前言:中文期刊网精心挑选了化学工程与工艺前景范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
化学工程与工艺前景范文1
随着我国的改革开放和现代化建设的不断深入,各大化工型企业建设也越来越多,各种化工原料的使用直接危害着人类健康,破坏着生态环境,而绿色化学工程与工艺的研究正是为了减少这些污染和损伤,并通过一种化学的方法使之得到改善和提高,达到促进化学工业节能目标的实现和发展。
1对绿色化学工程与工艺的开发与分析
绿色化学一直是我们的一个设想和梦想,它是要求化工企业在进行化学生产当中,不再使用那些对自然环境和人类有害的物质,不再产生“三废”的困扰,达到绿色生产的目的。从当前的现状来看,传统的化学工程与工艺不能从根本上解决和治理这些化学排放物,而且成本高,消耗大。而绿色化学工程与工艺则是通过对化学技术及方式的改变来达到促进化学工业节能目标,实现空气质量及社会环境的彻底治理。
1.1化学原料无毒性
原料是一切污染的源头,只有从源头上进行控制和改变,才能使化学污染现象从根本上得以根除,所以绿色化学工程与工艺要实现的第一个目标就是要禁止使用有毒害性的原料,把这些污染性强的原料换作一种可再生资源来代替,不仅节能环保,还可以为我国资源的节约创造条件。
1.2化学反应的选择性
大家都知道,化学反应中会产生出另外一些物质,比如说烃类选择性氧化不仅产生大量的热量,而且终产物也不稳定,可以说这种反应的选择性是最低的,而且从化学知识中我们还知道,一些产品还具有异构体的形式,要想得到更多的终产物,那么就要对其使用选择性较高的试剂,这样可以有效的降低成本,节省资源,减少污染。
1.3催化剂的高效无害性
在进行化学反应时常常会使用到另一种物质来作为反应中的催化剂,不仅可以提高其反应速度,还可以为企业创造更大的利润,便催化剂的使用也是一个重要的污染源,所以绿色化学工程与工艺中对催化剂的研究也在不断的深入,旨在开发一种既能够提高化学反应效率,更保护自然环境的催化剂。比如说分子筛催化剂、烷基化固相催化剂等等。
2绿色化学工程与工艺在化学工业节能工作中的应用及作用
2.1绿色化工技术的应用
绿色化工技术是一种没有污染性、没有毒害性、没有废物产生的技术,也可以叫做清洁生产技术,这种技术在我国的绿化化学工程研究中已经有了突破,比如说我们所常见的对城市垃圾的处理、农村用生活垃圾所建造的沼气池、风能、太阳能技术的使用等等。从清洁生产技术的范围上来看,有以下几种:生物工程技术、绿色催化技术、辐射加工技术、超临界流体技术等等,这些技术与传统的化学工程与工艺相比具有很明显的优点,对人类健康及环境保护都能起到很大的作用。
2.2生物技术的应用
生物技术也是从生物学的角度进行研究和开发的,它只要包括一些微生物、酶以及基因、细胞等方面的技术研究。从它在化学工业领域中的具体应用来看,主要有化学仿生学和生物化工。因为我们所提倡的绿化化学工程与工艺中的催化剂需要运用大自然中的一些无毒无害物质,比如说工业酶,它与其它化学催化剂相比,具有无污染、反应不强烈、终结物性能稳定、没有不良影响等等优点,所以在化学领域中的应用也得到了人们的认可和肯定。
2.3有利于环境保护的产品开发
在近年来我国的化学工程与工艺研究中,许多环境友好型的产品已经频频开发,不仅节能环保,而且具有良好的发展前景。比如说为了保护大气的臭氧层不被破坏而开发研究另一种产品来代替氟利昂;随着汽车用户的增多,控制汽油给大气带来的污染,而进行研究的无污染燃料二甲醚就是一个很好的例子,其它的诸如太阳能的使用及推广,无磷洗衣粉的上市等,都是绿色化学工程与工艺对化学工业节能的一种促进和提高,更是人类的一种进步。
2.4绿色生态产业链的打造
为了使绿色化学工程与工艺走上可持续发展之路,可以在化学工业生产上采取一些相对应的措施,打造绿色生态产业链,发展循环型经济带,这样可以进一步减少废物的排放量,实现节能环保的目的。
3结语
社会的进步需要经济发展来作为动力,但人类的健康则需要绿色环保来奠定基础,为了实现人类文明的不断升华,人民生活质量的不断提高,必须对环境资源保护问题加以重视和关注,而只有把绿色化学工程与工艺切实有效的实施下去,才能从根本上解决环境污染问题,达到节能减排、绿色生产,实现人类真正意义上的绿色低碳生活理念,推动社会的可持续性发展。
参考文献:
[1]张浩,杨顺博,马振.关于绿色化学工程与工艺对化学工业节能的促进作用探析[J].化工管理,2016,(11):211.
[2]刘冠辰.浅析绿色化学工程与工艺对化学工业节能减排的促进作用[J].科技创新与应用,2015,(34):107-108.
[3]高勃妍.论绿色化学工程与工艺对化学工业节能的促进作用[J].化工管理,2015,(09):207.
化学工程与工艺前景范文2
就其中的催化科学与工程而言,已经成为当今国际上最活跃的科技领域之一。据统计,与催化有关的产值约占国民生产总值的25%;催化剂是目前更新换代最快、经济产出比最大的技术产品之一。尤其是近年来,材料物理、表面科学、计算机模拟技术、绿色化学、生物化学和纳米技术的进步给催化科学与工程的发展带来新的活力,使之成为解决资源、环境、生命和材料等领域中科技问题的支柱科学技术。
培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。
主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。
主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。
主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。
主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。
专业发展方向:化学工程、化学工艺、精细化工。
1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学
6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学
11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学
16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学
大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。
化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。
化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。
化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。
化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。
问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?
1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;
2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;
3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;
4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;
5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;
6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。
问题2:化学工程与工艺专业的学生就业方向?
本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。
也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。
还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。
问题3:化学工程与工艺专业方向的不同有差异么?
化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。
化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。
问题4:与化学工程与工艺专业相近的专业是什么?
制药工程(主要是化学制药)。
问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?
它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。
培养德、智、体全面发展的具有开拓能力的高级工程技术人才,业务培养目标为:培养具有催化科学技术基础和掌握化学反应工程理论,具备扎实的材料科学理论和技术知识,熟悉现代化学物理研究方法和技能,了解现代科技现状与发展前景,能胜任化工、能源、材料、医药、食品、环保等领域中相关的新工艺、新材料、新产品的研究、开发、设计和工业化的复合高等工程技术人才。
化学工程与工艺前景范文3
以强化学生的工程设计能力、实践能力与创新能力为核心,重新修订教学大纲,整合相关课程,对应工程设计内容体系,构建完善的工程设计课程体系。大一为工程设计启蒙阶段,以激发兴趣为主,课程为生物工程(化学工程)概论;大二为单元设计和工程设计技能培训阶段,包含:化工原理、化工热力学、化工制图、化工仪表自动化;大三为产品设计、工艺设计和设备设计阶段,包含:生物工程(化学工程)设备、分离工程、化工设计与模拟、工艺学课程(化工工艺学、发酵工程、制药工艺学、酿酒工艺学等);大四为工厂设计和综合实训阶段,主要进行生物工程(化学工程)工厂设计和毕业设计。为适应行业的需求和时展,在各课程教学中突出工程思维和工程方法学的同时,着力介绍行业规范、标准以及新产品、新工艺、新技术、新设备,并将计算机辅助制图、计算机仿真模拟、计算机辅助设计作为主要技能进行培养。
2构建完整的工程设计实践环节
工程设计是面向对象的综合性实践活动,只有突出实践环节才能让学生锻炼能力、积累经验、有所感悟。整个工程实践环节包括化工AutoCAD制图、化工原理课程设计、化工设计Aspen仿真模拟、生物工程(制药工程)创新综合性大实验、湖北省化工设计大赛、全国“三井杯”化工设计大赛、全国大学生制药工程设计竞赛、生产实习、工厂设计项目、毕业设计。工程设计以校企组合的校内生产性实训基地(如尿素仿真实训平台、啤酒发酵实训基地、药物制剂实训平台)和校外企业实习基地(如安琪酵母生物工程专业国家级工程实践教育中心)为依托,注重选题的针对性(面向地方企业)、设计的规范性(符合行业标准)、操作的可行性(绿色、经济与安全),并将化工设计竞赛、制药工程设计竞赛融入人才培养的教学体系中,大力提高实践教学环节的实效性。
3构建合适的工程设计评价体系和管理模式
工程设计的系统性、协作性较强,因此在工厂设计和毕业设计中采用小组制、导师制、课题制进行管理、操作和评价,以培养学生的团队合作精神,即每小组5~7名学生和1~2名指导老师,每个学生完成每组设计项目下的一项子课题,最后采用学生答辩与互评、教师评价、企业专家点评等构成综合评价体系。另外,建立健全激励约束机制,考虑给予竞赛获奖和设计达优秀等级的学生相应的创新实践学分,代替相关选修课的学分,以此激发更多的学生参与工程设计的学习。
4结语
化学工程与工艺前景范文4
1.1 超临界化学反应技术
超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。
1.2 绿色化学反应技术
绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采用化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包括原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。
1.3 新的分离技术
研究从广义上说,分离强化首先是对设备的强化,然后是对生产工艺的强化,综合起来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,有利于实现可持续发展,这也是化工分离技术的主要趋势之一。古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,那就是:此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术的不断进步,分离技术也不断得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进有利于新的分离过程的深入,提高工作效率。
二、传热过程的一些新的研究进展和方向
2.1 微细尺度传热学研究进展
微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在在传热学中已经自成一个分支,发展前景广阔。当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着惟妙惟肖的变化。目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的。其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果。
2.2 强化传热过程的研究进展
这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包括发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法。
2.3 传热理论研究进展
近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长。改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一。沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着。长期以来,人们都在对液体发生核态沸腾的原因和具有高换热强度的机理进行着深入的探究。由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量。到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采用机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重。
2.4 与计算机技术相结合
计算机技术的进步使化学中大量的计算问题和数据采集分析的问题得到了解决,同时解决了人力物力和财力,也增加了数据的准确度与精确度,主要表现在计算机技术对计算流体力学和数值传热学上的主要贡献,其主要的研究方法是数值模拟法。这种方法的特点是需要大量的数据计算,而且需要大量的实验作为补充,采用计算机进行分析和计算,有利于将数据直观的表现出来,方式更加灵活多变,费用更加低廉,并且得出结论的周期比较短,对于应对此类问题计算机技术是最好的选择。
三、化学工程学科未来的发展动态
3.1 将化工过程与系统过程研究相结合
化学变化是一个复杂的过程,这是因为性质决定的,其非对称性和不平衡性打破了人们的惯性思维,使其控制因素增多,结构尺度变多,其中结构是对过程工程研究的中心问题,主要解决办法是简化其结构,使复杂的结构变得简单,更具有使用价值;首先研究特殊系统,然后推理出一般性的结论,进而推而广之,这些都为解决结构问题打下了良好的基础,解决了复杂系统不容易被分析的问题,采用整体法和还原法研究复杂的系统有利于把握系统的主要变换方向,多尺度的思考问题的方式可以将过程问题转换成平时的时间和空间问题,对研究化学工程的复杂结构有好处。化学工程的这一转变趋势预示着化学正在向着应用领域进行扩张,更加注重其实用性和价值性,而非学科本身理论的研究。这也在化学课堂上出现了明显的改革,从只有实验和理论两个过程的化学转换成有实验、有计算最后才产生结论的过程,这就需要化学与数学物理等相结合,甚至与计算机技术相结合,进而实现化学过程的更好研究。
3.2 将化学工程与材料科学研究相结合
科学的进步使大量新的技术和产品能源不断涌现,并且在先进技术的引导下得到了广泛的应用,这就为化学工程的研究提出了新的问题那就是如何为新的产业的形成和发展提供良好的服务并不断形成新的完整的理论,化学工程的发展就此进入老人一个新的发展阶段。在学科研究的方法上更多的注重学科的交叉,更多的研究材料其中包括信息和化学、生物与化学、能源与化学、环境与化学相结合的工程学科,这些都为化学工程的发展提出了新的发展方向和研究课题,为化学的发展做了良好的铺垫。
3.3 将化学工程与信息工程研究相结合
化学工程技术的热点是将化学工程与信息工程研究相结合,随着信息技术的发展,信息技术已经深入各行各业,通过计算机技术可以收集大量信息,并对此进行精细的计算,随着大量的数据的统计和分析,可以得出很多重要的规律和结论,这些规律可以用来作为提高效率和生产效益的理论依据,同时可以预见,将化学工程和材料科学结合起来进行分析必将是化学工程领域的重点研究课题,必将成为引领化学研究的主要方向。
化学工程与工艺前景范文5
1 绿色科技能有效减少温室气体的排放
目前主要造成温室效应的气体是二氧化碳,从工业革命以前人们开始应用含碳类的能源物质开始,无论是科技生产还是工业生产,知道现代的科技,即便是已经开始了全球化的大生产,每年都会由于生产而产生数十万吨的co2,这些气体被爱芳到大气中,就是造成温室效应禅城的最根本的原因。而过去并未有相本文由收集整理应的法律法规对此类问题进行规范,因此很长的一个时期,工厂对大气的这种破坏是无需承担任何责任的。
目前针对这一问题,很多化工企业都开始积极的开展新的技术,通过利用新技术以改善高co2气体排放的现状,随着投入的加大,这种现象得到了有效的控制。甚至目前已经在某些生产环节可以达到利用二氧化碳作为原料进行生产,以此降低其排放量。比如,尿素的生产过程中,化工企业就可以再生产中将co2进行收集通过一些反应进行利用。这一工艺每年就可以减排数十万吨的二氧化碳。
2 海水淡化预处理中绿色科技的应用
水是生命源泉,无论是生活还是生产,最基础的生存都离不开水。水作为社会发展的基础资源,本身有具有着有限性,尤其是淡水资源。而随着社会以及经济的发展,淡水资源曾经的利用毫无章法和度,因此世界开始面临了淡水危机这又一环境问题。中国虽然地大物博,但是相对于整个世界而言,是淡水资源最缺乏的国家之一,因此就需要寻找到可以解决这一难题的有效途径,海水的淡化技术的产生和应用不得不说是成为了解决这一问题的有效途径。海水淡化技术在初期研发阶段的应用成本较高,只有少数发达国家才有技术以及资金使用,称得上是奢侈技术,但是随着科技的发展,海水淡化的应用成本随之降低,其开始作为一种普通技术为一些发展中国家引用并应用。
淡化海水本质上就是通过一些物理方法或者是化学方法将海水中的盐分以及水分进行相互分离的过程。在对海水进行淡化的过程中不会对环境造成任何不良的影响,并且获取海水对生态也没有造成结构上的破坏,这一点和目前我国提出的可持续发展的思想十分吻合,即满足了自身的需要,同时也给后代留下了能够发展的资源以及环境。这一点就符合了绿色科技的基础理念,所以海水的淡化中的一个重要环节就是绿色化学工艺的应用。而将这种绿色科学的理念同化工相互联系的过程实则就是现代化工发展的重要方向之一。氢氧化镁在海水的预处理淡化中产生,这种物质不但环保可靠,并且成本较为低廉,具有简单的操作工艺,同时不会造成换进的二次污染,在海水的淡化效果上又十分的明显,因此应用前景十分广阔。
3 传统香精香料生产中的绿色化工的应用
香精香料不仅仅是我国日常添加剂之一,同时在国际市场上也是我国进行进出口的贸易组成主要内容。作为日常化学产品之一,香精香料也受到了经济危机的影响,由于这种影响的逐步加深,经济萧条的状况开始蔓延整个世界,因此,随着这一影响的加深,我国在香料香精的出动中,由于订单的减少,受到了一定程度的打击。
在深入地调查我国香精香料产品出口订单锐减现象的原因之后,不难发现,产品中有害杂质含量超标,是其真正并且主要的原因。造成有害杂质含量超标的原因则在于生产工艺方面的缺陷。例如提取原料的成分在产品中有残留以及包装材料的使用不当等原因。其中,提取原料的成分在产品中的残留的问题,可以通过研究和开发新的提取技术来改变。包装材料使用不当的问题,则应通过加强企业和工厂的监管力度,督促生产商家和企业反复试验,选取符合有害杂质含量标准的外包装物等方法来改善。还要牢牢掌握我国香精香料产品的优势方面,不断加强新技术的研究和其在实际生产中的应用,才能够满足生产出高质量、低能耗的香精香料产品的要求。
4 绿色化学使可持续发展战略任务逐步向前推进
传统的化工生产,给我们的生活创造了非常丰富的物质基础和能源。其在对人类历史的发展进步的工程中所做的贡献是不不忽略的。但是呢,又由于化工产品生产的原材料和生产过后的残余物中,存在着大量的有毒有害物质,这些物质又造成了很多环境污染问题以及生态平衡的失调。这样,就又阻碍了社会经济的继续发展。新世纪,面对严峻的环境污染所提出的挑战,可持续发展战略这种道路的选择,成为了历史的必然。
化学工程与工艺前景范文6
关键词:能源化学工程专业;应用型本科人才;培养模式
能源化学工程专业是研究利用化学与化工的理论和技术来解决能量转换、能量储存及能量传输问题的战略性专业。能源的高效、清洁利用将是21世纪化学科学与工程的前沿性课题,也是当前社会急需的具有广泛发展前景的新兴产业。我国于2010年开始设置了能源化学工程战略新型专业,并于2011年进行试点招生。目前针对能源化学工程专业并结合学校实际情况,对能源化学工程专业的培养模式进行了有益的探索。例如:
(1)东北石油大学对能源化学工程专业课程体系进行了构建,专业按照“通识教育+学科专业基础+专业教育+实践教学”四个层面对课程体系进行了设置[1];
(2)沈阳工程学院对能源化学工程专业学生的实践能力的培养进行了教学探讨,制定了一系列实践教学的相关规章制度,如《实验室开放制度》《实验室守则》《校内外实习管理办法》《课程设计、毕业设计管理办法》等实践教学的规章制度[2];
(3)北京化工大学对能源化学工程专业人才的培养注重学科发展的国际化交流与合作。每年邀请国际上著名的学者到能源化学工程实验室进行访问和交流,通过学术报告和互动交流,拓宽学生的国际化视野。并与多所国际著名大学建立了密切的科研合作关系和联合培养学生机制,为学生搭建了国际交流平台[3];
(4)哈尔滨工业大学能源化学工程专业教学主要侧重于学科研究方向的改革,主要包括太阳能电池材料的制备及性能研究,功能晶体材料的制备,生物质能源的开发,生物质能源与化工原料的转化研究,多晶硅高效回收新技术,发光二极管(LED)用荧光粉的研制,LED新型散热器材料的合成及LED封装材料等研究方向[4]。菏泽学院是一个应用型的地方本科院校,2012年菏泽学院化学化工系紧扣菏泽市煤炭石油资源丰富和能源化工基地建设的需要,成功地申请了能源化学工程专业,并于2013年开始招生。构建一个适应社会发展需求、具有地方特色的人才培养模式,是能源化学工程专业健康发展的基础。在高等教育大众化的背景下,应用型本科人才成为高等教育的重要对象,并占据了主导地位[5]。近年来,菏泽学院根据地方资源特点、经济发展需求和学校的师资结构特点对应用型本科能源化工专业的人才培养模式进行了构建。主要从人才培养规格、理论课程体系构建、教学方式方法革新、实践教学和学生科技创新体系的完善、考核评价方式的改进、师资队伍建设等方面进行了探索。
1人才培养规格的建构
人才培养规格是教学的前提和基础。《国家中长期教育改革和发展规划纲要(2010-2020)》明确提出:要遵循教育规律和人才成长规律,深化教育教学改革,创新教育教学方法,探索多种培养方式,形成各类人才辈出、拔尖创新人才不断涌现的局面[6]。为此应构建以学生为主体、以创新应用人才为核心,以学生全面发展为中心的多规格本科人才培养模式。为制定切合实际的应用型人才培养规格,我系深入菏泽市及周边地市各个能源化工企业进行调研,与人力资源招聘部门进行接触、对已毕业的学生进行调查反馈等,多方收集相关信息,并结合菏泽学院化学化工系师资结构特点,对我们的人才培养规格进行了定位。在调查过程中,我们发现:社会对能源化工专业的人才需求有三种类型:科研创新性,动手操作技术性和管理经营性人才。考虑到我系师资力量和学校发展目标,我们把能源化学工程的人才培养目标定为培养动手操作技术性和能源化工企业管理经营性人才。采用“一个专业两个方向”进行培养,实行“5+3”分流培养方式,即前5个学期在一起上通识课和专业基础课,后3个学期按照学生的意愿进行分开培养,主要开设专业课。同时对经营管理型的学生聘请经济系的老师开设经济管理型方面的课程。
2课程培养体系的构建
课程体系直接关系到培养人才的质量。能源化学工程是一门内容丰富而又广泛的科学,是涵盖能源、化工、环境和材料的交叉学科。课程体系按照“通识教育+学科专业基础+专业教育+实践课”四个模块设置,注意学科前沿和知识体系的完整性,构建具有地方特色的厚基础、宽口径、重视学科交叉的课程体系。应用型人才培养必须重视实践课的建设。在课程体系构建中,我们十分重视实践课的比例,规定不少于总课时的20%。课程除了基础课程实验、专业课程实验、暑假实习、毕业实习、生产实习,毕业论文设计外,还应增加大学生挑战杯竞赛、大学生科研基金项目、大学生创业计划项目、开放实验室等项目。教学是基础,是传授知识;科研是创造知识,是教学的延伸和发展[7]。组织学生积极参加全国大学生化工设计竞赛、数学建模竞赛、机械设计竞赛、结构设计竞赛、大学生挑战杯赛等竞赛项目。其目的是以竞赛为载体,把探索精神、创新技能、动手能力、合作能力、针对具体实际问题提出解决方案的能力作为培养目标。这些竞赛对于培养我国本科生的科研实践能力和创新精神起到了积极作用[18],加强了学生应用型能力的培养。
3教学方式方法的革新
紧密结合人才培养目标,构建全方位的教学改革模式。在教学方法上,根据“多元智力理论”和应用创新型人才成长规律,进行教学方式的改革,结合企业生产实例,采用范例教学改革模式,使学生在实践体验中感受应用创新型人才成长的过程,倡导“做中学”,使学生在小组合作比赛中体会自己的成长。在教学实践中可采用“项目活动法”,在项目设计过程中,教师仅起指导作用,学生可以自主查阅资料并开展与项目有关的研究性活动和合作学习。
4实践教学和科技创新体系的完善
实践教学和学生科技创新是培养应用创新型人才的重要环节。构建多层次的包括校内实验、实训、课程设计、参加科技创新竞赛、毕业设计,校外工厂见习、项目合作导师制、校外实习的“双导师”制以及校企合作协同培养制度,切实加强学生实践能力和科技创新能力的培养[9]。“双导师”制是指学生的实习过程中,由学校教师和企业老师共同指导,使学生对工厂实际生产的流程和工艺有一个全面清楚的认识,培养学生运用所学知识分析工程问题和工程实践应用能力。现在我们已与菏泽市的玉皇化工集团、洪业化工集团、多友科技等企业合作建立了10多处校外实习基地。双导师制的实行,加强了校企结合,有力地培养了学生解决工程问题的能力,避免了学生“所学”和企业“所需”脱节的问题,实现了学校培养和企业所需人才的对接。
5考核评价方式的改进
评价是学科教学的指挥棒。在能源化学工程专业课程评价过程中,采用过程评价与终结性评价相结合的评价方式[8]。对于通识课和专业基础课程,采取以闭卷考试(70%)和平时成绩(作业、小论文、实践报告)相结合为主;对于专业课,可采用闭卷考试、开卷考试和设计(论文)相结合的方式进行考核;对于选修课,采取教师自主考核与院系抽查相结合的方式;对于实习和实践课程,结合“双导师制”,采用化学化工系与企业共同考核的方式;对于实践课程,采取小组提交实践报告并答辩的方式进行评价。变单一评价为多元评价,从而调动学生的学习积极性。
6“双师型”师资队伍的建设
教师的“复合”能力(高深的专业理论和丰富的工业实践操作技能)是培养学生应用创新能力的前提和基础。为培养学生的实践创新能力,结合专业发展实际,构建“外引+内培+实践锻炼”相结合多渠道的“双师型”教师的培养方式,加强与高校、科研院所和企业的联系,切实提高教师的业务水平。近三年来,我系派出4位教师到能源化工企业进行业界锻炼,培养教师的工程实践能力,使教师明确企业对人才规格的需求,同时加强与企业之间的科研合作。我们还聘请企业的业务骨干为我们的兼职教师,不定期地给学生开设讲座和实践课。同时,我们鼓励年轻教师考取化工安全评价师、化工工程师、设备设计工程师等相关专业的职业资格证书。这些措施有力地培养了教师的工程实践应用能力,加强了“双师型”师资队伍的建设。总之,根据社会发展对能源化学工程人才的需求和菏泽学院建设应用型地方特色明显建设的目标,化学化工系根据师资结构特点,对能源化工人才培养模式进行了探索和改革,目前取得了一定的经验。而对如何更高效的进行校企合作,建设产学研联合协同创新体系,打造有能源化学工程专业特色的培养模式和体系,是我们继续努力和探索的目标。
参考文献
[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(6):209-210.
[2]赵海,刘瑾,董颖男,等.应用型本科能源化学工程专业建设的实践与思考[J].沈阳工程学院学报(社会科学版),2015,11(4):547-550.
[3]北京化工大学能源化学工程[EB/OL].
[4]哈尔滨工业大学能源化学工程专业介绍[EB/OL].
[5]邵波.论应用型本科人才[J].中国大学教学,2014(5):30-34.
[6]董泽芳.高校人才培养模式的概念界定与要素解析[J].大学教学科学,2012(3):30-36.
[7]任成龙.论科研实践与大学生创新能力的提高[J].南京工程学院学报(社会科学版),2010,10(1):48-51.
[8]陈彦广,韩洪晶,陈颖,等,基于国际化、工程化能源化工工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):224-227.