前言:中文期刊网精心挑选了化学工程和化学工艺的区别范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
化学工程和化学工艺的区别范文1
1双语教学对象、课程和师资
双语教学的教学对象必须根据学生的英语水平来确定,这样教与学的效果才会比较好。若将双语教学全面铺开,英语差的一部分学生可能会有厌学情绪,上课不认真听甚至逃课。考虑到学生整体英语水平的不均衡,双语课开设初期不可能面对化学工程与工艺专业所有班级的学生。结合专业实际,拟定以化学工程与工艺“卓越工程师教育培养计划”实验班(以下简称“卓越班”)的学生为教学对象。因为桂林理工大学采取自愿报名、课程考试、面试三者结合的办法来遴选“卓越班”学生。新生入学后,学校组织对自愿报名参加“卓越班”的学生进行英语和数学考试,入选“卓越班”的学生其英语成绩必须达到A班标准。达到A班标准的学生可以在大一参加大学英语四六级考试。大学二年级,“卓越班”学生的四级通过率可达到70%以上。“卓越班”的学生经过了选拔,具有比较扎实的英语基础,是开展双语教学的理想对象。这样在授课过程中学生基本上可以适应双语教学,课堂上亦可以配合教师教学,预期教学效果较好。以“卓越班”为双语教学的试点,总结教学经验,由点及面逐步扩大。双语教学的课程的选择上,必须考虑师资力量和教学资源的配置以及该课程进行双语教学的适宜性。因此,双语课开设初期不可能涉及多门化学工程与工艺的专业基础课程及专业课程。《化工原理》是化学工程与工艺专业学生的一门必修专业基础课,在培养化学工程师中起着举足轻重的作用。化工原理课程实施双语教学有其自身的优势[6]。化工原理课程属于自然科学学科具有较强的国际共通性,其专业术语、基本词汇、句型结构、表述方法等相当比较固定。在实施上,应考虑采用先易后难,逐步扩展范围的原则。双语教学需要精通英语的学科教师,对师资队伍的要求比较高。目前桂林理工大学化工原理课程的任课教师多为青年教师,部分教师具有海外留学经历,能够熟练应用英语和汉语进行教学工作,双语教学具有一定的师资基础。此外,建议学校通过多种途径培养能胜任双语教学的教师。例如:聘请在国外讲授化工原理的资深教师或国内化工原理双语教学的资深教师来校进行教学示范或教学培训,提高双语教学主讲教师的英语授课水平。鼓励和支持双语教学主讲教师到国外进行定期或不定期的教学培训和学术交流,让其有机会深入国外课堂进行听课和教学观摹,以提高双语教学主讲教师英语水平,建立一支有国际化视野的教师队伍。
2化工原理双语教学的目标、教材和教学模式
众所周知,双语教学具有双重目标,一是让学生获取学科知识,二是培养和提高学生运用英语的能力。因此,在化工原理双语教学初期就必须明确两者的关系。化工原理课程实施双语教学目的是教学生以英语为工具掌握化工专业基础知识,其重点还是掌握相关的专业知识[5]。在教学过程中,应把汉语和英语科学合理地穿插在整个教学活动中。按照英语与汉语(即外语/母语)的使用比例,双语教学过程通常分为三种类型:第一,渗透型,即汉语为主,英语为次;第二,混合型,即汉语与英语互为主体;第三,全英型,即英语为主,汉语为次,或全部采用英语授课。在双语教学过程中,英语与汉语比例的高低并不完全取决于双语教师的英语水平,而更多地取决于学生的实际英语水平和理解能力。因此,开展双语教学不能操之过急,应逐步提高英语的比例。授课时注意采用简单的英语句式,语速稍慢、吐词清楚、讲解到位,对较难理解的重要概念和定义,辅以中文解释,使大部分学生能够跟上教师的讲课思路,保证学习效果。教材的好坏直接影响到双语教学的成败。华南理工大学钟理等人,通过不断的教学实践,发现虽然原版英文版教材有其突出的优点和特色,但其在内容编排、知识点衔接、教学要求、讲述方式及总体架构上与我国化工原理教学大纲有明显的区别。采用原版英文教材进行化工原理双语教学具有许多局限性。有幸的是2008年由化学工业出版社出版出版了由华南理工大学、天津大学和华东理工大学合作改编的美国WarrenL.McCabe等编著的著名化工原理教材《UnitOperationsofChemicalEngineering》第7版。该改编教材以我国教学大纲为基本框架,按中文教材的编排顺序,并从原版教材的动量传递、热量传递、质量传递等章节中选择出120学时的内容题材进行重新编译和补充,具有较强的适合高校教学及学生使用书的特点。目前该教材被天津大学、华东理工大学、南京工业大学、北京化工大学、广西大学、福州大学、青岛化工大学等30多所高校采用。因此可以考虑采用该教材作为化工原理双语教学的主要教材。化工原理双语教学应坚持先易后难原则。在实施双语教学的初期阶段,可采用“英文教材、英文板书、中文授课”模式,即渗透型教学模式,保证教学内容和深度不低于中文授课,然后再向混合型和全英型教学模式过渡。或者选择部分内容相对简单的章节进行双语授课,其他章节仍采用汉语授课。从简单到复杂,循序渐进,化解学生的畏难情绪。同时注意发挥学生的主观能动性,为他们创设尽可能多的语言实践机会,不断提高学生综合应用语言的能力和勇气。使学生在学到专业基础知识的同时提高了专业英语水平,从而实现化工原理实施双语教学的双重目标。
3结语
化学工程和化学工艺的区别范文2
关键词:无机混凝剂;混凝机理;发展趋势
中图分类号:U445.57 文献标识码:A
引言:混凝剂是一类主要用于水和废水混凝处理过程的化学药品的总称,其种类繁多,按其化学成分可分为无机与有机两大类(有机类常称为絮凝剂)。在传统无机铝、铁盐基础上发展的新一类水处理药剂――无机高分子絮凝剂,代表着无机混凝剂的主导发展趋势,在给水处理中将替代传统的无机盐类。混凝是以形成絮体为中心的单元净化过程,它的效果是由混凝剂的化学作用和构筑物的流体动力学作用两方面来决定的高效、经济的混凝剂对混凝作用固然重要,但同时必须在设备上提供良好的水力条件,从而形成密实度好的混凝颗粒,以利于后续沉淀、过滤工艺的高效运行.到目前为止,还没有一个有关不同变量间关系的整体研究。一、无机混凝剂的研究进展(一)无机盐类常见的无机盐类混凝剂有铝盐、铁盐等。铁系混凝剂主要包括三氯化铁、硫酸亚铁等品种。三氯化铁和硫酸铁等无机低分子铁盐处理水时具有生成的絮体大,混凝性能受温度影响小,处理低温水或低浊水的效果比铝盐好等优点;但也存在着腐蚀性强,稳定性差,必须和碱性物质同时使用,残留于水中的铁会使处理后的水着色等缺点,因而在水处理中的应用受到了一定限制。铝盐混凝剂使用方便,但水温低时,水解困难,形成絮凝体比较松散,效果不如铁盐。另外,对水的pH值适应范围较窄,一般在5.5一8.0,加入量一般约为几十到一百m留L。如果投加量过多,使水的pH值下降,反而会影响混凝效果,使水体变得浑浊。常用的铁盐有三氯化铁水合物FeC13・6HZO和硫酸亚铁水合物FeSO4・7HZO[3]。(二)无机高分子混凝剂1、聚合氯化铝聚合氯化铝(PAC)是常用的铝系高分子混凝剂,自20世纪60年代在日本首先进入实用阶段以来,其它国家也纷纷进行试制。聚合氯化铝对高浊度、低浊度、高色度及低温水均有较好的混凝效果,PAC的效能在许多方面优于明矾等传统铝盐,最明显的特点是投加
量小、絮凝体形成速度快且颗粒大而重、易沉淀、反应沉淀时间短、对源水水温及pH的
适应范围。而且还可以根据所处理的水质不同,制取最适宜的聚合氯化铝,它的投加量
也要适宜。PAC的生产方法较多,有酸溶一步法、中和法、凝胶法和热分解法等。除PAC外,又出现了聚合硫酸铝(PAS)、聚合磷酸铝(PAp)等高分子铝盐,以及含铝复合型混凝剂,如聚硫酸氯化铝、聚磷酸氯化铝等。聚合铝包括聚合氯化铝和聚合硫酸铝[1,2]。
2、聚合硫酸铁
70年代聚铁首先在日本研究成功,是一种多核多轻基络合物,是一定条件下铁盐的水
解一聚合一沉淀过程的中间产物。聚合铁主要有聚合硫酸铁和聚合氯化铁,其中以聚合硫
酸铁为主。聚铁同传统的硫酸亚铁、三氯化铁、硫酸铝等净化剂相比较,突出特点为:
a.具有优良的凝聚性能,絮凝体形成速度快,密集且质量大,沉降速度快,尤其对低温低浊水有优良的处理效能;b.适用水体pH值范围广,pH在4一n范围内均能形成稳定的絮凝体;c.具有较强的去除水中BOD、COD及重金属离子的能力,并且有脱色、脱臭、脱水、脱油等功效。残留的铁离子少;d.使用时腐蚀性小。二、无机混凝剂的混凝机理
无机混凝剂作用机理的探讨一直是推动其发展的根本所在,随着科学的不断发展,对其认识也得到相应的深化。对于传统铝、铁盐的混凝作用机理的认识渐趋统一,一般认为以其水解形态与水体颗粒物进行电中和脱稳、吸附架桥或粘附卷扫,而生成粗大絮体再加以分离去除。由于水解反应极为迅速,传统铝、铁盐混凝剂在水解混凝过程中并未能完全形成具有优势混凝效果的形态。无机高分子絮凝剂之所以高效的原因,在于其预制过程中形成具有一定水解稳定性的优势混凝形态为主的产物,因此区别于传统低分子盐类在投加后即可发挥其优越性能。虽然对其作用机理的研究在很大程度尚停留在经验推测之中,缺乏实证性的研究,目前正在得到进一步的阐明,并且在应用界面络合、沉淀模式乃至界面多核沉淀模式以及水体悬浮颗粒物、沉积物的结构模型的基础上,发展并建立其定量计算模式。深化无机混凝剂化学、混凝过程化学的基础研究,结合其生产工艺、工程应用中的实际问题,为无机混凝剂发展到更高阶段的必然途径。深入的研究混凝的,对其作用机理从分子反应动态学的水平予以揭示,有发展成为高度综合性、交叉性分支学科的趋势,也将是当前化学科学、化学工程科学发展的前沿领域之一。
三、结论
(一)探讨了无机混凝剂的种类及发展趋势,由于水质对混凝效果影响很大,任何一种混凝剂
都有一定适用范围,应进一步加强复合混凝剂的研制开发,以提高混凝效果,扩大应用范围。
(二)深入研究混凝机理,特别对无机混凝机理,分析现状以及提出的展建议。
参考文献:
[1]冯利等.铝盐最佳混凝形态及最佳州范围研究[J].环境化学,1998,17(2):163一169
[2]栗兆坤,汤鸿霄.聚合铝的凝聚絮凝特征及作用机理[J].环境科学学报,1992,12(2):129一13
[3]甘光奉,张依华,甘莉.高分子铁盐混凝剂的开发与应用进展IJ].工业水处理,1997,17(5):1一2.
[4]Ho K C,Hui K C C.Chemical contamination of the East River(Dong jiang)and its implication on sustainable development in the Pearl River Delta[J].Environment International,2001,26(5一6):303一308.
[5]苏滕,陈中兴,陆柱.混凝剂的应用研究现状与开发动向(一)IJ].净水技术,2000,18(3):7一9.
化学工程和化学工艺的区别范文3
【关键词】化工生产;自动化控制系统;控制
随着国内化工行业飞速向高科技、新技术方向发展,大量先进的化工装置、设备相继投入运行,同时部分传统落后的化工企业不断进行技术改造及应用新技术,其中就包括了自动控制系统的应用。化工生产过程的自动化控制的实现,可缩小我国化工行业和发达国家的差距,从而推动我国化工生产的发展。下面,就化工生产过程自动化控制系统应用进行了探讨。
1.单回路控制
单回路过程控制系统一般是指针对一个被控过程(调节对象),采用一个测量变送器检测被控过程,采用一个控制(调节)器来保持一个被控参数恒定(或在很小范围内变化),其输出也只控制一个执行机构(调节阀)。从图1所示可知,该系统只有一个闭环回路。
该系统结构简单,投资少,易于调整和投入,能满足不少化工工业生产过程的控制要求,因此在我国化工生产中应用十分广泛,尤其适用于被控过程的纯滞后、惯性小以及负荷和扰动变化比较平缓,或者对被控质量要求不高的场合。
2.串级控制
单回路控制系统解决了化工工业生产过程自动化中大量的参数定值控制问题,这种简单系统能满足生产工艺的要求,但仅适用于比较简单的单输出生产过程的控制,不能解决多输出过程的控制问题。即使对于简单的单输出生产过程,也存在这样的情况:其调节对象的动态特性决定了很难控制(如过程的滞后常数很大或扰动量很大);调节对象的动态特性虽不复杂,但工艺对调节质量的要求很高或很特殊。
串级控制系统是改善控制质量的有效方法之一,在过程控制中得到了广泛的应用。与其余单回路控制系统相比有一个显著的区别,即在结构上多了一个副回路,形成了两个闭环——双闭环。其主回路(外环)是一个单回路控制系统,而副回路(内环)则为一个随动系统。
与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多,但控制效果却有显著的提高。使系统改善了被控过程的动态特性,提高了系统的工作效率,同时提高了对一、二次扰动的克服能力和对回路参数变化的适应能力。串级控制系统结构框图如图2所示。
串级控制在化工工业生产中可以用来克服被控过程较大的容量滞后、纯滞后和非线性,也可以用于抑制变化剧烈而且幅度大的扰动。
3.前馈控制
单回路控制和串级控制都是当系统被控过程受到扰动后,必须等到被控参数出现偏差时,控制器才动作,以补偿扰动对被控参数的影响。前馈控制就是在系统扰动出现时就进行控制(图3),而不是等到偏差发生后再进行控制。其特点主要有:
a.扰动发生后,前馈控制器“及时”动作,对抑制被控量由于扰动引起的动、静态偏差较有效;
b.前馈控制属于开环控制,所以只要系统中各环节是稳定的,则控制系统必然稳定;
c.前馈控制只适合克服可测而不可控的扰动,而对系统中的其他扰动无抑制作用,因此,该控制具有指定性补偿的局限性;
d.前馈控制器的控制规律取决于被控对象的特性,因此控制规律往往比较复杂。
4.比值控制
在现代化工工业生产过程中,许多情况下会要求两种或多种物料流量成一定比例关系,一旦比例失调,就会影响生产的正常运行,影响产品质量,甚至发生生产事故。比值控制系统可以保证两个或多个参数自动维持一定的比值关系。比值控制系统方案众多,但都类似,下面以变比值为例,其控制框图如图4所示。
5.分程与选择性控制
单回路控制、串级控制、前馈控制及比值控制等都是应用在正常生产情况下的,组成系统的各部分一般工作在一个较小的工作区域内。为使系统工作范围扩大或在系统受到大扰动甚至事故状态下仍能安全生产,就必须选用分程与选择性控制。该控制是通过有选择的非线性切换方式使不同部件工作在不同区域内来实现工作范围的扩大。
分程与选择性控制可用于节能控制、扩大调节阀的可调范围、保证生产过程的安全以及稳定和不同工况下的控制。下面以选择器位于调节器之前的系统为例,其系统如图5所示。
6.结束语
化工工业是创造价值经济的重要组成部分,它不仅直接影响国计民生,还和国民经济的其他部门密切相关。因此,我们要将先进的控制方法应用到化工行业中去。但化工行业的自动化控制不是一项简单的工程,在化工生产过程中一般都是几种控制方案交错采用的,所以为了达到化工生产的整体控制效果,就要防止子控制方案脱离整体控制方案,让每一种方案都在生产过程中起到各自的作用。
参考文献: