前言:中文期刊网精心挑选了高中数学函数与方程范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
高中数学函数与方程范文1
【关键词】函数与方程思想;高中数学;应用
什么是函数和方程思想?简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,在用函数和方程思想指导解题时要经常思考下面一些问题:是否需要把一个代数式看成一个函数,是否需要把字母看作变量,如果把一个代数式看成了函数,把一个或几个字母看成了变量,那么这个函数有什么性质,如果一个问题从表面上看不是一个函数问题,能否构造一个函数来帮助解题,是否需要把一个等式看作为一个含未知数的方程,如果是一个方程,那么这个方程的根(例如根的虚实,正负,范围等)有什么要求?
一、把字母看作变量或把代数式看作函数
规律技巧提炼:
1.函数方程思想就是用函数、方程的观点和方法处量变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.
(1)函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量之间的相互制约关系,最后解决问题,这就是函数思想.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:①根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;②根据需要构造函数,利用函数的相关知识解决问题.
(2)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想.
2.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法来支援,函数与方程之间的辩证关系,形成了函数方程思想.
综上所述,在高中数学教学过程中重视函数与方程思想方法的渗透,可以深化学生对基础知识的理解,进一步完善学生的知识结构,优化思维品质,提高学生分析问题,解决问题能力,提高学生的数学素养。
参考文献
高中数学函数与方程范文2
关键词: 数学思想方法 高中数学 函数章节 应用策略
在高中数学函数教学中运用数学思想方法,有助于学生构建完善的知识体系,提高学生解决问题的能力。文中根据高中数学教学例题,对高中数学函数教学过程中渗透分类讨论、化归、数形结合等思想,不断提高学生的数学思维能力,为日后学习复杂的知识奠定坚实的基础。
一、数学思想方法的涵义及其重要意义
数学思想方法是指针对某一数学问题的分析及探索过程,形成最佳的解决问题的思想,也为准确、客观分析、解决数学问题提供合理、操作性强的方法。函数是高中数学的主要内容,也是考试的重点。高中数学学习过程中遇到函数的题目,复习时必须有针对性地了解高考常见命题和要点,重点进行复习,做到心中有数。将数学思想方法当做数学基础知识也是新课标提出的,新课标规定在教学过程中,要重视渗透数学思想方法。高中数学函数教学中应用数学思想方法是推进全面素质教育的重要手段。目前,从历年高考的试题来看,高考考试的重点是查看学生对所学知识的灵活应用及准确性。数学科目考查的关键点是学生数学思想方法及解题能力。因此,高中函数教学中应用数学思想方法发挥着重要作用。
二、高中数学函数章节中应用数学思想方法的策略
(一)函数与方程思想的应用
函数与方程虽然是两个不同的概念,但它们之间却存在着密切联系,方程f(x)=0的根就是函数y=f(x)的图像与x轴的交点的横坐标。通过方程进行研究,许多有关方程的问题可以用函数的方法解决。反之,许多函数问题也可以用方程的方法解决。
解析:这是一道较典型的函数与方程例题,老师根据数学思想的要求传授学生解题方法,也可以依据这一道例题对其他相关例题的解题方法进行概括性讲授,确保学生遇到这类题目可以快速、准确地找出解题方法。
本例题构造出函数g(x),再借助函数零点的判定定理解题非常容易。这道例题展现出函数与方程的数学思想,实际解题时我们一般会构造一个比较熟悉的模式,从而将不熟悉的问题转化为所熟悉的问题进行思考、解答。另外,我们还可以利用函数的图像和性质,用二分法求方程近似解的方法,从中体会函数与方程之间的联系,对拓展学生学习的深度和广度具有重要意义。
(二)数形结合思想的应用
数形结合作为数学解题中比较常见的思想方法,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
解析:数形结合思想是数学教学的重要思想之一,主要包括“以形助数、以数辅形”这两方面的内容,求解几何问题也是研究数形结合的重要手段。同时,在求解方程解的个数及函数零点问题中也能应用。以形助数和以数辅形可以让繁杂的问题变得更直观、形象,增强数学问题的严谨性和规范性。因此,某些问题从数量关系观察无法入手解题时,如果将数量关系转变为图形,运用图形的性质规律更直观地描述数量之间的关系,从而将复杂的问题变得简单。因此,对部分抽象的函数题目,数学教师应正确引导学生运用数形结合的思想方法,使得解题思路峰回路转,变得清晰、简单。
(三)化归思想的应用
化归思想是指将抽象、复杂的数学问题转化成简单、熟知、直观的数学问题,提高解决问题的速度和准确性。函数章节中多数问题的解决都离不开化归思想的应用,其中化归思想是分析、解决问题的基本思想,从而提高学生的数学思维能力。
解析:这一例题解决过程将x0展现出化归的数学思想。化归是一种最基础、最重要的数学思想方法,高中数学老师必须熟悉化归思想,有意识地利用化归思想解决相关的数学问题,并将这种思想渗透到学生的思想意识中,有利于增强学生解决数学问题的应变能力,提高学生的数学思维能力。
(四)分类讨论思想的应用
分类讨论思想就是依据数学对象本质属性的共同点与不同点,把竖向对象划分成多个种类实施求解的一种数学思想。高中数学函数章节教学中使用分类讨论思想方法,有利于学生形成缜密、严谨的思维模式,养成良好的数学品质。解决数学函数问题时,如果无法从整体角度入手解决问题,就可以从局部层面解决多个子问题,从而有效解决整体问题。
分类讨论就是对部分数学问题,当所给出的对象不能展开统一研究时,必须依据数学对象本质属性的特点,把问题对象划分为多个类别,随之逐类展开讨论和研究,从而有效解决问题。高中数学函数教学中,经常根据函数性质、定理、公式的限制展开分类讨论,问题内的变量或包含需要讨论的参数时,必须实施分类讨论。高中数学教学中,必须循序渐进地渗透分类思想,在潜移默化的情况下提高学生数学思维能力和解决问题的能力。
解析:本例题可以借助二次函数图像解决,展现出分类讨论的思想,讨论对称轴x=a与区间[0,2]的位置关系。对复杂的问题进行分类和整合时,分类标准与增设的已知条件相等,完成有效的增设,把大问题转换成小问题,优化解题思路,降低解决问题的难度。分类讨论教学方法要求将各类情况各种结果考虑其中,依次研究各类情况下可能出现的结果。求解不等式、函数和导数是考查分类讨论思想的难点,为确保突出重点,日常教学中必须对学生渗透分类讨论思想方法。
三、结语
高中数学函数章节是整个数学教学的重要部分,对其日后学习高等函数发挥着重要作用。高中数学函数知识涵盖多种数学思想方法,数学思想方法是解决数学问题的钥匙和重要工具,因此数学老师必须对函数实施合理教学,让学生更全面地掌握数学思想方法,从而提高学生的综合思维能力。
参考文献:
高中数学函数与方程范文3
关键词:化归思想;高中数学教学;概述;重要性;应用策略
一、化归思想概述
化归思想是将一个问题由难化易,由繁化简,由复杂化简单的思想,其中“化归”不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。所谓的化归思想方法,实则就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。在数学中,化归思想一般会将复杂问题通过变换转化为简单问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题……总而言之,化归在数学解题中几乎无处不在,化归思想的基本功能是:将生疏化成熟悉,将复杂化成简单,将抽象化成直观,将含糊化成明朗。
二、化归思想在高中数学教学中的应用方法
1.数与形转化在高中数学教学中,数形结合与转化思想本身便是化归思想的一部分内容,故此在高中数学教学中引入数与形的结合便是化归思想的应用方法之一。通过数字与图形之间的结合与转化,学生能够快速通过数字与图形的数量关系来对图形的性质进行研究或利用图形与数字间的函数或方程变量关系对数字函数进行研究。总而言之,数与形的转化便是通过几何图形解决函数问题或者通过函数解决几何图形问题的方法。举例而言,求x2-23x+y2-23y+2=0的面积。通过对该方程进行整理,可得到(x-3)2+(y-3)2=4(在x≥0、y≥0的情况下),而经过原方程又可以看出x2+y2+2=23(|x|+|y|)的曲线关于坐标轴对称,由此可以画出图形如图1。最后根据图形便可以计算出该图形的面积为323π+83。这就是数形结合转化的典型案例,通过数形结合与转化这等化归思想,可以通过数字与图形的转化与结合令问题简单化2.变量与常量转化变量与常量转化的方法常常用于解答变元数学问题中,在该类问题中常常会有一个变元处于主要地位,这种处于主要地位的变元可以称为主元。受思维定式影响,在对该类变元数学问题的解答与教学中,教师可以引导学生适当对主元做出变更,如此一来解答问题的难度可能会随之骤降。举例而言,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3成立,试求该不等式中x的取值范围。这道题显然是一个不等式问题,但是通过变量向常量的转化也可以将其转变为一次函数单调性问题,其解答方式如下:设函数f(P)=(x-1)p+x2-4x+3,显然x≠1,通过原题目可以将其转化为ìíîf(0)=x2-4x+3>0,f(4)=4(x-1)+x2-4x+3>0,通过解答可以得到x∈(负无穷,-1)∪(3,正无穷)。3.一般与特殊转化在高中数学教学中,许多一般难以解答的问题可以将其进行特殊转化,即将其转变为易于解决的问题再予以解答,譬如特殊的数值或者图形等。举例而言,一个四面体的六条棱长分别为1、1、1、1、2、a,并且长度为2、a的棱互相为异面,求实数a的取值范围。在本题目中,由于棱长a并非确定值,因此如果使用寻常的几何处理方法将难以解答,故此可以采用一般向特殊转化的图形重合法,其解答过程如下所示:先行画出四面体的图形,如图2所示。画出图形后,通过图2中的(1)可以得到,AB=AC=DB=DC=1,BC=2,AD=a,当A点与D点重合之时,根据图2中的(2)可以得到a=0,而当A、B、C、D四个点共面时,可以通过图2中的(3)得到a=2,因此可以得到实数a的取值范围为(0,2)。4.方程与函数转化除了以上化归方法外,方程与函数转化亦是化归思想中的重要方法之一,函数与方程之间本身便具有十分密切的联系,具体而言,函数具有方程的所有内涵,而方程则是函数的重要组成部分,故此将方程与函数进行转化同样也是解决高中数学问题的实用方法,同样该方法也是高中数学教学过程中可以使用的最有效的化归思想方法之一。例如:已知(x-2014)3+2013(x-2014)=-2013,(y-2014)3+2013(y-2014)=2013,求实数y+x的值。在该题目中,若直接对方程组进行直观运算的话,其运算量巨大,在不能使用计算器的情况下需要耗费大量时间完成运算,而通过方程与函数转化的思想方法便可以通过函数单调性与奇偶性轻松解决问题。具体解答过程如下:令f(x)=x3+2013x2,则f(x-2014)=-2013,f(y-2014)=2013,由f(x)=x3+2013x为奇函数,且在R上单调递增,由此可以得到f(2014-x)=f(y-2014),再经过进一步推导,2014-x=x-2014,因此可以得到x的取值为2014。5.静态与动态转化教师在高中数学教学中,可以通过数学量静态关系向动态关系的转变来引导学生解决数学问题。举例而言,当学生面对指数函数、对数函数大小比较问题时,要对log123、log1215两个对数的大小进行比较,在此过程中便可以应用到静态与动态转化的化归思想,可以构造另一个以1/2为底x的对数的函数,将以1/2为底3的对数和以1/2为底1/5的对数看做同一自变量的不同取值,利用函数的单调性可以很容易得到这个构造出的函数在(0,+∞)的区间上为减函数,因此可以很容易就得出答案,这便是静态与动态转化思想的典型案例之一。
三、结语
综上所述,化归思想是一种重要的数学思想,在高中数学教学中具有切实而深远的积极意义,其应用不仅能够锻炼学生数学思维,更能够为后续数学学习奠定基础。在目前的高中数学教学中,比较常见的化归思想方法主要有数形转化、陌生与熟悉转化、变量与常量转化、一般与特殊转化、方程与函数转化、静态与动态转化等,将这些方法运用到高中数学教学中能够有效提高高中数学教学质量,值得我们在教育领域内进行广泛推广与使用。
参考文献
[1]卢春华.“化”解题思路“归”答题策略——谈在高年级数学计算教学中渗透化归思想方法的有效策略[J].小学教学参考,2020(8):27-28.
[2]田永胜,黎安.文化自信视域中的大学生儒家思想认同研究——基于广东省10所高校大学生的多元Logistic回归分析[J].安徽广播电视大学学报,2021(2):37-44.
高中数学函数与方程范文4
关键词:向量;高中数学;解题应用
向量在数学中的定义是具有大小和方向的量,存在可移动性。作为高中数学中重要的知识点,不仅可以给学生带来新的认识,还可以为学生提供新的解题方法,更可以加强教师的课堂教学效果。因此,在实际数学问题中,加强对向量的应用研究尤为重要。
一、向量的内涵
向量进入数学领域是在二十世纪,但其在十九世纪就已经被物理学家和数学家进行了研究应用。我国在二十世纪九十年代将向量的相关知识纳入了高中数学,成为了高中数学的重点。向量中集合以V表示,V构成了向量的加法换算群。在V中,运算出向量的数量积就可以表达向量的长度,在向量长度具有实际意义之后,(V,R)对向量相关的运算构成了线性范围。其是数学建模的基础,也是其别类别代数的主要研究对象。因此,向量可以解决多方面的数学难题。向量具备了形和数的特点,将数和形联系成一体。其可以表示物体的位置,也可以反映物体的面积长度等基本性质。对于一些抽象性的问题,向量更可以将其具象化,形成直观的模型,便于问题解决。
二、向量在高中数学问题中的应用分析
(一)向量在平面几何中的应用
向量的大小和方向可以反映相关线段或点之间的长度关系以及位置关系。向量根据不同的性质还可以分为平行向量、共线向量和零向量等。在平面几何中,利用向量知识来解决相关问题,比运用几何知识解决问题要更加方便。
举例来说,已知三角形MOA的三个顶点坐标分别为M(-3,1),O(2,0),A(0,-2),线段AO、AM、OM的中点分别为B、C、D,求解相关直线BC、CD、BD的方程。对于这个问题,运用向量知识可以轻松解决。首先可以得出点B坐标为(1,-1),点C坐标为(-1.5,-0.5),点D坐标为(-0.5,0.5)。再求解BC直线方程,设点H(x,y)为BC上一点,则向量BH和BC平行且共线,通过平行关系即可求解出BC的直线方程。同理可解得直线CD、BD的方程。通过将线段转化为向量,再利用向量的相关知识,就轻松解决了问题。在平面几何问题中运用向量时,一定要将点和线之间的关系对应清楚,否则会导致结果错误。
(二)向量在不等式证明中的应用
证明条件不等式或者不等式,经常需要通过一些技巧对不等式进行变形处理,否则会很难证明。此时运用向量知识来进行相关变形处理,则会令问题简化,容易证明结果。
举例来说,有等式(a2+b2)(m2+n2)=(am+bn)2,其中mn不等于0,求证a/m=b/n。对于这个问题,只要细心观察等式就能发现括号中的部分与向量的模以及数量积是一样的。因此可以设向量P=(a,b),向量Q=(m,n),通过式子可以看出P和Q之间是平行关系。所以,通过平行向量的特点可以得出an-bm=0,再进行变换就可得a/m=b/n的结果。所以,在不等式证明中将相关数字转化为向量,可以将抽象的关系转化为具象的向量的关系,从而轻松得出结果。在不等式证明中应用向量时,一定要仔细观察不等式的基本特点,找出向量的切入点,再加以运用。
(三)向量在解方程中的应用
方程解析在高中数学中也是很常见的问题,对于某些方程而言,直接通过技巧变形很难解出方程,这时就可以考虑使用向量法来解决问题。
举例来说,已知x,y,z可以同时使方程2x+3y+z=13和4x2+9y2+z2-2x+15y+3z=82成立,求实数x,y,z的值。对于这个问题,若直接用方程解析的方法很难解出答案,这时就可以运用向量法来简化问题。首先将两个方程相加,再对方程两端进行配方可以得到(2x)2+(3y+3)2+(z+2)2=108;仔细观察式子就可以发现该式与向量模一致,则可以设向量P=(2x,3y+3,z+2;,向量Q=(1,1,1),经过计算可得P的模值为6[3],Q的模值为[3],向量PQ=18;又因为PQ≤|P||Q|=18,并且只有当2x=3y+3=z+2>0时,该不等式才成立。根据这些条件就可以得出方程的解。
(四)向量在三角函数中的应用
三角函数是高中数学的重难点内容,也是高考的必考内容。通过向量数量积,可以将向量与三角函数有机结合起来,为三角函数相关问题提供便利的解决方式。
举例来说,已知cosa+cosb-cos(a+b)=3/2,求解a,b的值。根据相关三角函数公式,可以对原式进行变形,可以得到(1-cosb)cosa+sinasinb=3/2-cosb。仔细观察该式就可以发现其与向量数量积一致,则可以设向量P=(1-cosb,sinb;,向量Q=(cosa,sina),将两向量相乘可得PQ=3/2-cosb,|P||Q|=[2-2cosb];再根据相应关系可得|3/2-cosb|≤[2-2cosb],相应可以得出cosb=1/2,即角b=600,再将其带入原式,可以得到角a的值。在三角函数的问题中应用向量法,可以简化三角函数的变形步骤,具象三角函数之间的关系,将复杂的问题化为简单的向量,大大提高了解题的效率。
结束语:
向量在高中数学中来说,具有极大的实用性,从平面几何到空间几何,从三角函数到方程不等式,都可以应用向量的相关知识来简化问题。教师在实际教学中应当以向量的实际应用方法展开相关教学,不断提升教学效率和质量。
参考文献:
[1]朱音.例谈向量方法在高中数学解题中的应用[J].长三角:教育,2012(07)
高中数学函数与方程范文5
【关键词】高中数学 解题策略 解题能力
在进行高中数学的教学过程中,解题教学为其核心的组成部分。所以在进行教学时就要求教师应该对每部分教学内容所涉及到的相关知识点进行分析,并将其涵盖的数学思想以及解题方法进行抽象的概括总结,然后将这种积极的思想贯彻给学生们,使其在进行学习时能够找到思想的精髓,并将这种抽象的事物进行形象化,将涉及到的知识合理应用在具体的习题解答的过程中,最终有效培养学生掌握高中数学解题策略,提高其思维能力与数学习题解答的能力。
一、重视审题训练
想要有效提高解题的效率并保证解题的正确性,最为关键的就是审题。要求学生应该在准备解题之前,首先对题型进行认真分析,能够找到问题的关键点与重要的条件,并且找到与问题有关的信息,将其进行收集,之后进行正确地分析研究,最终找到问题的突破口。
例如我们在学习函数基偶性的判断之后,对有关题目进行解析时,如函数y=x3,x∈[-1,3],判断此函数的奇偶性。往往许多的同学在面对这类问题时,都没有进行仔细地审题,因此就注意不到x的取值范围,只机械套用函数的奇偶性,最终将公式进行化简后得到y=x3,最后直接定义此函数为奇函数;但是如果学生在解题前能够仔细解题,最后在判断函数的奇偶性时就会参考x的取值范围来进行解题,首先要判断此函数的图像是否关于坐标原点中心对称,如果不对称则说明此类函数不具有奇偶性,所以正确的解题过程应该为:因为2满足定义域,但是-2不在定义域的范围内,所以可以判断此函数图像关于坐标原点不对称,最后判断此函数为非奇非偶函数。
在针对这种类型题的解题时,一定要注意首先要仔细进行审题,在进行审题的过程中不仅能给解题带来一定的思路,更能挖掘出问题的关键与隐含的重要条件。所以对学生进行审题训练显得至关重要,只有这样才能够有效提高学生的解题能力。
二、数形结合思想
在高中数学众多的解题思想当中,数形结合为其最基本的思想,并且也为数学的核心思想。将形象直观的图形与比较抽象的语言进行有效结合,最后就可以将抽象的概念进行形象化,数形二者之间进行了有效结合,这就会对学生在解题的过程中给予一定的启发,能够将复杂难懂的习题进行有效简化。在高中数学的教学过程中,数形结合通常体现在以下几种形式:方程和曲线二者的对应关系;实数与数轴上点的对应关系;函数与图像二者的对应关系等。
(一) 用图像解决问题
当学生在解题的过程中遇到困难时,应该教会学生能够合理利用图形来进行解题。此外,当遇到了更为复杂的运算时,也可以利用图形来将问题简化,最终能够有效解决,最后在检验结果时,同样可以通过图形来进行检验。
例如:求函数最大值与最小值。
在解答此题时,就可以画出函数图形对其进行有效解决。经过一系列的分析,其函数图像可以表示如下:
其中Q代表的是(cosx,sinx),P为(-2,0),Q所形成的轨迹为一个单位圆,可以在图形上看出,最后可以判断出,。这样就可以得出用图像有效将三角函数的最值问题进行解决,通常采用的方式就是用两点求斜率的形式。
(二) 正确分析利用数量运算
对题目中的一些数量进行正确的运算,之后对其进行有效利用。以这种方式来进行解题也非常有效。在解决高中数学题的过程中,学生通常都会采用用图像来解决问题的方法,所以就忽视了通过数量运算来解决问题的方法。要求教师在进行教学的过程之中,对这种方法也要认真讲解,并且对学生们加强训练,最终使学生掌握更多的解题策略,提高解决问题的能力。
三、方程思想与对称思想
在教师渗透解题思想的过程当中,也需要要求同学们利用方程思想与对称思想来进行数学的解题。对于数学的方程思想而言,它主要就是要求学生应该在方程的角度上进行充分思考,最终可以正确的将数学的问题转化为方程的问题来进行有效解决。目前来看,方程在高中数学中占有着不可替代的位置,可是仍然有多数的同学不能合理的利用方程思想来解决数学问题。
例如:对于椭圆,设F1、F2分别为其左右两个焦点,此时在椭圆上部存在一个动点P,(一)问的最大值与最小值是多少。(二)如果经过点M(0,2)存在着一条直线L,与椭圆相交,交点分别为A、B,∠AOB为锐角,设O是函数的坐标原点,这样在直线上斜率k的取值范围为多少。当遇到这种问题时,利用方程来解题就会将其简单化,最终能够正确解决。
此外,对称的思想也同样重要,利用这种思想来进行解题也非常有效,也是应用比较普遍的一种方法。对高中的诸多数学习题进行分析后发现,也同样存在着一些形式非常优美并且结构比较均匀的问题。
例如:将甲乙丙丁戊排成一排,乙一定要在甲的右边,但是不可相邻,这样有多少种排列方式。利用对称思想就可以将其进行有效解决,最后得出,所以一共有60种排列方式。
四、总结
对于高中数学的解题策略而言,其方式多种多样,所以就要求教师在进行具体教学的过程中,应该依据所进行教学的内容及其特点来进行设计与规划,找到具体的教学方法来有效引导学生进行解题,并且培养学生能够在分析习题时具有举一反三的能力,最终形成自己的解题策略体系,这样当在解答习题遇到类型题时,就可以运用自己的解题策略对其进行快速准确地解决,不仅拓展了学生的解题思维,也提高了学生的解题能力,最终有效提高了教师的教学质量。
参考文献
[1]马进.浅析高中数学解题的思维策略[J].数学教学通讯
高中数学函数与方程范文6
【关键词】高中数学 学困生 成因 转化策略
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2017.08.188
数学是一门基础性的学科,对于学生学习其他学科的学习质量会产生重要的影响,如果学生的数学成绩不好,那么会直接影响到其物理、化学的成绩,更有甚者会影响到学生的学习积极性,并影响学生的升学。但除此之外,对于高中生而言,往往会觉得数学比较难学,教师在高中数学教学过程中如果不能良好的面对这一问题,就会影响到学生的发展,甚至对社会的建设产生影响。因此,应对高中数学学困生的成因进行分析,并提出解决这一情况的对策,从根本上解决这一问题。
一、高中数学学困生的主要成因分析
(一)数学语言在抽象程度上突变
高中数学是初中数学的提高和深化。初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维;而高中数学语言表达抽象,不少刚上高一的学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达;而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及函数语言、空间立体几何等。
(二)知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
(三)思维方法向理性层次跃迁
高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解方程分几步,因式分解先看什么、再看什么,即使是思维非常灵活的平面几何问题,也对线段相等、角相等分别确定了各自的思维套路,因此,初中生中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,知识连贯性和系统性强,数学语言的抽象化对思维能力提出了更高的要求,这种能力要求的突变使很多高一新生感到不适应。
二、高中数学学困生的有效转化策略
(一)树立学生学习的信心,克服偏见
要使学困生转化,首先,教师的观念也要转变,偏见也要改变。长期以来有相当一部分教师形成了“只要成绩差就是差生”的思维模式.错误地认为学困生是不可调教的“朽木”,把学困生打入“另册”。有的长期歧视、冷落,上课从来不提问,表扬从来没有份;有的隔离、孤立他们,把座位调到教室的最后排;有的进行惩罚(罚作业、罚打扫卫生)、体罚,等等;使他们对学习失去信心和希望,造成自卑、自暴、自弃,甚至放弃学习而踏入社会。对于这些学困生,我们要引起注意,随时关心他们,爱护他们。
在课堂提问中,教师要针对不同层次的学生设计不同程度的问题.不要让问题成为优生的专利,人为导致课堂上学生与学生之间的不平等,应使不同层次的学生都有机会回答问题,以便及时了解各层次学生的学习状况,及时调整教学。课堂上教师应鼓励学困生回答问题,为避免学生回答不出而感到尴尬,可把问题拆成若干小问题,多设几个台阶,深入浅出,使他们经过思考后能回答正确,从而让学困生尝到“我能行”的成功体验,逐步树立信心。
(二)根据具体情况实施因材施教
由于学生学习和接受知识的能力存在着一定的差异性,在高中数学课程教学中教师为转化学困生,需根据教学对象的具体情况实施因材施教.对于高中数学学困生,教师可采用降低学习起点的方法帮助他们逐步适应,设计一些基础性问题使其树立自信。例如,在讲授“指数函数”时,教师可采用创设情境提出问题的教学形式,将一页白纸连续对折,要求学生写出对折后的页(层)数y与对折次数x的关系式;设这页纸的面积单位为1,则对折后每页纸的面积s与对折次数x的关系又是怎样的?引导他们根据事实建立学习经验,知道指数函数的概念是y=ax(a>0且a≠1),其中x是自变量,函数的定义域为R.然后,教师可列举一些简单的关系式,让学生辨别是否为指数函数,像y=(-3)x,y=4x2,y=xx等,幕础知识着手帮助学生建立信心。
(三)创设一个良好的课堂学习氛围
学习环境能够影响到学生的学习效率,只有处于一个和谐互助、轻松愉悦的课堂氛围中,才能够有效激发学困生的学习欲望和动机。所以,高中数学教师可将班内学生分为多个小组,组内各个层次的学生,采用任务分配的方式鼓励各个成员之间相互讨论和交流,共同完成学习任务,推动学困生的转化。比如,在“空间几何体”教学过程中,教师可设计问题:同学们,在我们的生活中有不少有特色的建筑物,你能举一些例子吗?这些建筑的几何结构特征如何?带动学困生的学习热情,让他们也参与到对生活实例的搜集中。在学生讨论时,教师可借助多媒体动态演示不同的建筑,诸如鸟巢、水立方、悉尼歌剧院、埃菲尔铁塔等,引导学生观察这些建筑物的几何特征,让他们在小组内积极交流、主动思考并回答问题,营造良好课堂氛围,实现由优等生带动学困生的目的。
(四)教师积极改进数学教学方法