计算[5]。在完成图像的处理后,就需要确立图像的匹配特征,对图像进行匹配[6]。如果两个图像不重叠,就需要建立3D数据库进行模型重新选择,再把模型进行计算、投影计算、坐标更换等指令,直到找到与图像相匹配的数据模型,才能真正得到真实有效的图像。重叠时,要获得有效的图像,以工业机器人识别物体为目的,才能建立机器人系统之间的通信。同时,通过三维图像重建,进行机器人空间定位[7]。如下图表5所示。

4结语

综上所述,计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。通过3D数据模型指定目标,机器人系统利用计算机视觉图像的采集装置来识别外界环境的数据,经过图像的姿态预算、影像的投影计算产生图像,通过图片的合成比较,以此来实现机器人在工作中对物体的识别。利用计算机系统对机器人进行有效的控制,在工业机器人工作中对事物目标的搬运、跟踪、夹持等指令。计算机视觉系统具备清晰的视觉功能,有利于提高工业机器人的灵活性以及适应性。

参考文献

[1]夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程,2014(06):221-223.

[2]华永明,杨春玉.机器人视觉系统在立体编织自动铺纱过程中的应用研究[J].玻璃纤维,2011(01):189-191.

[3]王培屹.基于多传感器多目标实时跟踪视觉系统在全自主机器人上的应用[J].软件导刊,2011(01):263-264.

[4]谭民,王硕.机器人技术研究进展[J].自动化学报,2013(07):123-125.

[5]鲍官军,荀一,戚利勇,杨庆华,高峰.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报,201(01):93-95.

计算机视觉感知技术范文5

政策驱动也是重要动力,科技巨头抢先布局引发示范效应。智能化时代,各国从国家战略层面加紧人工智能布局,美国的大脑研究计划(BRAIN)、欧盟的人脑工程项目(HBP)、日本大脑研究计划(Brain/MINDS),而我国也在“十三五”规划中把脑科学和类脑研究列入国家重大科技项目。企业布局方面,谷歌、Facebook、微软、IBM等均投入巨资,其示范效应是产业进步的先兆;国内百度、阿里、讯飞、360、华为、滴滴等也加紧布局。15年行业投资金额增长76%,投资机构数量增长71%,计算机视觉和自然语言处理占比居前。

产业链格局已现,上游技术成型、下游需求倒逼,计算机视觉产业应用最成熟。产业链初步格局已现,从基础层和底层技术,再到应用技术,最后再到行业应用,除了近年来底层核心技术的突破,下游行业需求倒逼也是人工智能应用技术发展的重要动力,诸如人机互动多元化倒逼自然语义处理、人口老龄化倒逼智能服务机器人、大数据精准营销倒逼推荐引擎及协同过滤,等等。其中计算机视觉应用技术的发展可能是最先发力的,国内不乏世界一流水平公司。

2B应用首先爆发,“人工智能+金融、安防”应用前景广阔。“人工智能+”将代替之前的“互联网+”,在各行业深化应用,安防、金融、大数据安全、无人驾驶等等。生物识别和大数据分析在安防和金融领域的应用则是目前技术最为成熟、产业化进程较快,如智能视频分析、反恐与情报分析、地铁等大流量区域的监控比对;金融领域的远程开户、刷脸支付、金融大数据采集、处理、人工智能自动交易、资产管理等。相关推荐标的:东方网力、佳都科技、川大智胜,建议关注大智慧、远方光电。

逐渐向2C端应用扩展,看好“人工智能+无人驾驶、教育”。人工智能在无人驾驶领域的应用体现在三方面:(1)环境感知环节的图像识别;(2)基于高精度地图和环境大数据的路径规划、复杂环境决策;(3)车车交互、车与环境交互下的车联网,智能交通管理。教育领域应用方面,人机交互重构更互动性的教学;大数据和深度学习的结合使得个性化教学成为现实,这也是在线教育最重要的突破点;此外包括VR在内的多载体应用和多屏互动也是发展趋势。相关推荐标的:四维图新、千方科技、东软集团、科大讯飞、长高集团、新开普。

计算机视觉感知技术范文6

关键词: 边缘检测;SUSAN算子;角点检测;亚像素;标定

中图分类号:TB96 文献标识码:A

The Test Method of Wheel Alignment Parameters Based on Improved SUSAN Operator

LI Yu-yu1, HE Liang-liang2

(1. Automotive industry school in Anhui Province, Hefei Anhui 230041, China; 2. HeFei University of Technology, Hefei Anhui 230011, China)

Abstract: In view of the current four-wheel sensors' shortcomings, such as large amount, low accuracy, complex operation, and high maintenance costs, etc. we put forward a new method of detection which uses three-dimensional visual to detect parameters of four-wheel location. This paper expounds the improved SUSAN operator which is based on the proposed method. Through the collection of sequence image of the target disk format board which moves together with the wheels, we calculate three-dimensional cosine of the rotation axis of the wheels, then get four-wheel location geometric parameters. Compared with the traditional methods, this new method has many advantages, such as non-contact, real-time, simple operation, high precision and so on.

Keywords: edge detection; SUSAN operator; corner detection; subpixel; calibration

引 言

随着汽车行驶里程的增加、使用时间的延续,其技术状况必然发生改变。汽车行驶中的操作稳定性与行驶安全性、轮胎的异常磨损以及燃油消耗的增加等均与汽车车轮定位不准有关[1,2]。目前,国内广泛使用了基于机器视觉的测量技术进行汽车四轮定位,计算机视觉是通过对三维世界所感知的二维图像来研究和提取出三维景物的物理结构[3]。计算机视觉测量技术作为一种新兴的、先进的高精度的测量技术,而摄像机标定是实现影像高精度测量的关键技术之一。本文根据空间向量原理与计算机视觉理论,提出一种四轮定位参数测量[4]的模板标定新方法,主要研究了针对棋盘格平面模板的亚像素级角点坐标的提取,为后续的摄像机的精确标定提供依据,并通过实车实验进行了验证。

1 四轮定位的主要参数

四轮定位的主要参数[5,6]包括:前束角θToe(车轮中心线与车辆几何中心线之间的夹角)、外倾角θCamber(车轮旋转平面与车辆纵向垂直面的夹角)、主销内倾角(kingpin inclination)θKI(在汽车横向平面内转向节主销轴线与铅垂线的夹角)及主销后倾角θCaster(在汽车纵向垂直平面内转向节主销轴线与铅垂线的夹角)等。

X、Y、Z分别为车体的横向、铅垂方向和纵向的坐标轴,根据立体几何知识,四轮定位参数数学模型如式(1)所示,单位为度。

1.1 数学模型求解

根据四轮定位参数的数学模型,我们可以通过摄像机采集随车轮运动的棋盘格式目标盘的序列图像,对其进行角点检测[7],而后计算棋盘格角点的图像坐标与世界坐标之间的单应性矩阵H[8],结合摄像机标定所得到的摄像机内参矩阵,便可求出棋盘格角点的旋转矩阵,即车轮运动的旋转矩阵,进而计算出车轮旋转轴线的方向余弦,从而得到车轮的四轮定位参数,其具体的数学模型求解,流程如图1所示。

2 改进SUSAN算子[9]的棋盘格角点检测

棋盘格图像是进行摄像机标定时最常用的图像,由黑白相间的正方形组成,并以角点作为特征点。

从图2可以看出,如果用原来的SUSAN算子进行角点检测,由于边缘和角点处的核值相似区都为模板区域的一半,故很难区分边缘与角点,必须对SUSAN算子改进后才能用于角点检测。所以我们采用如下的步骤对棋盘格进行角点检测,首先用LoG算子进行边缘检测,然后在边缘像素处用改进后的SUSAN算子进行角点检测,最后利用灰度平方重心法进行亚像素角点定位。

2.1 棋盘格的边缘检测

在线摄像机标定过程中,因为利用SUSAN算子对整幅图像进行角点检测时,其检测速度会比较慢,不能满足在线标定对速度的要求。由于角点一定包含在图像边缘中,所以先利用LoG算子对图像进行边缘检测,记下边缘像素的坐标,再只对边缘处的像素进行SUSAN角点检测即可,这样可以大大减少整个角点检测的运算量。如图3所示,是对棋盘格图像进行边缘检测的效果图。

2.2 棋盘格的角点检测

从图4可以看出,对于理想的边缘,如a所示,其灰度不具有中心对称性,而角点b、c、d、e均具有一定的中心对称度。且对于理想的棋盘格角点e则具有完全的中心对称性,而对于b、c、d 三种角点,其角点越尖锐,其对称性越好。

选用37像素的圆形模板进行SUSAN角点检测,选用相似比较函数[10]作相似比较,如式(2)所示。

式中t为相似度阈值,由于模板图像灰度对比度很好,所以可适当取大一点,选用t=25作为相似度阈值,根据式(3)计算出核值相似区:

最后确定几何阈值g,得到初始角点响应:

因为棋盘格角点的特殊性,其理想的几何阈值g应为,对于实际的图像,由于有噪声的干扰以及摄像机的畸变,不可能是精确的直角角点,所以其几何阈值最好选取~之间的值。从前面的论述可知,棋盘格角点具有完全的中心对称性,而37像素的SUSAN圆形模板可方便地计算出其对称度,所以就此提出了灰度中心对称度的概念。

首先对SUSAN模板像素的一半依次搜索,找到其关于核心点的像素,求出二者的灰度差ΔI如式(5)所示。

ΔI=I(x,y)-I(x',y')(5)

其中I(x,y)与 是关于核心点中心对称的像素灰度值。灰度差ΔI与阈值d的比较得到点(x,y)的灰度对称度D(x,y)为:

D(x,y)=1 ΔI<d0 ΔI≥d(6)

阈值d是用来区分两像素是否具有灰度相似性的关键,灰度区域的差值即为阈值d的取值。

将模板区域一半像素的灰度对称度求和可得到整个模板的灰度对称度S(x0,y0)为:

其中M表示整个模板区域,对于37像素的模板,其理想的最大灰度对称度Smax=18。由于图像角点模糊以及摄像机畸变等因素,棋盘格图像的灰度对称度S达不到Smax,所以在进行角点检测时设定的灰度对称度阈值可适当减小,文中取S=12。通过上述改进后可获取出棋盘格的角点位置。

2.3 亚像素的角点检测

通过上述方法检测到的棋盘格角点并不是单像素角点,但是在进行摄像机的精确标定时,必须将角点定位到亚像素级。对棋盘格角点图像进行分析可知,棋盘格角点图像属于灰度对称分布的目标,而且图像的灰度对比强烈,所以选取灰度平方重心法进行亚像素角点定位。设角点的灰度重心(x0,y0)为式(8):

其中W(i,j)为权值,取W(i,j)=I2(i,j),M是利用改进后的SUSAN算子检测到的角点邻域。该方法原理简单,可以有效地实现亚像素角点定位。

3 四轮定位参数计算及实验结果分析

图像平面上的点m与平面模板的点M之间可通过单应性矩阵H来联系,获得匹配点的坐标就可以求图像坐标与世界坐标之间的单应性矩阵H。用夹具将目标盘以一定角度安装在车轮上,当车辆前后移动时,车轮及目标盘一起前后转动,通过对目标盘上的进行运动前后的拍摄,得到旋转前后的图像,如图5所示。然后进行图像处理和分析提取出目标盘上的特征点,再根据特征点位置的空间坐标变化计算出车轮空间旋转量,进而由该向量与空间坐标系各坐标轴夹角关系得出定位参数。

4 实验结果及分析

应用车轮定位参数检测实验系统对奥迪A6L车轮定位参数进行了检测,共测了3次,取其平均值作为最终结果,结果如表1所示。A列为改进算法前的四轮定位数据,B为改进算法后的实验数据。从实验结果来看,在通过本方法对特征点提取的算法做了改进后,实验结果较之前精准,证明了本方法的正确性和有效性。

5 结 论

应用计算机视觉理论,建立了汽车四轮定位参数测量的数学模型,重点阐明了的改进SUSAN算子的亚像素角点检测,避免了传统SUSAN算子混淆角点和边缘的缺点,可有效地检测出正确的角点。由于只在棋盘格边缘点附近进行角点检测,其运算速度大大提高。灰度平方重心法的亚像素定位方法简单高效,所以该方法非常适合于运用棋盘格对摄像机进行在线标定的场合。这是一种有别于传统检测法的新方法,以便提高汽车四轮定位的检测精度。

参考文献

[1] 罗进益,周. 轿车凹轮定位检测与调整[M]. 北京:人民交通出版社,2002,3.

[2] 张遥远,刘美生,罗发贵,王蛟茹. 四轮定位仪的性能评价与检测[J]. 中国测试技术,2004,30(4):3-6.

[3] 高 文,陈熙霖. 计算机视觉[M]. 北京:清华大学出版社,1999.

[4] 胡修泰. 3D激光车轮定位仪[J]. 汽车维护与修理,2003(07):22-25.

[5] 王德超,涂亚庆,张铁楠. 基于计算机视觉的汽车四轮定位参数检测数学模型及方法[J]. 汽车工程,2008,30(03):223-228.

[6] 张铁楠,涂亚庆,王德超. 基于计算机视觉的汽车车轮定位技术研究[J]. 电子测量技术, 2008,31(04):52-56.

[7] 郝颍明,朱 枫. 摄像机标定中的棋盘格自动检测[J]. 计算机工程,2007,33(17):213-215.

[8] 刘永强,刘军民. 基于视觉测量的汽车车轮定位技术的研究[J]. 大连理工大学网络学刊. 2008.