信号通信论文范例6篇

前言:中文期刊网精心挑选了信号通信论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

信号通信论文

信号通信论文范文1

由于普通的计算机控制系统安全性差,无法对外部输入信息的准确性进行判断。当系统产生故障时,无法保证系统安全的能力,这些因素都限制了计算机控制系统的应用。当前,我国干线铁路上使用的计算机连锁系统主要为国外铁路信号公司的容错计算机控制系统,成本较高。所以,我国铁路科研院逐渐将安全、铁路信号控制系统作为主要的研究工作来开展。

2铁路信号系统无线通信的基本要求

2.1通信结构

铁路信号系统远程控制技术在保证铁路信号系统安全运行方面具有重要意义。相较于继电连锁系统来说,计算机连锁系统的综合性能更好。所以,车站连锁系统也逐渐从继电装置专变成了计算机系统。事实上,计算机连锁系统是一个满足安全、故障信号的连锁逻辑运算系统。而逻辑上,可以将运算系统分为监控层、控制设备层和关联系统三个模块。其中关联系统主要包括调度集中、联锁机、模拟屏、调度监控、复显等内容;监控层主要是指计算机联锁系统对调度机车信号和站场状态进行监测和控制的设备;控制设备层主要控制电源屏无线通信、I/O、PLC和电源屏的无线通信、I/O的通信。

2.2通信设计

2.2.1控制设备之间的无线通信

控制设备主要是用来对现场的多个I/O设备进行控制,常规的方法将多路器布置在现场,然后将输入/输出模块和端子排连接,并利用现场总线技术,在工业现场放置I/O模块。所有的现场子站都可以利用一根电缆连接起来,从而把所有的现场信号简单方便的传送到控制室的监控设备上。

2.2.2控制设备和监控站的通信

监控站通信主要传递安全信息数据,利用PLC和联锁机之间的串口和监控站连接实现信息的传递。因而PLC和联锁机之间使用CCM传输协议进行传输。为了屏蔽外界的干扰,提升数据的准确性,将读取的PLC数据作为有效数据,向联锁程序提交。此外,该通信程序还可监督PLC和联锁机运行状态。由于每次通信时,联锁机都会对PLC的约定内部寄存器进行检查,此寄存器只可以利用联锁机置位PLC进行复位。在检查的过程中,如果PLC置位时间不对,就表示PLC工作异常。同理,如果PLC发现联锁机置位不按时,证明连锁机的也不能正常工作,为了确保系统安全运行,会立即发出报警信息,并会进行安全处理。

2.3关联系统之间通信技术

关联系统主要是计算机之间利用互联网进行通信,可以利用RS-485和RS-232达到通信目的。而局域网中的通信可以利用Socket的接口实现,局域网中电脑可以通过拨号的方式和互联网机械通信,也可以连入专网进行通信。

3无线通信技术的特点

目前,无线通信技术主要有433Hz频段、2.4Hz频段、蓝牙、红外等。在高速行驶高速铁路上,如果距离小可以使用这些无线技术。但是如果距离很远的时候,无线通信的距离也就相对较远,利用无线通信可以避免使用中继设备。铁路信号系统作为指挥铁路运行的系统,在运行的过程中,可以利用信标和全球定位系统来保证铁路的位置和速度。车站在收到设备信息后,会经过信息发送到执行控制计算机中。在铁路信号系统中,无线通信技术主要有以下特点:(1)可以对铁路的运行情况进行更加稳定的控制,不仅可以防止列车运行情况下速度过快或者多次发动,并且可以有效地节省资源。(2)在一些关键的控制系统中,列车按照操作状态和自身情况进行调节,利用计算机对列车进行辅助调整,进而提高铁路信号系统的管理水平;(3)省去地面上的信号设备,降低了信号系统设备的维护资金;(4)无线信号适应能力强,可以提高列车的行进速度,可以对系统中的相关参数进行远程调节。不过,在使用无线通信技术时,铁路信号系统中也有一些问题存在,例如一些设备的成本较高、高速铁路列车的运行速度和电码传送速率不符合。

4无线通信技术在铁路信号系统中的应用

4.1集中调度中的应用

在集中调度系统中,调度中心科员按照车站的区段闭塞情况和法线占用情况了解列车的运行,并根据收集到的信息对进路进行排列。但是,使用无线通信技术可以使控制系统详细了解列车的运行速度和位置,并根据沿线信号系统的基本情况,向列车传递控制信息,确保列车稳定、安全、快速地运行。通过利用无线通信技术,可实现控制中心和列车之间的双线数据传输,为列车的运行提供了便利,达到自动指挥的目的。

4.2微机联锁中的应用

在微机联锁中应用无线技术,可以将信号机的闭锁状态、道岔情况等发送至主控中心,并使用道旁接口单元对主控中心传达的控制命令进行接收,达到控制信号机动作和道岔的目的。此外,道旁接口单元可以使用无线信道和控制中心取得联系,然后利用电缆和现场设备进行连接,达到控制、检测辅助子系统的目的。当前,无线通信技术在微机联锁中的应用需要增加运营成本,并且一些比较大的车站对无线信号干扰比较大,还没有得到广泛的推广和应用,不过在微机联锁中应用无线技术的前景是非常不错的。

4.3无线通信技术在中继器中的应用

在铁路运行过程中,想要实现每一个铁路都设置通信基站难度是比较大的。这样设置不仅会导致设备投资增加,并且会使无线通信铁路信号系统丧失意义。而利用中继器,基站可以使用中继器进行射频信号的发送和接收,进而实现基站同时,管理线路、车辆以及基站区域范围中的站区。

4.4使平交道口的通过率提升

信号通信论文范文2

城市轨道交通信号系统主要由列车自动控制(ATC)系统、联锁设备、轨道电路等组成。作为城市轨道交通信号系统最重要的组成部分,列车自动控制(ATC)系统主要功能就是对行车指挥及列车运行自动化的一种最大限度地实现,同时起到确保列车安全运行及提高运输效率的作用,只有这样才能降低工作人员的工作量,对城市轨道交通的通行能力进行充分发挥。ATC(automatictraincontrol)系统主要有三部分构成,包括:列车自动防护(ATP—automatictrainprotection)、列车自动运行(ATO—automatictrainoperation)及列车自动监控(ATS—automatictrainsupervision)。ATP系统分为轨旁ATP和车载ATP,负责对列车的运行进行保护,对列车进行超速防护、车门监督和速度监督,保证列车的安全间隔。ATO系统分为轨旁ATO和车载ATO,其应用的主要目的就是对“地对车控制”的一种实现,就是实现地面信息对列车运行情况的一种良好控制,并送出车门和屏蔽门同步开关信号。ATS系统主要有两部分中央ATS与车站ATS,其应用的主要目的就对列车运行监督及控制,包括:列车运行情况和设备的集中监视、自动排列进路、自动列车运行调整、自动生成时刻表、自动记录实际列车运行图、自动进行数据统计以及各种报表的自动生成,辅助调度人员对全线进行管理。联锁设备有中央联锁系统和车站联锁计算机,主要对室外设备信号机和道岔进行控制,排列列车进路并传送进路信息给轨旁ATC设备。轨道电路主要用于传送轨道电路信息和ATP报文信息。

2城市轨道交通信号系统方案

通常情况下在城市交通疏解任务中城市轨道交通线路承担着十分重要的任务,为确保人们出行的安全性,应采用完整的、先进的、高效的列车控制系统作为地铁信号系统。正线信号系统采用完整的列车自动控制(ATC)系统,由ATS、ATP、ATO、联锁设备组成。车辆段/停车场由联锁设备、微机监测设备、ATS分机等主要设备组成。目前城市轨道交通的信号系统主要有准移动闭塞和移动闭塞系统选择。

2.1基于目标距离模式的准移动闭塞ATC系统通常选用音频数字无绝缘轨道电路作为目标距离模式,这种模式的主要特点为信息传输量较大及抗干扰能力很强。列车车载设备依据由钢轨传输而接收到的联锁、轨道电路编码、线路参数、控制管理等报文信息,连续对列车追踪运行及折返作业进行速度监督,最大限度对其进行超速防护,控制列车运行间隔,以满足规定的通过能力。由于音频数字轨道电路具有极大的传输信息量,可以将目标速度、目标距离、线路状态等信息提供给车载设备,为计算出列车相适应的运行模式速度曲线,将ATP车载设备与固定的车辆性能数据进行充分地结合。

2.2基于通信的移动闭塞系统(CBTC)基于通信的移动闭塞列车控制系统具有极为先进的发展技术,是列车控制技术的发展趋势,是国际ATC先进水平的代表。是独立于轨道电路的高精度列车定位。CBTC系统为实现车与地、地与车间之间的双向数据通信,可以选用自由空间无线天线、交叉感应电缆环线、漏泄电缆以及裂缝波导管等方式进行有效通信。依据列车的位置信息及进路情况轨旁ATP设备可以有效对每一列车的移动权限进行准确计算,同时根据列车位置速度的变化不断更新数据,利用连续车地通信设备向列车进行信息的发送。依据接收到的移动授权及本身的运行状态车载设备可以对列车运行速度曲线及防护曲线进行有效计算,在ATP子系统的保护防御过程中,在该速度曲线下ATO子系统或人工驾驶控制列车可以正常运行。可以最大限度地实现后续列与前行列车尾部的紧密性,并始终处于安全距离范围内。在确保安全的基础上,CBTC系统可以实现区间通过能力的有效提高,同时不受轨道电路区段分割的限制。虽然CBTC系统在调试时因对现场环境要求高、调试周期较长等一些不尽如人意的地方,但是CBTC系统在具有自身优越性的同时已经成为城市轨道交通信号系统的首选方案。其相对于准移动闭塞系统的优越性是不可取代的。

3城市轨道交通信号系统通信设备的传送方式

3.1通过轨道电路进行传送轨道电路不仅可以检测列车占用情况,也可以传递报文信息给车载设备。在轨道电路不忙的情况下,将轨道电路信息传送给联锁系统,当列车对轨道进行占用时,利用装置切换,并将发送轨道电路信息的作业进行停止,开始采用轨旁设备将ATP报文信息连续向钢轨进行发送,将接收和发送设备装置在列车底部,可将接收到的信息向车载设备进行传递,同时也可以向地面发送列车信息。

3.2通过轨间电缆传送单独沿着钢轨铺设一条线路,专门用于传送ATP报文信息,此方法安全可靠,但费用较高。

3.3通过点式应答器传送在轨道电路的部分地方进行应答器的设置,应答器的设置主要有两种形式:固定数据应答器与可变数据应答器。用于存储固定数据的应答器为固定数据应答器,可变应答器通过对中心进行控制来取得数据,将接收和发送天线安装在列车底部,当列车运行在应答器位置经过时可以感应到应答器的信息,然后进行双向数据交换,因为这种信息的传送不具有连续性,只能在一定位置才能进行接收,因此这些位置被叫做点式ATC。

3.4通过无线方式进行传送无线车地通信主要采用无线方式,由控制中心来实现车载ATP/ATO的功能,利用无线交换器和轨旁无线单元AP与车载无线通信设备进行时时数据的交换。一般情况下一个控制中心可以实现对一条线路上所有车站的控制,当控制中心设备发生故障时,为了确保整条线路不出现瘫痪现象,可以将车站现地工作站和车站ATS远程控制单元设置在车站。这样当控制中心出现故障之后,车站工作人员可通过车站现地工作站进行操作来实现联锁计算机的功能,ATS远程控制单元可代替中央ATS系统向联锁系统和轨旁设备发送相关信息,此时ATS远程控制单元所具有的信息不全面,但能够保证列车在本站的正常运行。

4结语

信号通信论文范文3

“非电量检测与信号处理系统的研制”项目是2012年本教学团队结题的院级自然科研项目。该项目以服务《信号与系统》课程教学为基本目标。经过研制开发,达到了预期设计要求,尤其是在航空传感器数字信号处理等具有挑战性和较高技术含量的领域做了大量深入的研究,取得了较好的成果。航空非电量的电测法就是将各种航空非电量(如温度、压力、加速度、姿态角、高度、位移、应变、流量、液位等)变换为电量,而后进行测量的方法。非电量检测与信号处理系统是严格按照航空非电量检测相关技术规范研制开发的,其特性具体体现在以下几个方面。(1)实用性:本项目平台是很好的开放式平台,有利于《信号与系统》课程改革;(2)可操作性:由于人机交互在上位机进行,可操作性极强。经过多次上课使用证明,系统整体稳定可靠,数据采集准确,数据分析算法先进,具有较强的实用价值;(3)升级特性:在基本硬件保持不变的情况下,本系统具有较为简单、方便、快捷的升级特性。另外,增加新的传感器硬件模块也比较容易。非电量检测与信号处理系统的功能展示生动、形象、直观,集创新性、知识性、趣味性于一体,在教学展示中易于激发学生的创新意识和学习主动性、积极性。另外,由于非电量检测与信号处理系统集成了许多先进和实用技术,所以,本系统的成功研制为今后进一步的科学研究积累了宝贵的经验,同时,也为教学工作及学生科技活动积累了丰富的素材。本系统的上位机由主控计算机及信号处理单元构成,下位机则是由各个传感器为核心的功能模块所组成。主控计算机是分布式控制系统的上位机,由一台高性能PC承担,主要用于人机交互、系统管理、控制决策、任务调度、运动规划、信号处理等。测量部分由多种航空传感器组成(参见图1)。以该系统作为教学实验的平台载体来真实地反映《信号与系统》理论在航空测控系统中的应用,取得了良好的上课效果。无论是卷积、傅立叶变换、拉普拉斯变换还是z变换等,学生都能在该设备上编程验证。这种可编程的硬件平台比MATLAB仿真更为直观和有效。

二、以学期项目为载体全面提升学生综合素质指标

然而,光是靠上述研制成果讲授《信号与系统》课程还不够。原因是学生的动手能力还停留在使用该设备进行理论验证的阶段,还为达到设计的阶段。为此,研究团队在本专业开发了一系列学期项目,并在每学期实施一门学期项目的教学。从一开学就布置学期项目的项目任务,学期结束才需要学生提交项目作品。学生在整个一学期当中,把《信号与系统》充分结合《模拟电子技术》《高频电路》《数字电子技术》《单片机技术与应用》《Protel》《C语言程序设计》《电子测量与仪器》《传感器与仪表》《误差分析与数据处理》等课程,有足够的时间去思考项目的方案、精心设计硬件和软件,经历较为复杂的调试阶段后,最终做出达到性能指标的作品,并撰写项目报告,上台用PPT演讲自己的作品。《信号与系统》课程从系统设计上起到统领全局的作用,而其它课程用于项目的具体制作和调试。本教研团队总共安排了4个学期项目,其中学期项目3是《飞行数据采集》、学期项目4是《航空测控系统设计》。这2个学期项目面向航空电子行业,以具体项目为驱动,需要学生把《信号与系统》课程中的内容结合航空电子工程进行设计、制作、装配、调试、测试、检修等工作。以学期项目作为《信号与系统》课程的载体,实现了以学生为主体的教学。学生在强大的兴趣驱动下保持主动学习和研究的动力。很多课程的知识点在作品中得以体现。为了工程实现,不少学生还自学了课程中的建议选学的内容。因此,《信号与系统》课程得到学以致用。学期项目的逐学期实施,也就同时在为电子设计竞赛、技能大赛锻炼和选拔人才。学生在平时就打下了良好的基础,有利于他们参赛并获奖。最终目的是培养出企业所需要的综合素质全面的人才。本专业2012级的学生有18人进入了开放实验室,参加了大学生电子设计竞赛,并取得了不错的成绩。在2014年大学生电子设计竞赛中有3个参赛组获得一等奖,3个参赛组获得二等奖。学生现今正在单位参加顶岗实习,他们的主要工作是产品设计。个别动手能力突出的优秀学生直接当上了项目经理。

三、以导师制实现因材施教

学生群体的基础差距很大,且学习习惯、学习能力差别也很大。在面向航空的以学期项目为载体的《信号与系统》的整个教学过程中,如果还进行整齐划一的无差别教学,将使得基础较差的同学无法跟上课程进度,而理解力强的同学又发挥不出自己的才能。本教研团队尝试了以开放实验室为基地,实施导师制教学。导师并非一定要本校或者企业专家担当。“三人行,必有我师”。我们实施的是学生教学生的导师制。在本专业高年级的学生中选拔最优秀的10名学生给低年级学生当导师。这10名高年级学生全部参加过电子设计竞赛并获奖,全部都是老师的科研项目团队成员,拥有较为丰富的实践经验。选他们当导师,还同时锻炼了他们的表达与沟通能力、组织与协调能力、领导能力。一个班级分为10个小组,每个小组就有1名高年级学生当导师。每个小组中最优秀的学生当组长。导师与学生之间交流渠道完全畅通。由于导师也是学生,因此导师天生与学生容易沟通。导师与学生之间除了上课交流、辅导课交流以外,还有全天候的QQ交流。这种导师制大大减轻了本专业的师资人数不足的负担,而同时打造了一支科研能力很强的学生队伍。同时,教室上课只占用少量时间,大量时间花在课后的设计和制作,改变了传统教学以教师为主体的局面。以此类推,每一届学生中都要选拔10名左右的学生给下一届学生当导师。因此,面向航空电子业、以学期项目为载体的整个《信号与系统》教学过程都有学生导师指导。

四、考核方式的改进

良好的考核方式将有力促进学生的学习,更客观地评估学习效果。在面向航空的以学期项目为载体的《信号与系统》的考核方式设计中,本团队进行了较大的改革,除了对项目成果本身进行结果考核外,加强了对学习全过程的考核。在过程考核中纳入了综合素质指标。把综合素质指标融入项目教学的全过程,以学生为主体实施教学与评价。(1)项目布置阶段(含方案设计):考核学生的专业知识、职业技能、基本素养;(2)作品制作阶段:考核学生的专业知识、职业技能、资讯能力、敬业合群、诚实守信、学习能力、创新能力、安全环保意识、外语能力、抗压能力;(3)撰写报告阶段:考核学生的书面表达沟通能力、资讯能力;(4)提交报告:考核执行力;(5)答辩阶段:考核口头表达沟通能力、抗压能力。所有的综合素质指标的分数将生成一个雷达图。该图反映了学生的综合素质。有利于学生找到自己的能力素质上的不足,从而调整努力的方向。同时也有利于企业选择录用新员工。考核方式的革新可避免原有结果考核的一次期末考试就定胜负所带来的缺点。新的考核方式要求学生平时都要努力,才能最终完成《信号与系统》课程的学习,避免了学生平时不上进而最终积重难返之后果。此外,综合素质指标考核有利于老师对学生平时的学习状况的跟踪,以便让学生导师有针对性地加强辅导和交流,让差生获得必要的帮助,跟上所在项目小组的进度。

五、结论

信号通信论文范文4

1.1系统前面板的设计

虚拟仪器的前面板设计是否合理对虚拟仪器的使用效果有着重要的影响,它直接面向使用者,使用者对其分布的合理程度也有着很高的要求。

1.2系统的程序框图设计

对各个的功能模块进行分割编写,采用模块式的编写方式逐个进行分割,然后将分割编写的模块整理集合以构成一个新的系统控制程序。程序模块主要包括三个模块,第一种是实时信号采集模块;第二种是信号处理分析模块;第三种是仿真信号模块。这三种模块对系统都有着很重要的影响,它们以不同的角色为系统提供服务,满足用户的需求,产生令用户满意的信号。另外,对这三种模块的编写整合构成新的程序框图。

1.2.1实时信号采集模块实时信号采集模式可以通过对信号的有效分析处理对所采集的数据进行系统的分析,并且实时信号采集模式可以根据用户所设置的声音格式从声卡中得到相关数据,然后对数据进行保存。这种模块在开始采集数据前要注意,参数的设置要根据实际的情况和参数设置好以后将信号选择的按钮调制实时信号档上。开始设置各个快捷按钮,如停止按钮、退出按钮、对信号的采集保存等按钮。

1.2.2信号处理分析模块设置完成应用信号处理分析模块一般是对数据进行时域分析以及频域分析。其中时域分析可分为对参数的测量、对谐波失真分析、最后是自相关分析。在对信号进行分析处理的过程中,如果单单只对信号进行频域分析,信号所具有的全部特征并不能完全的显示出来,也就是时域分析有时候不能完全满足对信号的分析,这就需要对信号进行频域分析,以更加全面完整的分析出信号所具有的全部性质。在LabVIEW中,如果要对信号进行频域分析,就要以FFT为分析的基础,才能进行具体分析。

1.2.3仿真信号模块的完成应用仿真信号模块的作用我们不可忽视,生活中并不是所有的信号都能用实际的仪器产生,当无法获得实际的信号时,可以用仿真信号作为任意频率的信号,也可以用仿真信号作为标准的信号源,对其产生的信号做信号的检测系统。这种仿真信号模块包含波形显示以及噪声的添加等功能。仿真信号可以产生一些日常生活中我们常见的信号,如正弦波、方波以及三角波等。并且用户可以很据自身的需要对信号的频率、幅值、以及采样频率进行调节,从而产生用户所需要的信号。

2研究应用

整流电路中应用虚拟声学采集分析系统研究采集系统的采集性能。在整流电路中应用虚拟采集分析系统时,应该注意采样的频率要保持20Hz~20kHz之间,如果想得到更加完整较好的波形,就可以将频率控制在100Hz~15kHz之间。在整流点路中要进行对正弦先好进行整流的过程中,可应用二极管半波整流电路对其进行整流。输出信号以后接入虚拟信号采集分析系统,可以得到一些波形。事实证明,虚拟仪器的信号采集分析系统的采集性能可以达到人们所需要的理想信号。实践证明,虚拟仪器信号采集分析系统已经被广泛的应用在噪声监测、信号分析以及实验教学当中。

3结语

信号通信论文范文5

专 业:

姓 名:

学 号:

报告日期:

论文(设计)题目:

智能天线技术的基本原理及其music算法

指导教师:

论文(设计)起止时间:

一、论文(设计)研究背景与意义

智能天线是3g的一项关键技术,作为当今三大主流标准之一的td-scdma(time division-synchronous code division multiple access)是由中国自主提出使用的tdd方式的(时分双工方式)的第三代移动通信系统标准。td-—scdma的核心技术之一就是智能天线技术。在td-—scdma系统中使用智能天线技术,基站可以利用上行信号信息对下行信号进行波束成形,从而降低对其他移动台的干扰,同时提高接收灵敏度,增加覆盖距离和范围,改善整个通信系统的性能。

智能天线是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。 智能天线系统的核心在于数字信号处理部分,它根据一定的准则,使天线阵产生定向波束指向移动用户,并自动调整权系数以实现所需的空间滤波。智能天线需要解决以下两个关键问题:辨识信号到达方向doa(directions of arrinal)和数字波束赋形的实现。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。

本文针对3g的需求背景,研究智能天线技术及doa估计算法。随着移动通信用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,智能天线可将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(directions of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。

其实就是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。因此需要知道期望信号到来的方向,即doa。music算法是经典的用来估计波达方向的算法。

二、论文(设计)的主要内容

智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(direction of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。

波达方向(doa,direction of arrival)估计是智能天线研究的一个重要方面,无论是上行多用户信号的分离,还是下行选择性发射,对用户信号doa的测定,都成为智能天线实现指向性发射的必要前提。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。本文主要介绍智能天线技术的基本原理,发展历程,技术分类,及智能天线对系统的改进和主要用途。写出均匀线阵的统计模型,研究music算法的基本原理,用matlab仿真实本课题的主要研究内容如下:

(1)介绍智能天线技术的发展历程、研究现状和技术分类;

(2)在均匀线阵的统计模型下研究智能天线技术的基本原理;

(3)重点研究music算法的基本原理,并用matlab仿真软件实现;

(4)分析music算法的估计精度,得出全文结论。

三、论文(设计)的工作方案及进度安排

第一阶段(XX年9月7日-XX年10月11日)查阅有关智能天线技术,music算法和matlab仿真等方面的资料,关注国内、外当前的先进技术和发展前景,积累知识。

第二阶段(10月12日-11月8日)对智能天线的工作原理进行详尽地分析,给出均匀线阵的统计模型,研究music算法的基本原理,学习用matlab实现仿真

第三阶段(11月9日-11月22日)用matlab编写程序,程序调试

第四阶段(11月23日-12月20日)整理资料,结合设计经历撰写论文,备战论文答辩。

四、参考文献

1) 刁鸣,熊良芳,司锡才,超分辨测向天线阵性能的计算机仿真研究,电子学报,XX no.5

2) 何子述,黄振兴,向敬成,修正music算法对相关信号源的doa估计性能,通信学报,XX no.10

3) 张贤达,保铮,通信信号处理,国防工业出版社,XX

4) 刘德树,罗景青,张剑云,空间谱估计及其应用,中国科学技术大学出版社,1997

5) 李旭健,孙绪宝,修正music算法在智能天线中的应用,山东科技大学,266510

6) 陈存柱,浅析自适应智能天线技术的应用,北京师范大学,100875

7) [美]s.m. 凯依 著,黄建国等 译,现代谱估计原理与应用,科学出版社,1994

8)徐明远, matlab仿真在通信与电子工程中的应用 XX

五、指导教师意见

指导教师签字:

年 月 日

六、答辩小组意见

信号通信论文范文6

关键词:PG,PLC,PROFIBUS-DP,通信,在线连接,接口设置

 

1 引言

现代工业生产中越来越多的应用到PLC系统参与生产控制,使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。要使PLC能正常工作,通常编程器(ProGrammer-PG)是必需的,程序首先是在PG内完成编制,然后通过通讯联接下载到PLC以使PLC运行。同时,也可以通过PG来监视PLC的运行过程及运行状态。对于工厂的部分技术人员来说,就经常需要使用PG与PLC建立在线连接读取一些数据或者对现有程序进行局部修改,而且当PLC系统需要更换CPU模块时,也必须使用PG连接到CPU端口上将运行程序写入CPU存储器内,因此,PG与PLC系统CPU的正确在线连接就显得尤为重要了。西门子PG可以是专用编程电脑,也可以是普通电脑加上编程软件包及相应接口,编程软件包为STEP 7 编程系统,具有强大的人机操作界面,采用的是WINDOWS视窗操作系统,使用者很容易掌握。本文就笔者在实际工作中使用西门子产品时遇到的几类典型连接故障以及对故障的解决方法进行了阐述,希望对相关人员能有帮助。

2 故障类型和解决方法

(1)硬件组态中模板组态错误

这一类型的故障一般发生在设备安装阶段及模板更换期间,也是最容易查找的故障。此时需要检查机架上插入的模板与硬件组态中的模板型号是否一致,如果模板存在组态错误,可能导致系统数据下载失败,系统也会报如下错误信息:

Download(13:4589)

The system data could not be loaded on the module…atstation…SDB 200 could not be loaded.

解决方法:必须确保硬件组态中模板的订货号与实际一致,如CPU315-2DP的订货号为6ES7315-2AF03-0AB0。然后保存编译硬件组态后重新执行连接、装载即可。

(2)地址组态错误

如果硬件组态中配置的MPI或PROFIBUS的地址与CPU的节点地址不一致,用户可能会看到如下的错误信息:

Download(33:16656)

“Online:Connection could not beestablished.The connection partner is not responding.”

解决方法:此时就需要检查硬件组态中的地址信息,如组态信息中显示“MPI=2”,则说明在硬件组态中CPU的MPI地址也需设置为2,否则PG在与PLC在线连接时会出现错误而导致无法建立连接。(3)PG/PC接口设置配置错误

一般来说,PG在与PLC连接时首先需要对接口参数进行相应的配置,如果PG/PC接口参数设置与在线连接的模板通信接口不相匹配,或者该接口未安装,用户会看到如下的错误信息:

Load(288:47) “Unable to reach the module…via theonline interface”.

解决方法:使用PG上安装的STEP 7软件中菜单命令“Tools>Set PG/PC interface…”打开PG/PC接口(如图1),在窗口中检查是否为在线连接设置的接口正确,一般这个接口设置是根据PG与PLC在线连接是采用的何种通信接口而决定,PG与PLC在线连接常用的通信接口和连接线一般有三种:MPI接口、PROFIBUS-DP接口和RJ45接口,前两种接口使用的连接线为专用双绞线,RJ45接口即为普通网线连接。因此根据西门子通信协议的规定在菜单中选择相对应的通信协议即可建立在线连接实现数据的上传和下载了。

当然如果在菜单中没有找到自己所需要的接口通信协议,则点击“Select”按钮进入弹出的对话框选择自己所需的接口协议安装,安装完成后,窗口便会显示此接口协议,点击选择即可。

(4)通信波特率设置与实际网络接口通信波特率设置不匹配

在电子通信领域,波特率即调制速率,指的是信号被调制以后在单位时间内的波特数,即单位时间内载波参数变化的次数。它是对信号传输速率的一种度量,通常以“波特每秒”(Bps)为单位。如果将调制解调器的波特率设置为高于其他的调制解调器的波特率,则较快的调制解调器通常要改变其波特率以匹配速度较慢的调制解调器。免费论文,PG。

如果系统硬件组态中通信波特率设置与实际网络接口通信波特率设置不匹配时,则会出现如下错误信息:

Load in module(33:17075)

“Online :The local MPI address for the programmingdevice/PC is higher than the maximum node address or the wrong transmissionrate or wrong interrupt is set”.

解决方法:使用PG上安装的STEP 7软件中菜单命令“Tools>Set PG/PC interface…”打开PG/PC接口设置并点击“Diagnostics…”按钮(如图2),使用“Tset”按钮可以进行MPI/PROFIBUS网络诊断。

根据诊断结果就可以判断出波特率的设置是否合适,如需要修改波特率设置参数,则在“Set PG/PC interface”操作界面上点击“Properties”按钮,在弹出的对话框中选择正确或合适的网络传输波特率(如图3)。免费论文,PG。免费论文,PG。

3 结束语

西门子编程器与PLC在线连接的故障不止文中的这四种,但是限于笔者自身的能力和在实际应用中还未遇到其他类型的故障,因此不能更多、更详细地进行阐述。免费论文,PG。免费论文,PG。文中的几类西门子PG与PLC在线连接故障是很常见的几种故障,也是工厂中工程技术人员容易犯得错误。免费论文,PG。通过文中对故障的描述和分析解决,可以很好的解决使用人员在实际操作中的困难,对提高使用人员的操作水平和故障分析解决能力应该有着很好的帮助。