人工智能数字化技术范例6篇

前言:中文期刊网精心挑选了人工智能数字化技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

人工智能数字化技术

人工智能数字化技术范文1

[关键词]人工智能;电气自动化控制;应用要点

中图分类号:U526 文献标识码:A 文章编号:1009-914X(2017)14-0066-01

引言

际中自动化技术具有很强的操作性,工作人员利用计算机控制机器完成作业。电气工程自动化中主要研究信息采集与处理,确保技术的实用效果,因此电气自动化系统在各行业都有着广泛应用,而电气工程自动化必定依赖计算机,研究电气自动化控制中人工智能技术具有现实意义。

1、人工智能概述

人工智能本质上是计算机科学的重要独立分支,其依托于计算机技术发展而来,目前来说人工智能在全球都属于尖端技术。人工智能实际就是让机器像人一样快速识别相应事物,借助计算机快速处理速度,保证结果的真实有效。人工智能作为先进技术,包含众多内容,比如分析与识别模拟景物、理解并生成自然语言等,这些都属于人工智能的研究范围。人工智能通过人工方式打造出可以和人类一样思维并采取相似反应的机器。但人工智能并不能取代人类,仅是人工智能处理方式的达成与人类一样的处理效果。

2、人工智能优点

2.1 大幅度提高工作效率

在电气化设备中加入人工智是一项最英明的决策,它能够有效减少各行业工作时间,提高工作效率。还能够及时、有效的处理好电脑输入设备输送来的数据,并对数据进行整理、分析和记录,合成新的有用的信息供大家参考和使用。由此可以看出,人工智能的广泛应用能够加快信息处理的速度,能够高效、准确的对信息进行优化和转换,将复杂信息简单化,帮助更多有需要的人和行业使用。

2.2 发挥电气自动化作用

在电气工程自动化发展历程中人工智能起着科学的导向作用。他充分发挥着系统的管理作用,促进企业转型,为企业节能减排做出巨大贡献,对于预算过程中产生的误差能进行有效排查和纠错,帮助企业避免很多因预算不周而产生的损失。同时,人工智能还能帮助企业及时发现和处理突发问题。作为一个帮助企业运转正常化的重要辅助工具,电气工程自动化在企业运转中,具有十分重要的意义和作用。比如,人工智能在制定企业生产计划、检测市场现状和营销状况过程中作用显著。因此,要有效提高企业管理水平,就需要将人工智能与企业发展紧密联系在一起。

2.3 较高性价比与操作性

电气自动化中人工智能技术广泛应用,实现电气自动化科学管理,实现长远发展。人工智能技术运行时具有通信与信息收集能力,优化电气系统运行,有效控制成本,因此性价比较高。此外人工智能技术具有自动逻辑Fenix功能,可以提高技术运行效率与准确度,节省成本开支。此外,数字化平台开放性带来操作代码程序,提高设置使用效率。

3、电气自动化控制中人工智能技术的应用

3.1 电气设备设计

电气设备设计应用很多学科知识,比如电机、电路等内容。现阶段随着相关行业发展壮大,人们对电气设备设计提出更高要求与标准,设计过程中必须依据人们实际生活改善与提升电气设备设计水平。传统电气设备设计工作中主要凭借设计师自身经验,很多时候没有考虑市场需求,出现严重资源浪费。而人工智能技术可以有效改善这点问题,设计师设计师需要计算很多复杂公式,极易出现错误,而人工智能技术可以有效解决此问题,通过自主演练确保结果的真实有效,降低设计人员工作强度。

3.2 电气控制质量

电气自动化控制作为主要环节,提升此环节效率,有助于提升电气运行系统的自动化水平,同时还能有效降低各项资源消耗度,大幅度提高人工系统运行的顺畅性。一般情况下,电气自动化设备中人工智能技术主要应用在专家系统、模糊控制及神经网络控制等内容。其中模糊控制有着最广泛的应用,主要原因在于其与实际生产工序有着紧密联系。电力系统直接影响系统自动化水平,也在实际管理工作中有着应用,影响日常操作。人工智能可以实时操作电脑程序,结合实际自动生成报表、日志及自动存储等功能。在企业中建立电气自动化人工智能化系统,主要就是将企业各方面的管理系统与信息自动化技术有机结合在一起,确保企业内部各级部门日常工作的信息,都能及时收集、汇报到上级管理部门处,以便管理人员能够在自动化电气管理系统的辅助之下,对各项工作的开展情况进行分析与管理,从而有效提升企业整体的管理水平以及工作执行能力水平。

3.3 故障诊断应用

电气故障诊断本质就是依据电气设备信息确定技术状态是否正常,同时明确故障性质与部位,查找故障发生原因,并给出具体解决措施。电气领域中,受到各种不确定因素影响造成频繁发生各种故障与事故,如果不能及时处理与解决这些故障或意外,既有可能带来严重的经济损失。传统电气控制过程中,也可以充分利用一些诊断方法,但实际中发现这些方法都无法准确确定结果的精准度,诊断过程与方法相对复杂。比如传统诊断变压器故障方法是,需要首先收集产生的气体,诊断气体判断其是否存在故障。诊断过程中需要耗费大量人力与物理,如果诊断结果不正确,直接造成大量人力与精力浪费。引入人工智能技术后,可以提高诊断结果的准确性与便捷性。除过变压器故障诊断外,还可以诊断发动机、发电机等电气设备进行故障诊断,大幅度提高工作效率,减低企业诊断成本,提高效益。

3.4 电气控制应用

人工智能技术在电气自动化控制中发挥着重要作用,已成为电气领域的主要构成部分。电气自动化与智能化可以有效降低工作成本,大幅度提高工作效率,比如人工智能抄表系统(图1)。

传统电气自动化控制过程中,实际操作中受到各类因素影响总会出现一些错误,加上部分操作过程相对繁琐,造成错误率大幅度提升。电气自动化控制领域中人工智能技术主要表现为有效控制神经系统、模糊控制与专家系统。利用模糊控制可以通过直流与交流实现自动化传动控制。通常来说,可以将模糊控制分成两种:Surgeno和Mamdam,后者可以直接通过调速控制,前者则是后者的主要构成。自从模糊神经元控制器应用于高性能传动产品中,人工智能技术在电气领域日益占据更重要的作用。

4、结语

人工智能技术在电气自动化控制中应用,不但可以实现智能化控制电气设备,还可以节省人工、通过计算机进行远程监控,提高企业生产效率,降低生产成本。生产工作中应用智能生产模式可以大大降低成本,企业通过此项技术可以提高自身竞争力,走在行业前列。希望通过本文论述,为融合电气自动化控制与人工智能技术提供借鉴。

参考文献

[1] 王佳.人工智能及其在SEO技术中的应用[J].电脑知识与技术.2016(30):11.

[2] 黄西平.电气自动化控制中的人工智能技术[J].山东工业技术.2016(21):78.

人工智能数字化技术范文2

[关键词]电气自动化控制;计算机技术;人工智能技术

[中图分类号]TM76;TP18[文献标识码]A[文章编号]1673-0194(2016)04-0082-01doi:10.3969/j.issn.1673-0194.2016.04.057

电气自动化控制主要研究电气工程学,保证电气工程系统正常运行,能对收集到的信息进行及时地处理分析。计算机技术的应用能更快地对试验结果进行总结,实现机械自动化。这种人工智能技术将会使人工操作与控制发生脱离,实现人工智能与电气自动化的结合。电气自动化控制是对人工智能技术应用最为直接的结果,同时也是电气自动化发展的必然趋势。电气自动化控制过程中应用人工智能技术将会不断提升生产效率。

1人工智能技术含义

通过应用计算机技术实现对人类活动的模拟,并且能对相似人类活动发出指令,还能解决传统科学中复杂的问题,这是人工智能技术最为突出的特点。人工智能技术融合了数学、哲学、工程学等学科,在计算机技术引导下综合运用了现代科技。在一定程度上可以表现为人工智能技术是对人类大脑的一种全新的模拟,在大脑的控制下由机械完成一系列的复杂反应。这样能提升工作效率,保证人类在工作过程中的安全性。人工智能技术将会对信息进行采集,在问题的处理上比人类大脑具有更加明显的优势。复杂性脑力活动在人工智能技术的影响下,将会降低人工成本,推动生产力的发展。

2电气自动化控制中人工智能技术的应用

随着人工智能技术的设计思路不断地扩展,人工智能产品丰富起来。人工智能技术的应用使人们能更好地解决人类不能直接面对的问题。电气自动化控制过程中会受到多种因素的影响,人工智能技术的应用能对因素进行合理化推断,并且提升对产品的保护,能更加全面地规划电气自动化控制效果,使生产效率不断的得到提升。

2.1优化产品设计

传统电气产品在设计时主要依靠设计经验与试验手段,设计出的产品在一定程度上技术含量较低,并且工作较为繁琐,不能够保证大规模的生产活动的开展,设计需要较高的时间,影响工作效率地提升。新时期我国经济快速发展,对科技生产建设不断投入,人工智能技术得到全面提升,在电气产品设计的过程中应用人工智能技术实现了智能化生产。人工智能技术的应用将会提升人工生产效率,并且在制作上更加精良,实现了企业生产经营效率水平的提升,保证了产品的质量,还能为企业生产活动的进一步开展提供充足的发展动力。

2.2及时发现问题进行预防处理

电气自动化控制过程中会出现运行设备故障等问题,这种情况在电气自动化控制过程中较为常见。因此,完善人工智能化将会有助于电气自动化控制的顺利进行,并且会根据设备运行故障制定相应的预防措施,这在电气自动化控制过程中能发挥较大的功能优势。变压器在运行的过程中发生故障,可以采用传统的分离方式对气体进行分析,并且根据分析的结果判断变压器发生故障的原因。但是采用传统的分析方式会在检修的过程中造成严重的浪费,人力资源没有得到合理的应用,并且在检修上花费更多的时间,同时还不能保证检修的正确率。这样很容易出现误诊情况,将会进一步影响到电气自动化控制效果。人工智能技术与传统方法相比优势体现在维修预防等方面,并且人工智能技术将会自动匹配专家技术进行指导,将类似的故障进行对比,并且根据产生的问题进行分析指导,找到其他的解决方式。采用人工智能技术对故障问题进行分析,能提升工作效率、降低维修时间、节约大量的资源。

2.3简化控制流程,提升运行效率

电气产品在生产操作过程中相比较其他产品过程较为复杂,并且生产环节都需要进行严格地控制,对于操作水平要求较高。电气产品内部结构较为繁琐,细部特征较为明显,不容易进行整体性把握,对于工作人员的经验要求较高。因此,在生产过程中出现一点小小的错误都会直接造成巨大的经济损失,严重时将会直接导致生产停工。为了能保证电气自动化控制的有效运行,工作人员在面对问题时需要利用人工智能化技术对电气自动化控制过程进行简化处理,保证操作的有效性。人工智能化相比较传统方式能快速地收集资料并进行必要地分析整理,在第一时间发现控制过程中存在的问题找出解决方案。在整个控制过程中会降低检修时间、保证成本的有效运用,能够更好地控制电气自动化的运行。

3结语

计算机技术使人工智能技术得到了完善,同时电气自动化控制在人工智能技术的影响下实现了更新进步。目前,人工智能技术在各个领域都得到了应用,并且受到各行业的认可。电气自动化控制应用人工智能技术将会提升工作效率、保证产品质量。笔者通过对电气自动化控制中人工智能技术的应用进行分析,认为在计算机技术发展的前提下,人工智能技术与电气自动化控制相互促进完美结合。

参考文献

[1]马仲雄.浅谈电气自动化控制中的人工智能技术[J].电子技术与软件工程,2014(11).

[2]贾刚,张萌.浅谈电气自动化控制中的人工智能技术[J].中小企业管理与科技,2011(27).

[3]丁望松.浅谈电气自动化控制中的人工智能技术[J].电子制作,2015(11).

人工智能数字化技术范文3

关键词:人工智能 电气 自动化

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法 技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支 它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器.该领域的研究包括机器人.语言识别、图像识别 自然语言处理和专家系统等。电气自动化是研究与电气工程有关的系统运行、自动控制,电力电子技术、信息处理、试验分析 研制开发以及电子与计算机应用等领域的一门学科。实现机械的自动化,让机械部份脱离人类的直接控制和操作自动实现某些过程是电气自动化和人工智能研究的交汇点。积极运用人工智能的新成果无疑有利于电气自动化学科特别是自动控制领域的发展.也有利于提高电气设各运行的智能化水平.对改造电气设备系统,增强控制系统稳定性.加快生产效率都有重大意义。

1、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。

当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2、人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。

(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时.通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。

总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。

3、人工智能的应用现状

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。

3.1 优化设计

电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

3.2 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.从而判断变压器的故障程度。人工智能故障诊断技术在发电机及电动机方面的研究工作也较为活跃。

3.3智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开.但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法.因而它的应用实例最多。

4、结语

人类智能主要包括三个方面.即感知能力.思维能力 行为能力。而人工智能是指由人类制造出来的 机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。人工智能的应用体现在问题求解.逻辑推理与定理证明,自然语言理解 自动程序设计.专家系统,机器人学等方面,而这诸多方面都体现了一个自动化的特征.表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化.因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

参考文献:

人工智能数字化技术范文4

关键词:智能技术;自动化;实际应用

1 人工智能技术应用在电气自动化控制中的优势

1.1 使操作方法更加简便

将人工智能技术应用到电气自动控制中,主要是在3个方面的应用,分别为模糊控制、运作效率和专家系统。专家系统也是一个很好的应用方面,通过专家系统,只要输入处理指令就可以快速的得出正确的结论数据。模糊控制是在电气自动化控制中应用最常见的一个方面,因为模糊控制的操作比较简单,将模糊控制系统融入设备中,就可以实现自动控制系统的智能化控制。将人工智能技术应用到电气自动控制系统中,可以使整个控制过程更加优化,实现了生产控制的自动化,使电气自动化操作的方法更加简便。

1.2 使控制性能得到提升

在人工智能技术的应用中,可以采用多种控制方法,人工智能技术是在计算机技术上发展起来的一门学科和技术,是在计算机平台上模拟人的大脑进行图像和数据的智能分析和处理,使用计算机来代替人类的工作,从而有效地减少人力资源的投入,将控制成本控制在最低。人类的大脑本身就是最精密和复杂的系统,人工智能技术是对人类大脑思考的过程进行模拟和模仿,从而实现人工控制的智能化。通过细微的调整就可以实现对相关数据的调节,从而使设备的性能加强。因此,将人工智能技术应用到电气自动化控制中,可以大大提升控制性能。

1.3 保持高度的一致

与传统的控制方法相比,人工智能技术的应用可以实现多个系统进行同时控制,并且不同方面的控制可以保持较高的一致性。在传统的控制方法中,控制的对象非常单一,很统一对某一样东西进行控制,控制过程具有单一性,对其他的一些对象的控制效果不明显。而人工智能技术的应用,其控制算法是对单一控制的缺点上进行改进的,无论是对未知的数据还是特点的数据,对所有的控制都能够保持一致的效果。

2 人工智能技术在电气自动化控制中的实际运用

2.1 人工智能技术对故障和事故的预防处理

在现阶段,虽然在对电气自动化控制的过程中出现设备故障和人工事故的概率在不断减少,但也是一种不可避免的现象。将智能化技术应用到遗传算法中,在电气工程的故障诊断中具有非常广泛的应用。遗传算法本身和电气工程的故障诊断的关系比较复杂,非线性关系,具有不确定性。而将人工智能技术应用到遗传算法中,可以提高遗传算法的精确度,从而实现电气工程的智能化诊断。将人工智能技术运用到电气自动化控制中,无论是在变压器的故障处理上还是发动机的故障处理上都表现出很大的优势。例如,在变压器的运行过程中,如果出现了故障,采用传统的故障分析,需要先收集变压器的气体,然后对气体进行分析,根据分析的结果来对变压器的故障进行分析,并且在检修的过程中需要消耗大量的人力和时间。而采用人工智能技术进行故障分析,计算机会自动依据很多知名专家的技术作为指导对问题进行分析,然后找到解决故障的方法,整个过程非常快速,工作的效率非常高。

2.2 对产品的优化设计

在人工设计中,或者由于设计者掌握的知识不全面,或者由于经验性不足,设计出来的效果往往不如人意。在传统的系统中,往往是采用经验和实验结合的方式来进行设计。电气设备的设计是一项非常复杂和系统的工作,在设计过程中,需要同时考虑到电磁场、电路以及设计的经验性知识。电气自动化设备的运行同样也是一个比较复杂的过程,电气设备的运行涉及很多领域和学科,因此对电气设备的控制也应该具备更高的知识储备和素质。将人工智能技术运用到电气自动设备中,代替人的大脑进行工作,通过程序编写就可以对计算机进行操作了,从而实现了电气设备的自动化运行,提高了设备的运行速率和精度。而将人工智能技术运用到设计过程中,电气设备和工程的设计已经从传统的手工设计向人工智能设计转变,CAD的设计应用非常广泛。通过CAD设计,可以在较短的时间内设计出更好的产品。在CAD设计中,还可以模拟产品的设计效果,从而对设计不完善的地方不断进行改善,提高设计效果和设计质量。对电子产品进行设计时,充分利用人工智能技术,无论是在制作的进度上还是精度上都得到了大大的提升。

2.3 简化了自动控制的流程

电气自动化的操作具有一定的复杂性,在传统的电气自动化控制中,操作过程具有一定的复杂性,电气工程的自控流程比较复杂,对每一个细节的操作都提出了较高的要求,在一个细节中发生了一个细小的操作失误,都会对整个系统造成事故,为企业带来巨大的损失。而利用人工智能技术,就可以简化电气自动化控制的过程,降低操作难度,工作人员只需要在办公室操作电脑就可以实现电气自动化的控制。引入人工智能技术之后,还可以实现对电气自动化操作的远程控制,并且使整个操作过程更加简化。另外,在设备的运行过程中,如果科研人员遇到了难题,通过人工智能技术的使用,可以借助计算机设备对各项问题进行分析,并及时解决,简化了工作流程,保证电气自控的工作质量。人工智能技术可以更好地对资料进行收集、整理和分析,出现故障的时候也能够自动寻找解决方法。

3 结语

在我国科学技术不断发展的过程中,我国电气自动化技术也在不断发展,将人工智能技术运用到电气自动化控制中,是将电气自动化控收集整理制技术和人工智能技术的有效融合,不仅可以对生产过程中的故障和人工事故进行有效的处理,同时还能够优化对产品的设计,使整个自动控制的流程更加简单,从而大大提高电气自动化控制的水平和质量,有效控制成本,从而促进电气行业的高速持续发展。

参考文献:

[1] 吕博.人工智能技术在电气自动化控制中的应用思考[J].科技传播,2016(13):158-159.

[2] 王万年.人工智能技术在电气自动化控制中的应用[J].通讯世界,2016(12):135-136.

[3] 华文珠.人工智能技术在电气自动化控制中的应用思路分析[J].现代职业教育,2016(11):166-167.

作者简介:陈坤(1995―),男,辽宁庄河人,沈阳理工大学。

人工智能数字化技术范文5

关键词:智能技术;电气自动化;应用

中图分类号:TM76;TP18 文献标识码:A 文章编号:1674-7712 (2014) 12-0000-01

人工智能技术是一种融合了多种学科的先进技术,在人工智能技术进入工业生产的很长时间内,使得我国的工业生产自动化水平得到了跨越式的提高。通过将人工智能技术应用于电气自动化控制的各个方面,最终实现了电气设备的“智能”操作,通过为电气设备赋予了如同大脑一般的逻辑思维,提高了电气控制的精确性和可靠性。因此,人工智能的出现,不仅可以帮助企业提高生产效率,更重要的是可以为未来电气自动化、智能化的发展趋势提供了新的思路。

一、人工智能技术的发展与特点

(一)人工智能技术的发展

人工智能技术是伴随着计算机技术发展而兴起来的一门综合性科学。“人工智能”的概念最早起源于1956年Dartmouth学会上,一批具有超前眼光的科学家,对于如何利用机器来模拟智能进行了广泛的讨论,使得“人工智能”作为一门新兴学科进入了人们的视野。随着时代的发展,人工智能技术越来越成熟和完善,在国内外众多科技企业和高校联合研究的努力之下,已经出现了智能语音、智能图像、语义理解等先进的人工智能技术,它不仅可以改变了人们的生产生活方式,更重要的是为人工智能技术的不断地创新和融合发展,逐渐形成一体化的人工智能技术链奠定基础。

(二)人工智能技术的特点

人工智能技术作为当前世界三大主流技术之一,不仅在应用范围上占据优势,还以其自身丰富的研究领域、跨学科的研究方法等特点,成为最具有挑战性的前沿科学,整体来说,智能技术在自动化控制方面的特点具体表现为:一是随着人工智能技术的完善,将工业生产的控制精度、效率都提高了一个新的层次,实现了工业生产控制的各种信息得到及时处理和调整,使得自动化生产流程变的更加柔性化;二是伴随着工业自动化生产的同步性和综合性趋势越来越显著,人工智能技术与自动化生产集成技术相互融合,以各种可操作、可编程的智能控制器,最终实现了电气自动化生产的多功能和稳定生产目的。

二、电气自动化中的人工智能技术探悉

工业自动化生产的顺利进行,要从自动化生产的目标入手,通过一定的控制程序完成每个生产流程的任务,因此,将人工智能技术运用到电气自动化生产时,能够自动、高速的处理来自于生产过程中的各类数据,从输入设备到存储运算器,再至智能控制器,人工职能技术的每个环节,都可以对工业自动化生产“了如指掌”,保证了生产的完整性,又提高了产品的质量,为电气自动化生产带来丰厚的收益,其具体应用可以从以下几个方面进行分析:

(一)保证了电气自动化设计的先进性

对于自动化控制来说,一套成熟的电气自动化控制从设计到正式投入使用的周期较长,而且在这个复杂而漫长的过程中,其设计电路的繁琐性、细致性都是令人难以想象的。由于在传统设计过程中,大部分设计工作都是依靠设计师的经验,以人工绘图布线的方式完成,这就拉长了自动控制的设计周期的同时,也使得电气设计不一定是最好的方案,由此可见,传统方式下的电气自动化控制的设计难度主要集中于此。而人工智能技术的出现,大大改变了电气自动化控制的设计过程,将设计变的更加高效和简单,从人工智能的技术层面分析,人工智能技术主要通过强大的计算机设计功能,将控制设计在人工智能技术的启发之下,充分显示出人工智能技术的透明性和灵活性,特别是人工智能技术的扩展性是一大特色,它可以将很多新知识纳入自己的存储系统中,将自动化控制设计的现在与未来需求结合在一起。从一定程度上可以认为,人工智能技术已经在几十年的发展中,将设计过程从理论变为实践,最终保证设计出来的电气自动化过程或产品能保持高质、高效的优良品质。

(二)将电气自动化控制能力提升到新的高度

电气自动化的控制过程充满了大量的数据和运算,人工智能技术的应用,可以通过模糊算法、遗传算法和专家系统对非线性函数进行计算,使得自动化控制变的更加精准,与以往控制理论相比,智能技术具有便于调节、一致性好、抗干扰能力强等优点。比如以人工智能技术中的模糊控制举例,这种结构简单、性能稳定的控制方式,让自动化控制的多维化变为现实,对控制模式识别和信号处理有着不可缺少的重要作用,比如在全自动轮胎钢丝圈的生产过程中,对不同产品的生产牵引速度采用模糊控制,不仅有利于生产速度的有效控制,还可以充分发挥人工智能技术中专家系统的优势,实现生产控制的简单、快速,使得工业自动化生产取得了良好的成效。

(三)满足了电气自动化故障的诊断需求

故障诊断也是电气自动化控制所不能忽略的重要环节,故障诊断的目的是为了确保自动化设备的安全性和准确性,随着我国工业自动化程度的不断提高,故障诊断对于自动化控制的重要性也将不言而喻,常见的人工智能诊断技术有专家系统、神经网络、分行几何等,每个故障检测技术都有自己独特的适用范围,它们都具备对故障信息的完全处理能力,包括对故障进行有效诊断并给出相应的解决措施,所以,智能诊断技术对推进我国电气自动化控制的发展意义重大,应该不断加强人工智能诊断技术的探索和研究。

三、结束语

综上所述,人工智能技术已经为电气自动化生产带来了创新的发展的灵感,特别是随着越来越多的理论和知识研究的深入,使得这项技术变的更为“智能化”,以最终满足日益复杂的现代工业的自动化生产的需求。

参考文献:

[1]纪.人工智能技术在电气自动化控制中的应用思路分析[J].电子测试,2014(03).

[2]周超.人工智能技术在电气自动化控制中的运用[J].硅谷,2012(08).

[3]刘冰.解析电气自动化控制中人工智能技术的运用[J].科技创业家,2014(08).

人工智能数字化技术范文6

【关键词】人工智能;电力系统;应用

人工智能技术简称AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,与基因工程、纳米技术并称为21世纪三大尖端技术。由于它是利用计算机来模拟人类的智能活动,因此完全摆脱了传统方法的束缚,能解决传统方法难以解决甚至根本无法解决的问题,当前,随着国家电网建设“坚强的智能电网”进程的不断深入,电力系统规模不断增加,数据量增多,管理上越发复杂,因此,将人工智能应用于电力自动化控制系统,能有效减少运行成本,提高工作效率,现就该问题进行粗浅探讨,以供参考。

一、人工智能技术概述

人工智能技术自上世纪50年展至今,在理论研究方面已取得突破性进展,在具体应用方面,主要如下:(1)专家系统(ES)。所谓专家系统,即一个计算机程序集,该程序利用当前的输入信息、知识库及一系列推理规则来完成由某一领域专家才能完成的工作。专家系统的特点在于其符号表达、逻辑推理及渐进式搜索能力。家系统在电力系统运行控制中的应用领域包括报警信号处理、电压控制、故障诊断、恢复控制、运行规划等。(2)人工神经网络(ANN)。人工神经网络是模拟的生物激励系统,由大量的神经元以一定的方式连接而成的,单个神经元的作用是实现输入到输出的一个非线性函数关系,它们之间广泛的连接组合就使得整个神经网络有了复杂的非线性特性,神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。神经网络具有良好的快速并行处理能力及分类能力,因此被广泛地应用于电力系统的实时控制、检测与诊断、短期和长期负荷预测、状态评估等诸多领域。(3)模糊集理论(FL)。FL发展于上世纪60年代中期,它是多值逻辑的扩展,能够完成传统数学方法难以做到的近似推理。其具体应用为:应用多目标模糊决策方法,进行故障测距和故障类型识别;给出模糊集理论的配电系统潮流与状态估计方法;采用模糊推理估计配电系统负荷水平,归纳各类用户随不同因素的变化;用模糊集方法构造变压器保护原理,区别内部故障、涌流、过激以及电流互感器饱和情况下的外部故障;寻求维持电力系统安全运行和充分利用输电容量之间的折衷解;运用于配电系统损耗模糊计算模型,提高计算精确度等。(4)启发式搜索(HS)。启发式搜索主要有遗传算法(GA)和模拟退火(SA)算法两种,启发式搜索通过随机产生新的解并保留其中较好的结果,并避免陷入局部最小,以求得全局最优解或近似最优解。以上两种方法,都可用来求解任意目标函数和约束的优化问题。

二、人工智能技术的在电力自动化的应用

(1)在电源规划中的应用。电源规划是电力系统中电源布局的战略规划,当前,人们对高质量电能的需求越发突出,因此,加强电力建设,扩充新电源势在必行。电源规划问题之所以复杂,其中一个重要原因即是每个规划时期备选机组状态的数目庞大,而对于每个具体的规划项目,这些状态大多是不可行的,而利用专家系统,可以根据实际规划工作时的具体约束条件对方案进行裁减,尽早删除大量不可行的方案,从而减少优化计算的工作量,提高规划效率。同时,利用遗传算法,可以实现站址和站容的优化。(2)在电能质量分析中的应用。20世纪80年代末以来,随着微电子技术和电力电子技术的发展,基电能质量越来越被人们所关注。为提高电能质量,建立电能质量检测和分析识别系统,对其进行正确的检测、评估和分类就显得十分必要。传统的电能质量检测手段主要是以人工方式和便携式电能质量测量仪器为主,对线路和变电站进行现场数据采集,工作量大,采集的数据不系统也不全面,时间延续性短,误差较大,效率低。而采用人工智能技术能有效克服传统方法的缺陷。如电力系统中谐波诊断的任务是对一组电流或电压的采样信号确定出各次谐波的含量或感兴趣的谐波成分含量,采用人工神经网络,可以在避免噪声和间谐波的情况下分析谐波问题。又如,电力系统电源侧电压及负荷变化将引起用户侧电压波动,长时间的电压偏移将使得供电电压质量得不到保证,因此,保持电压偏移在允许范围内是衡量电能质量标准的一项重要内容。而基于专家系统而设计的变电站无功控制装置,能将已有的无功电压控制经验或知识用规则表示出来,形成专家系统的知识库。并能像有经验的调度员那样,在面临不同运行工况时,根据上述的规则由无功电压实时变化值有效地作出合理的电压调节决策。此外,人工智能技术在电能质量分析中的应用,还包括电能质量的扰动分析、电能质量的数据管理和数据挖掘,等等。(3)在故障诊断中的应用。电力系统可能出现的故障种类繁多,具有复杂性、不确定性及非线性等特点,从一次系统的故障看,可分为线路和元件故障两大类;从二次系统的故障看,则可粗略地分为保护系统、信号系统、测量系统、控制系统及电源系统五类故障,若采用传统的方法诊断效率低,准确率不高,而采用人工智能技术,能大大提高故障诊断的准确率。专家系统、神经网络、模糊逻辑是人工智能技术用于故障诊断的方法,例如人工智能故障诊断技术运用于发电机及电动机进行的故障诊断时,将模糊理论与神经网络相结合,不仅保留了故障诊断知识的模糊性,还结合了神经网络学习能力强的优点,共同实现对电机故障的诊断,大大提高了故障诊断的准确率。(4)在电力系统无功优化中的应用。谓电力系统无功优化,就是指当电力系统的结构参数及负荷情况给定时,通过对某些控制变量的优化,在满足所有指定约束条件的前提下,使系统的一个或多个性能指标达到最优的无功调节手段,它是保证电力系统安全,提高运行经济性的手段之一。将人工智能技术应用于电力系统无功优化中,主要有如下几方面:如,针对传统方法在处理配电网无功优化时不能处理多元约束问题的缺陷,模糊优化法通过引入模糊集理论,能使一些不确定的问题得到解决,使用模糊优化法,可优化配电网的电容器投切,减少了配电网的网损并提高了其电压质量。使用禁忌算法,能有效地处理不可微的目标函数,解决配电网补偿电容器优化投切0-1组合优化问题,并可以处理补偿电容器分档投切的组合优化问题。而使用人工神经网络,可以将网损最小作为优化目标,用人工神经网络模型对多抽头的配电网电容器进行实时控制,等等。(5)在电力系统继电保护中的应用。通过专家系统,能把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,进而根据报警信息对知识库进行推理,获得故障诊断的结论。输电网络中保护的动作逻辑一级保护与断路器之间的关系易于用直观的、模块化的规则表示出来能够在一定程度上解决不确定性问题,能够给出符合人类语言习惯的结论并具有相应的解释能力等。此外框架法专家系统善于表达具有分类结构的知识,能够比较清楚的表达事物之间的相关性,可以简化继承性知识的表述和存储,在输电网络报警信息处理和故障诊断中也有少量应用。(6)在抑制电力系统低频振荡中的应用。大规模电网互联易产生低频振荡,对电力系统的安全造成严重威胁。低频振荡产生的原因,源于系统缺乏阻尼,目前,低频振荡抑制措施中研究较多的是电力系统稳定器FACTS和PSS阻尼控制器,以上两种办法均存在一定缺陷,即存在鲁棒性差的问题,而人工智能技术能模拟人类处理问题的过程、容易计及人的经验和具有一定的学习能力,将神经网络、模糊理论、GA等人工智能技术应用于FACTS控制器和自适PSS的研究,能解决阻尼控制器参数的鲁棒最优整定,有效抑制电力系统低频振荡问题。

总之,随着人工智能技术的不断进步,新的方法将不断涌现,其在电力系统中的应用也将越来越广,如何综合已有技术,扬长避短,并探索新的技术和理论方法,将其应用于解决未来电力系统的各种问题,是我们今后探索研究的主要方向。

参 考 文 献

[1]蔡自兴,徐光祐.人工智能技术及应用[M].北京:清华大学出版社,2000