新能源科学与技术范例6篇

前言:中文期刊网精心挑选了新能源科学与技术范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

新能源科学与技术

新能源科学与技术范文1

【关键词】体能训练;技术创新;理论创新;科学探究

1、前言

在现代技术高度分化的与高度综合的今天,体育科学技术的分工越来越细,体育科学研究的专业化程度越来越高,运动员身体素质的训练作为竞技体育一项重要的内容,在国内外引起了广泛的高度重视,运动员身体素质的训练与科学技术的结合也越来越紧密,不同的运动项目除了有自身的特点外,对运动员身体素质的要求是不尽相同的,所以打破传统的训练模式,结合不同项目的特点创新训练理论,进而创造出不同的技术训练,已经祸不单行。在体能训练中理论创新除了结合运动解刨学、运动生理学、运动生物力学、运动心理学、运动康复学外,还要结合运动训练学的特点。在实践中不断总结经验对已有的训练理论加以否定肯定再否定。最后形成成熟的运动员身体素质的体能训练理论。

2、体能训练伴随竞技体育和人体运动能力需求的变化而发展的

有关“体能”的概念来源,早在1964年东京奥运会期间国际运动医学会就成立了“国际体能测试标准化委员会”,并制定了标准体能测试的六大内容;身体资源调查、运动经历调查、医学检查与测试、生理学测试、体格和身体组织测试、运动能力测试等。对此拉森提出了构成运动员体能的10大因素包括:防卫能力、肌力能力、肌爆发力、柔韧性、敏捷性、协调性、平衡性、技巧性和心肺耐力。同时,1983年熊斗寅和卢先吾合译的《体育运动词汇》中的身体负荷能力Physical capacity 也译为身体能力或“体能”。在1984年出版的《现代汉语新词典》中有关“体能”的解释为:指人体个器官系统的机能在体育活动中表现出来的能力。包括力量、速度、灵敏、耐力和柔韧等基本身体素质与人体的基本活动能力走跑跳投等两部分构成。何雪德1等根据“体能”一词在文献中出现的时间和频数,推测“体能”概念可能是1983年项群理论的提出后,体能与技能相对应而存在,体能这个概念日益被教练员、运动员所接受和使用,同时在对外学习交流时“体适能”的传入和中国特色化,体适能也日益融合到体能概念中,并逐渐流传开来,确定下来,特别是1994年开始对足球运动员体能测试”的炒作,使“体能”一词家喻户晓。美国健康体育休闲舞蹈学会对适能的定义是:适能是个人运作的能力,适能好的人具备下列条件:配合遗传的适度器官健康以及应用现代医学知识的能力。足够的协调、体力和活力以应付突发事件及日常生活。团体意识和适应团体生活能力。充分的知识和了解以决定面临的问题及其可行的解决办法。参加全面的日常活动应有的态度、价值观和技巧。有利于民主社会的精神和道德特质。适能包括5个部分体适能、情绪适能、社会适能、精神适能、文化适能2。

3、体能训练所应遵循的科学原理和方式

在体能训练领域国内外现如今也是百花齐放,有很多门派对于同一训练的效果所使用的训练方式持不同的意见,这就要求有基本的训练理论产生,在中国的体能训练中有普遍出现大训练量,大训练强度的状况。这是因为教练员大多对于体能训练所遵循的原理有所不懂,在体能训练中强调一节训练课的时间不能超过90分钟,纵观所有的运动项目,除了马拉松比赛时间超过90分钟之外,大多项目都是在90分钟之内完成,这一原则的把握就要求在体能训练中时间不要过长,另外一条训练原则要求在训练当中要求运动员在训练中所做的动作姿态控制,假如锻炼的是运动员的肱二头肌,运动员手持哑铃必须身体保持正直,建议坐在板凳上进行练习,为什么要坐着却不是站在呢?这是因为在直立的情况下训练的着重点不如坐着,因为站着的时候下肢在神经调配下会自愿参加到训练中帮助上肢运动,这应的训练效果就有违背训练的最终目标,另外一个就是训练中要注意呼吸的调节,在训练中有很多训练状况是运动员自身感觉负荷很大,就会要紧牙关,屏住呼吸,这样就打破了正常的呼吸节奏,进而影响到血液的载氧能力。中国运动员有一个显著的特点就是力量大,但却容易受伤,这种情况不能归结到运动员的特质状况不好,这是因为人体中639块肌肉,在传统的运动训练中有很多小肌肉群得不到锻炼,进而导致人体整个运动链中力的传导流失很多,比如排球运动员的主公手,就必须有发达的上肢力量作为扣球的保障,但是对核心躯干的力量训练也不容忽视,因为很多球都是在跳起的状态下扣杀球,在空中运动员躯体处于失重状态,将全身所有的力量集中在上肢,身体躯干保持直立,通过下肢的起跳将下肢力量传导到上肢,经过核心躯干,整个运动链都是处于一个运行状态,才能挥出有力的扣杀球。最后在训练中姿态的控制还有预防运动伤病困扰的作用,比如一个做深蹲的运动员,在承载很大负荷以后做蹲起,膝盖如果超过脚尖,那么躯干所承受的压力对膝盖的损伤将会最大,因为阻力臂大于力臂。这时候承受的负荷最大。再一个就是起的时候注意发力点,做蹲起要到达的的训练效果是强化膝盖周围的肌肉,进而保护膝盖。但是很多运动员的膝盖经过大力量训练之后都会膝盖有损伤。根据上述的例子可以肯定的到处训练原则的遵循,是与运动训练理论的支持有关的,这些训练原则都是根据人体在运动中生物力学,生理学等等紧密联系在一起的。

4、结语

原理是人们对训练认识的结果,是对规律的反映。原理是主观的反映客观规律。是人们在认识和实践过程中,为了自觉地按照客观规律办事,就会依照相应的原理去制定一些行为规范,这些行为规范就是原则。训练原理的产生也同样遵循上述规律,训练规律它本身是客观存在的。因此,人们要把握运动训练规律,掌握训练原则。3运动训练是一个长期的系统的训练过程。体能训练始终都是运动训练过程中不同训练年度,不同运动项目其身体训练的内容、方法手段、比重、负荷量也有所不同,就是在一个训练年度里因为不同的训练时期,不同的训练阶段,不同的个人特点而有所不同。在体能训练中有很多训练原则就是遵循哲学中的原理比如说;循序渐进,在运动训练中对于一项训练内容的训练讲究一个循序渐进的这是因为人体的生理反应是有周期性的同样一个刺激在长时间的一个刺激都身体就逐渐适应,如果不调整符合就不会有新的刺激参与到训练中,这样就失去训练效果。系统训练,为什么要系统训练,这是因为运动员是一个有机体,在做出某一个动作的时候,全身上下都在协调配合完成动作,另外运动员的身体也是逐渐适应训练,假如一开始就进行爆发力力量训练的时候,很容易受伤,并且不会出成绩,这是因为运动员连基本的力量训练都没有进行,爆发力是力量与速度的结合,没有力量谈何爆发呢!从实际出发,就涉及到运动的项目实际,运动员自身条件的实际,目前所处状态的实际,在训练中就必须要有针对性的,全面的科学的处理好专项训练。

【参考文献】

[1]何雪德,龚波,刘喜林.体能概念的发展演绎着新时期训练思维的整合[J].南京体育学院学报,2005,19(2):9-13.

新能源科学与技术范文2

关键词:课程体系 新能源科学与工程 专业建设 光伏技术

中图分类号:G642.3 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.023

新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展,培养新能源方面专业技术人才已经成为当务之急[1-3]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,目前处于初步形成和探索阶段,没有现成的经验和模式可以借鉴。明确准确的培养人才定位,形成可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的一项重大课题。

1 新能源科学与工程专业存在的问题

新能源科学与工程专业是2011年开始招生的战略性新兴产业专业,大部分高校都是在原有能源与动力工程专业基础上开始几门新能源领域相关的课程,专业培养方向、课程体系设置等方面存在不少问题。

第一,专业定位、培养方向模糊。在原有能源与动力工程专业基础上开设几门新能源领域相关的课程,培养出来的学生无法满足企业对专业人才的需求。

第二,设置的专业基础课程与专业课程的知识结构不成体系、不能相互支撑。新能源本身涵盖学科知识领域广,学生学习困难,难以达到理想的学习效果。

第三,缺乏合理的实践、实训体系。新能源技术涉及到多个领域,多种技术,要想达到理想的教学效果,培养合格的具备实践应用能力和创新能力的复合型人才,必须开设多种实践、实训教学,但教学设备状况根本无法满足人才培养的需求。

2 新能源科学与工程专业人才培养方案的制定思路

江苏是光伏产业大省,立足地方,结合光伏产业背景,构建常州工学院新能源科学与工程专业的课程体系,探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。

第一,依据学校创新型应用人才培养目标,结合新能源技术的理论与实践特点,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色,为教学改革和创新型人才培养引领方向。

第二,根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。

第三,以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。

3 新能源科学与工程专业人才培养方案构建

3.1 结合江苏省的光伏产业背景,以及学校的实际情况明确培养方向

围绕常州的新能源产业背景,尤其是光伏产业,依托常州新能源学院,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。

3.2 以“新能源产业链”为主线,构建纵横协同的课程体系

依据“以人为本,因材施教,学、做、创并举”的教学理念,构建纵横协同教学课程体系。纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。

3.3 以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系

以“实践创新能力培养”为主线构建“分层次、递进式”实践能力训练体系。将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。

4 结语

紧密围绕长江三角洲地方产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。

参考文献:

[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12):5-6.

[2]王彦辉,齐威娜.新能源产业人才培养存在的问题及对策[J].中国成人教育,2010,(2):54.

[3]王永,张渊,刘浩,程超.长三角地区高职光伏专业建设研究[J].职业教育研究,2012,(2):31-32.

作者简介:熊超,常州工学院光电工程学院,江苏常州 213002

袁洪春,常州工学院光电工程学院,江苏常州 213002

新能源科学与技术范文3

据了解,

“新能源科学与工程”是高校根据国务院关于加快培育发展战略性新兴产业的决定而新设的。国务院提出的七大战略性新兴产业包括节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业、新能源汽车产业。其中,对于新能源产业,国家要积极研发新一代核能技术和先进反应堆,发展核能产业。加快太阳能热利用技术推广应用,开拓多元化的太阳能光伏光热发电市场。提高风电技术装备水平,有序推进风电规模化发展,加快适应新能源发展的智能电网及运行体系建设。因地制宜开发利用生物质能。

2011年,“新能源科学与工程”专业将在南京理工大学、华北电力大学、东北大学、河海大学、浙江大学、华中科技大学、中南大学、重庆大学、西安交通大学、上海理工大学、江苏大学等十所高校“生根发芽”。仅江苏就有3所高校设立了这个专业。国家战略性新兴产业把新能源产业作为其中的一部分提出来,可见其重要性,为什么这个产业会受到这么关注?新兴专业学什么?就业前景怎样?本文将对“新能源科学与工程”专业的相关状况做个详细分析,为考生了解、有的放矢的报考服务。

发展前景

东北大学博士生导师蔡九菊教授认为,发展新能源符合社会发展的需要,市场前景广阔,同时相关的专业人才需求量大。近年来我国经济持续高速增长,传统能源消耗量大幅增长,引发的能源短缺和环境污染等问题成为制约我国经济又好又快发展的瓶颈,为此,发展新能源产业势在必行。一方面,发展新能源产业孕育着巨大的投资机会,将有效拉动经济增长;另一方面,也可以有效地改变经济增长方式,引领中国经济走向低碳化。

目前,中国大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%,规划到2020年,中国在新能源领域的总投资将超过3万亿元。虽然我国新能源产业迅速发展,然而推动新能源行业前进的人才供给却显得捉襟见肘。高素质专业人才和核心技术的缺失,已严重阻碍了我国当前新能源产业的健康发展。据估算,到2020年在风电领域的从业人员就将会有几十万,其中包括几万名专业人员。根据《核电中长期发展规划(2005―2020)》,在未来10年内,国家每年平均要开工建设5-8台以上的核电机组,预计每年对核电人才的需求有数千人,而全国每年相关专业的毕业生总量不超过500人。对于快速发展的太阳能产业而言,人才供应同样面临严重不足。因此,亟待加大新能源产业人才的培养力度,以满足新能源产业发展对高素质人才的迫切需求。

专业培养目标

新能源科学与工程专业面向新能源产业,根据能源领域的发展趋势和国民经济发展需要,培养在新能源科学研究及其利用的技术开发与实施等方面既有扎实的理论基础,又有较强的实践和创新能力的专门人才,以满足国家战略性新兴产业发展对该领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。学生的修业年限为4年,对于完成培养要求者授予工学学士学位。

专业课程体系

新能源科学与工程专业在课程内容体系的设置上紧密结合培养目标要求,既注重“厚基础”,突出基本理论与方法,又注重“宽方向”,丰富课程知识结构。注重学生“知识结构”的构建和“能力结构”的形成。

理论部分:在基础教育系列中重点强调基础性与综合性相结合的原则。包括高等数学、大学物理等工程技术基础课群;大学外语、原理等社会科学课群。在专业教育系列中重点遵循厚基础、宽口径的原则。包括工程热力学、流体力学、传热学、能源系统工程、可再生能源及其利用、光伏科学与工程、风力发电原理、生物质能工程、核能利用基础等专业平台课群;光伏材料与太阳能电池、风力发电场等专业选修课群等。

实践部分:重点培养学生的独立思考能力、动手能力和工程实践能力。单独设立“能源工程综合实验”课程,目的是充分利用学科的开放式实验室,指导学生开展设计性、综合性实验项目,培养学生发现问题、解决问题的创新能力。

毕业生就业去向

毕业生就业前景广阔,可在核能、风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。

如河海大学主修课程包括:理论力学、材料力学、机械设计基础、电工技术基础、微型计算机原理及应用、工程热力学、气象学、太阳能发电电气设备与系统、太阳能发电并网技术、项目及企业管理等。毕业生就业方向:培养太阳能利用工程系统设计、研究、运行、施工管理等方面知识的高级工程技术人才。

南京理工大学主要以新能源的能源转换过程、高效清洁能源利用与功率转换技术为核心,培养掌握上述领域基础知识和专业技能、具备良好综合素质的高级工程技术人才,为太阳能、风能电站和供电公司等电力部门提供后续人才及技术支持。南京理工大学对新能源科学研究与人才培养已有25年的历史,包括太阳能、风能以及能效节能的可持续能源投资中,还有一个巨大的市场有待开发――能效和节能。可再生能源的开发在中国有广阔的空间,新能源科学与工程专业人才的缺口很大,目前学校在此方向培养的硕士生一入校就被用人单位盯上。

新闻链接

北大世界新能源战略研究中心成立

2011年3月2日上午10点,北京大学世界新能源战略研究中心正式成立。该研究中心将立足于国际政治研究,密切关注世界新能源发展趋势,重点分析世界上主要能源消耗大国的新能源战略,为国内相关的部门和企业提供国际新能源合作方面的评估和咨询服务。中心致力于整合北京大学校内外国际关系领域和新能源战备与技术领域的专家、学者,联系国内外有关政府部门、新能源企业,努力形成一个跨学科、跨领域、跨地域的研究平台,成为在世界上具有影响力的国际新能源战略与国际合作的学术研究、资料信息、学术交流、人才培养及咨询服务基地。

新能源科学与技术范文4

关键词:风力发电;太阳能发电;人才需求;风能与动力工程;新能源科学与工程

作者简介:陈建林(1975-),男,湖南浏阳人,长沙理工大学能源与动力工程学院,副教授;陈荐(1967-),男,湖南衡阳人,长沙理工大学能源与动力工程学院,教授。(湖南 长沙 410114)

基金项目:本文系长沙理工大学教研教改项目(项目编号:JG1236)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)22-0020-03

风电和太阳能发电是我国战略性新兴产业之一,发展风能与太阳能也是我国实现传统化石能源为主过渡为可再生能源和清洁能源为主的必然之举。近年来,我国风电与太阳能发电迅猛发展,对新能源产业人才提出迫切需求。自2006年以来,我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办“风能与动力工程”本科专业;按照2010年《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校又设置“新能源科学与工程”、“新能源材料与器件”等新能源产业相关的本科专业;2013年,根据教育部要求,“风能与动力工程”专业将统一更名为“新能源科学与工程”专业。面对新能源产业发展需求和我国新能源产业人才培养现状,本文对“风能与动力工程”专业过渡为“新能源科学与工程”专业的人才培养模式进行探索与实践。

一、我国风电产业发展现状

1.总体装机情况

自2007年,我国风电装机容量呈高速增长趋势。如表1所示为2001~2012年我国新增及累计风电装机容量(数据来源:CWEA)。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万千瓦,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万千瓦;累计安装风电机组53764台,装机容量达到7532万千瓦;风电并网总量达到6083万千瓦,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。

图1 2001~2012年中国新增及累计风电装机容量

至2012年上半年,我国规划建设的百万千瓦级、千万千瓦级风电基地包括甘肃酒泉基地(首期380万千瓦)、蒙东基地通辽开鲁基地(150万千瓦)、蒙西达茂巴音基地(160万千瓦)、河北承德基地(100万千瓦)、新疆哈密基地(1080万千瓦)的建设项目已部分或全部完成。此外,全国还有6个百万千瓦级风电基地正在组织开展建设前期工作,分别为宁夏贺兰山基地(450万k千瓦)、甘肃武威民勤红沙岗基地(100万千瓦)、吉林四平大黑山基地(170万千瓦)、锡林郭勒基地(300万千瓦)、兴安盟桃合木基地(200万千瓦)、呼伦贝尔基地(250万千瓦)等。

至2012年底,全国累计核准风电项目1651个,累计核准容量9040万千瓦(含国家核准计划外项目517万千瓦),其中累计核准容量2084万千瓦,居全国之首。2012年上半年全国风电累计吊装容量6190万千瓦,累计并网容量5572千瓦,在建容量3468万千瓦,并网容量占核准容量的62%。其中内蒙古风电并网容量突破1500千瓦,领跑全国,河北、甘肃、山东、黑龙江、江苏、新疆、山西、广东、福建等省区并网容量也均超过100万千瓦。

2.风力发电投资企业情况

2012年上半年,国电集团新增并网容量190万千瓦,累计并网容量1172万千瓦,继续保持全国风电并网容量首位;华能集团新增并网容量100万千瓦,累计并网容量759万千瓦,居第二;大唐集团新增并网容量101万千瓦,累计并网容量675万千瓦,居第三。五大发电集团累计并网容量3170万千瓦,约占全国并网容量的57%。2012年上半年全国投资企业基本保持稳定发展状态,同比2011年上半年并网容量降低了约16%。表1所示为2012年上半年主要投资企业并网容量统计情况。

3.风电机组制造商情况

大规模风电基地建设,为我国风电机组制造商开拓了广阔的市场。2012 年中国风电新增装机容量排名前二十的企业几乎占据了国内98%的市场份额,其中金风新增风电装机容量最多,达到2521.5兆瓦,占据19.5%的市场份额。2012 年,我国风电新增装机容量排名前三的企业分别为金风、联合动力和华锐。2012年中国风电新增与累计装机排名前二十的机组制造商分别如表2与表3所示。

另外,我国海上风电也取得较大进展。截至2012年底,中国已建成的海上风电项目共计389.6兆瓦,是除英国、丹麦以外海上风电装机最多的国家。我国海上风电开发提供风电机组的制造商中,华锐、金风、Siemens 所占份额较大,机型主要以2MW以上的风电机组为主。

二、我国风电人才需求及培养现状

风电产业的高速增长也带来了风电人才的短缺。我国的风电人才需求主要为三个方向:一是风电开发企业,如国电、华能、大唐、国华、华电、中电投、中广核、华润等下属的风电场,主要从事风电场运行与维护方面的工作;二是风电机组制造商,如华锐风电、金风、广东明阳、国电联合动力、湘电风能、Vestas、上海电气、东汽、Gamesa、GE等,这类企业一般需要高端的风电研发人才;三是风电规划设计或建设单位,主要从事风电场的规划、设计和施工等方面的工作。

目前,我国风电人才培养大体上形成了三个层次的格局:第一梯队是博士、硕士研究生培养,主要由国内各高校及研究机构借助风电领域的课题研究培养和造就一批具有较高学术水平、创新能力的风电领域高层次人才。第二梯队是本科生培养。据统计,自华北电力大学2006年创办我国第一个风能与动力工程本专业以来,包括长沙理工大学、河北工业大学、内蒙古工业大学等,全国已开设风能与动力工程本科专业学校有16所(2013年起,“风能与动力工程”专业更名为“新能源科学与工程”专业)。第三梯队是高职生。高职院校主要培养从事风电机组制造、风电场运行与维护的一线技能型人才。

从长沙理工大学(以下简称“我校”)首届风能与动力工程专业毕业生就业考研与出国情况来看,毕业生出现不同层次的走向。截至2013年3月20日,风能与动力工程专业2009级毕业生63人,已签约49人,就业走向主要为中国大唐集团、国电集团、华能集团、电力投资集团、华润集团等发电企业的下属新能源公司,少部分为风电机组制造商和电力建设单位;读研7人,分别被华北电力大学、中南大学、湖南大学等大学预录取;出国深造2人,分别为丹麦科技大学和德国汉诺威大学预录取。从目前人才需求角度来看,由于近几年风电项目的迅速扩张,风电行业对风电场运行与维护的技能型人才有较旺盛的需求。

在风电大规模发展的同时,近几年我国太阳能发电也迅速扩张。截至2012年底我国累计光伏装机容量达到7.5GWp,预计2013年将新增光伏装机容量为10GWp,计划2015年新增光伏装机容量为40~50GWp,2020年新增80~100GWp。风电和太阳能发电作为新能源中两支主力军,出现并驾齐驱的局面,产业发展必然对专业人才提出迫切需求。2013年,教育部统一将“风能与动力工程”专业更名为“新能源科学与工程”专业。本专业也将面向更宽广意义的新能源产业需求,对专业培养方案进行调整。

三、新能源科学与工程专业人才培养模式的探索与实践

本科教育既是培养工程技术人才的中坚力量,又承担着为行业高端人才培养打基础的重要任务。本科生的优势在于理论基础、思维方法和发展潜力,但缺乏的是技术细节方面的训练。因此应始终以培养学生“基础理论扎实、工程实践能力与创新能力强为目标。从新能源产业自身发展角度来说,需要一批具有宽广知识体系、能够引领新能源技术发展的高水平创新型复合人才出现。新能源科学与工程本科教育应该既注重专业的基础性,又要注重工程实践性。为此,我校能源科学与工程专业人才培养模式在以下几方面进行了探索与实践。

1.以“厚基础、宽口径、强能力、高素质”为原则确立人才培养目标

2009年首届招生以来,本专业依托本校能源电力优势学科,立足新能源国家战略性新兴产业,面向风电产业人才需求,确定了“培养德、智、体、美等全面发展,基础扎实,知识面宽,有较高的综合素质、工程实践能力和创新能力强,具备较强的计算机应用能力和较高外语水平,系统掌握风能与动力工程专业基础理论和基本知识,能胜任风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风力发电项目开发等风能与动力工程专业的技术与管理工作,并能从事其他相关领域的专门技术工作应用型高级工程技术人才”的人才培养目标。2011年,本专业被确定为湖南省省级特色专业。2013年,根据教育部对本科专业整理工作的统一部署,将“风能与动力工程”专业将更名为“新能源科学与工程”专业。本着“厚基础、宽口径、强能力、高素质”的原则,对专业培养方案做了相应的调整,但仍然保留“风能与动力工程”专业的特色,以风力发电为重点,涵盖太阳能光伏/光热发电等新能源知识体系,培养具有宽厚理论基础和创新精神、实践能力强的应用型高级工程技术人才。

2.注重基础性和实践性相结合设置课程模块与培养环节

根据学校的特色和优势,编制风能与动力工程人才培养计划,共开设必修课35门,开设选修课23门,现已开出课程门数为58门,学生需选修33学分选修课程,选修课在总学分中的占比为19.6%。设置了理论力学、材料力学、风力机空气动力学、机械设计基础、电机学、电路理论、自动控制原理、风力发电原理、光伏发电原理与应用、太阳能热利用原理与应用等主要理论课程和计算机辅助设计、电工电子技术、微机原理与接口技术、风资源测量与评估、风电机组设计与制造、风电机组控制与优化运行、风电场电气工程、海上风力发电等技术类课程;以金工实习、电子工艺实习、机械设计课程设计、风电场电气工程课程设计、风电机组设计与制造课程设计、风电场认识实习、检修拆装实习、仿真实习、运行(毕业)实习、毕业设计(论文)等作为主要实践教学环节。风能与动力工程专业在教学环节的设置上实践教学贯穿全程。共4次集中实习,课程模块与培养环节关系如图2所示。

图2 风能与动力工程专业课程模块与培养环节关系

3.在工程实践中培养创新意识和创新能力

创新型人才是支撑和推动新能源产业发展的主要动力。创新源于实践,在工程实践中培养创新意识和创新能力。长沙理工大学经过多年的探索与实践,构建了培养“具有创新精神的应用型人才”的学生能力结构体系、能力培养的实施方案、实践教学体系以及管理模式,提出了“工程基础训练+工程创新训练+大工程意识训练”的工程教育模式。基于工程教育理念,形成了“三层次、四模块、三结合”的实践教学体系,即实验、实习、设计等主要实践教学环节按基础训练、提高训练、综合训练三个层次进行系统设计;将实践教学内容分为实验、实习、设计、课外实践四个模块;采用课内外、校内外、第一课堂与第二课堂三结合的方式组织实践教学。

新能源科学与工程专业是一个实践性很强的专业,在办学过程中十分重视实践教学,并建立了稳定的校内校外实习实训基地,通过加强实践教学培养学生的创新意识和动手能力。

(1)校内实习基地。建立校内“风电机组运行特性分析实验室”、“风力机变桨控制实验室”、“风力机偏航控制实验室”、“风力机组检修拆装实验室”、“大型风电场运行仿真实验室”、“风力机叶片振动特性实验室”、“风力机设备腐蚀与磨损实验室”、“光伏发电实验室”等专业教学实验室,为专业实验课、认识实习、拆装实习、仿真实习提供良好的条件。

(2)校外实习基地。根据本专业人才培养目标和要求,制定与社会发展需要相适应的人才培养方案,与大唐华银城步南山风电场、华电郴州仰天湖风电场、中电投九江长岭风电场、大唐漳浦六鳌近海风电场、湘电集团有限公司、湖南兴业太阳能有限公司、北京木联能软件技术有限公司等省内外相关企业共建“风能与动力工程”专业,形成学校与企业产、学、研全面合作的长效机制。风电专业骨干教师共18人次先后到内蒙古华电新能源辉腾锡勒风电场、福建大唐漳浦六鳌近海风力发电场、河南南阳方城风电场、新疆电力设计院、大唐甘肃酒泉风电场等风力发电企业进行技术交流和科技服务。风电专业学生在华电郴州仰天湖风电场、宁夏贺兰山风电场与太阳山光伏电站等基地开展了丰富的暑期实践活动。依托专业实验室,学生开展了大量科技创新实践活动,专业教师指导学生开展了国家级(共4项)、校级(4项)“大学生研究性学习与创新性实验项目”的研究工作;参加全国大学生节能减排社会实践与科技竞赛、“挑战杯”湖南省大学生课外学术科技作品竞赛等各类科技性竞赛活动,获得较佳的成绩。

4.转变技术类或实践类课程的学习过程

本科教育的缺失是职业技能或技术细节方面的训练。理论知识宽广但实践动手能力差是目前本科教育存在的较普遍现象。本科毕业生感觉学了很多东西,又感觉什么也没有学到,学到的都是一些理论或概论性的东西。相反,高职院校的职业技能针对性很强,注重实际动手操作能力的培养,而弱化理论知识体系的教育,相比于本科生,高职生在职业技术方面更容易上手。但如果本科生像高职生那样培养,势必过于狭隘,也违背了大学本科教育的初衷。本科生的优势就在于理论基础、思维方法和发展潜力。因此,本科生的理论基础课程的学习可以沿用传统的书本教学为主,培养思维方法;技术类或实践类课程学习则应放弃那种“先书本,再实践”或“只有书本,没有实践”的教学方式,而应遵循“在实践中学习”的原则。针对不同的专业特点有选择性地开设或加强职业技能型的课程。对于本专业来说,则应加强计算机绘图、电气与控制、模拟仿真、机械设计与制造等模块的技能培养。如此,本科生则不但具有宽广的理论基础,而且具有较强的职业适应能力。

四、结论

风电与太阳能发电作为我国战略性新兴产业,呈现蓬勃生机的发展局面。新能源产业发展为新能源科学与工程专业毕业生提供了广阔的就业空间,同时本专业人才也必将成为推动新能源产业发展的动力。本专业应以“工程实践能力”为核心,夯实理论基础,强化实践能力和创新意识的培养,支撑新能源产业的发展。

参考文献:

[1]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].风能,2013,(3).

[2]李俊峰,蔡丰波,唐文倩,等.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.

[3]袁剑波,郑健龙.工程实践能力:培养应用型人才的关键[J].高等工程教育研究,2002,(3).

[4]李录平,张拥华.基于工程意识和能力培养的理工院校实践教学改革与探索[J].黑龙江教育,2010,(4).

[5]李录平,张拥华,周键,等.高等学校实践教育多维度理念探析[J].中国大学教育,2011,(11).

[6]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31).

[7]姜玉立,何伟军.我国风电人才培养现状、问题及对策[J].中国电力教育,2012,(24).

新能源科学与技术范文5

关键词:工程教育认证;地方高校;新能源科学与工程;人才培养

地方应用型高校因在办学历史、经费投入以及社会关注程度等方面与高水平研究型大学有较大的差异而使其办学水平、师资队伍、实践条件以及生源质量等方面均处于不利地位,这导致其人才培养质量特别是学生的创新实践能力明显不足[1-2]。工程教育认证背景下,如何针对地方高校办学所存在的问题,结合地方经济与社会发展的实际需求,培养具有地方高校自身特色、符合工程教育认证要求的卓越工程技术人才已经成为地方高校亟待解决的问题。

1地方本科高校人才培养现状

工程教育认证强调“以学生为中心、产出导向、持续改进”的OBE理念。多数地方本科高校在现有人才培养过程中,存在着与地方经济产业联系不够紧密、人才培养目标定位不清晰、专业特色不突出、课程体系设置不科学、教育教学方式不灵活、考核评价方式过于单一、实验室建设和校企合作较薄弱、协同育人机制不健全、人才培养质量评价、反馈和保障机制不完善等诸多问题[3-5],和工程教育认证要求还存在着较大差距,迫切需要探索与工程教育认证要求相匹配的人才培养模式。

2人才培养模式改革的探索

河南城建学院是以工科为主、以“城建”为特色的多学科协调发展的省属地方本科高校,自2017年开始对标工程教育认证的要求,以培养学生解决“复杂工程问题”的能力为出发点,实施“校企合作,产教融合”战略,建设有资产经营管理有限公司、大学科技园、产业技术发展研究院、河南省城镇综合设计研究院、百城建设技术研究院,搭建了坝道工程医院河南城建学院分院、河南省城乡规划大数据应用技术工程研究中心、河南省高分数据平顶山分中心、白龟湖国家湿地公园生态科研监测中心、城市固废综合处置与生态利用协同创新中心、健康食品协同创新中心、尼龙产业技术学院、BIM技术研究中心、城市建设发展中心等科研创新服务平台等,致力于开展人才培养模式改革的探索。本文以新能源科学与工程专业为例进行探讨。

2.1基于工程教育认证的人才培养方案重构

人才培养方案是体现人才培养定位与目标,确定专业人才培养课程体系的纲领性文件,是实施专业教育的依据。河南城建学院新能源科学与工程专业于2014年开始设置并招生,人才培养方案经历了2015版、2017版和2019版3次修订,2017年开始探索工程教育认证模式,但还未完全按照工程教育认证毕业要求12条构建毕业要求与培养目标和课程体系的关联矩阵,在2019版人才培养方案修订时,构建了毕业要求与培养目标和课程体系的关联矩阵,但是还存在着培养目标定位不清晰、不能够反映学生毕业后5年左右能够达到的职业和专业成就的总体要求、毕业要求指标点分解不科学、课程体系设置不能有效支撑毕业要求等问题。针对这些问题,重构了基于工程教育认证模式的人才培养方案。2.1.1对标工程教育认证标准,重构人才培养目标对工程教育认证标准开展深入分析,以往的人才培养目标仅仅做到了形似,尚未完全契合工程教育认证要求的内涵。经过近2年的实践,不仅使任课教师接纳工程教育认证方法,使得工程教育认证理念更加深入人心,而且使任课教师对工程教育认证标准的内涵理解更加全面透彻。目前正在积极推进基于专业认证标准的2021版人才培养方案修订工作,力争做到针对学生的毕业要求“明确、可衡量、全覆盖”、毕业要求可以有效支撑人才培养目标、课程体系可以有效支撑毕业要求等3个方面。2.1.2结合工程人才培养目标,优化产教融合方式工程人才培养目标要求培养具备扎实的工程理论基础,具备优秀的工程意识、协作精神以及综合应用所学知识解决复杂工程实际问题的能力。合理的产教融合方式可以有效促进学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力。从顶层设计上作出合理布局,对接新能源领域的优势主导产业、战略新兴产业和重大工程项目。以市场为导向,推动产教融合和校企合作,探求与企业合作建设研究所、实训基地、共建校企合作课程等,并探求将学生送入企业一线开展生产实习、毕业实习等工作,共同培养拥有工程实践背景的高素质创新型人才。

2.2优化课程体系、体现新能源专业特色

新能源专业培养方向涵盖了太阳能、风能、生物质能、地热能、氢能、核能等,学科涉及面广,不同方向要求的专业基础知识不同,课程之间跨度较大,基于河南城建学院长期形成的城建类学科专业优势和办学特色,依据学校“依托建设行业、服务城镇化”的服务面向,河南城建学院开设的新能源科学与工程专业侧重于太阳能的转化与应用,偏重于太阳能光伏、光热系统设计及其在建筑中的应用,如太阳能建筑一体化及分布式能源系统等,处于产业链的中下游。在以往的课程体系设置中,存在着课程内容交叉重复、学科知识体系不完整、专业特色不明显等问题。在2021版人才培养方案中重新整合和规划课程体系,认真梳理课程的内容与关键知识点,着重突出工程能力和设计能力这2条主线,增设了锂电池储能系统设计及应用专业核心课程,设置了Matlab技术工程应用、计算机辅助制图、能源工程管理与工程经济、单片机原理与应用、新能源发电并网技术等个性拓展课程模块,构建了知识结构完整、课程衔接合理、更能体现新能源专业特色的课程体系,并着力构建风、光、储、输以及生物质能、地热能、氢能等的全流程新能源应用体系。

2.3加强工程实践能力和创新能力培养

2.3.1提高实践教学环节比例工程教育认证要求学生具备解决复杂工程问题的能力,其中实践教学是培养新工科人才要求的实际操作技能、解决实际问题能力和创新能力的重要环节。目前河南城建学院新能源专业的实践教学环节主要包括课内实验、课程设计、认识实习、社会实践、生产实习、毕业实习和毕业设计等。着力提高实践教学环节在人才培养课程体系中所占比例,可以有效提高学生工程实践能力,和2017版、2019版相比,2021版新能源专业实践教学环节学分占总学分的比例分别由31.4%、34.3%提高至35.3%。2.3.2理论教学与实践教学相融合结合新能源专业的课程特点,将课程的理论教学与实践教学相融合,采用目标教学法、案例教学法、现场教学法等,引导学生开展探究式学习,培养学生的工程实践能力和创新思维能力。对于对应有课程设计实践环节的理论课程,在课程开始的时候即给学生下发设计任务书,让学生带着任务、带着目的去预习课程内容。在讲述每个知识点前,先介绍其在工程设计中的作用,结合工程实际告诉学生可以解决什么样的问题,激发学生的求知欲望,引导学生主动寻求解决方法,有助于加强学生对专业理论知识的理解和掌握,提高其分析问题、解决问题的能力;在讲解每个知识点时,着力描述其在工程设计中的应用,多讲述实际工程案例,培养学生的工程应用思维,有助于强化学生对专业理论知识的应用,提高其对专业的认知,增强对专业知识应用于工程设计中的能力;课后,通过在学在城建等网络学习平台向学生有关工程设计方面的知识,要求学生打卡,完成所布置的任务以巩固所学知识;在所学课程结束后,安排相关实验、实习环节,将所学理论知识有效应用在工程设计中。由此,通过课前、课中、课后以及实验、实习环节4步层层递进地渗透解决工程问题的思想、思路和方法[6]。从而有效促进理论教学与实践教学相结合,切实提高学生工程实践能力和创新思维能力。2.3.3第一课堂与第二课堂相融合在开展好理论教育第一课堂的同时,将专业教育与工程实践、创新创业教育相融合,以“协同育人”“实践育人”理念开展第二课堂。让学生在学好专业技术理论的同时,通过第二课堂的社会实践、科技竞赛等活动,培养学生理论和实践相结合的能力,锻炼学生的创新思维和实践能力,培养良好的团队协作意识,还有利于促进学科交叉融合、知识融会贯通。在第一课堂中利用已有的创新创业课程,初步建立学生的理论知识和能力,并引导学生的工程实践、创新创业理念,同时利用“协同育人”“实践育人”方式将学生带入工程实践中来,让学生参与到工程中去,参与到科研工作中去,通过科技竞赛促进学生深入思考所学专业知识,并将其有效应用到实践中去。做好第一课堂与第二课堂相融合,可以有效培养学生的工程实践、创新创业能力。2.3.4狠抓毕业设计质量本科阶段的毕业设计作为学历教育的最后一部分,是教育教学质量的最终体现,是专业素养的凝练和升华,是理论教学转向应用研究的堡垒。毕业设计可以深入反映学生对所学专业知识的综合运用能力、实践动手能力和创新能力的重要环节,新能源专业应加强对学生毕业设计的选题、开题、中期检查、答辩等环节的全周期管理,把好指导教师关,把好选题关,把好指导过程关,把好答辩关,把好诚信关,把好学术关,保证设计质量。在设计选题方面,提倡真题真做,一人一题,尽量选择既能满足课程目标要求,又能联系生产实际和工程实际的课题,强化规范意识,让学生在设计中接受实际工程的训练,培养学生的专业系统思维能力、学习与应用能力、综合分析与判断能力;在设计实践方面,培养学生搜集资料、查阅文献的能力,培养学生凝练精华的意识,培养学生将所学理论知识应用到设计中去的思维;在创新创业拓展方面,鼓励学生在毕业设计期间深入参与一项相关学科竞赛或科研项目,既可以提升学生的创新能力,又可以提高学生的毕业设计质量。

2.4构建虚实结合的实践教学平台

加强实践教学资源建设,以现代教育技术为支撑,以虚拟仿真项目为依托,以提高学生实践能力为重点构建虚实结合的实践教学平台。在虚拟仿真教学方面,充分利用MOOC等线上优质共享实践教学平台内的资源,深入推进校企合作,搭建虚拟仿真实习实践基地,建设综合性、智能化、开放性的虚拟仿真实践教学平台,为培养学生实践能力创造条件。在搭建实践实训基地方面,充分运用教育部产学协同育人平台,与企业签订战略合作协议,建立长期战略合作关系,合作搭建实践实训基地,着力提升专业内涵建设。

2.5构建专业人才培养持续改进机制

深化持续改进理念,不断完善专业各主要教学环节的质量评价标准,规范教学过程管理,在校院二级教学质量保障体系的基础上,形成自下而上的专业层面的教学质量监控与保障闭环机制,把“以学生为中心”的OBE教育理念和课堂教学改革联系起来,把成果导向、过程性评价与教学评价制度改革结合起来,把持续改进和质量保障体系完善与质量文化建设有机融合起来,不断加强自觉、自省、自律、自查、自纠的质量文化建设,将质量价值观落实到人才培养各环节,持续提升新能源专业卓越工程人才培养质量。

3结束语

随着工程教育认证和新工科建设的深入推进,河南城建学院新能源专业人才培养质量得到了很大提高,但是与工程教育认证标准和新工科的要求仍有一定的差距。在工程教育认证背景下,构建一个注重理论和实践相结合、适应工程教育认证标准和OBE理念的人才培养模式,培养工程实践能力强、富有创新精神、适应经济社会发展需要的高质量工程技术人才,仍需进一步强化工程教育认证理念,并将这一理念贯穿于人才培养全过程,落实到教育教学的每项具体工作中并持续改进。

参考文献:

[1]王祥秋,张玉红,饶德军.地方高校土木工程创新性应用型人才培养模式改革实践[J].大学教育,2018(2):127-129.

[2]刘楠,杨策.基于产教深度融合的应用型本科高校创新人才培养模式研究[J].吉林工程技术师范学院学报,2017,33(9):4-6.

[3]黄长军,周青山,曹元志.专业认证和OBE理念下地方高校测绘类专业人才培养模式研究[J].大学教育,2021(8):132-134.

[4]李志义,赵卫兵.我国工程教育认证的最新进展[J].高等工程教育研究,2021(5):39-43.

[5]李志义.对毕业要求及其制定的再认识:工程教育专业认证视角[J].高等工程教育研究,2020(5):1-10.

新能源科学与技术范文6

关键词:新能源资源潜力发展现状对策建议

新能源的特征与分类

新能源是相对常规能源而言的,一般具有以下特征:尚未大规模作为能源开发利用,有的甚至还处于初期研发阶段;资源赋存条件和物化特征与常规能源有明显区别;开发利用技术复杂,成本较高;清洁环保,可实现二氧化碳等污染物零排放或低排放;资源量大、分布广泛,但大多具有能量密度低的缺点。根据技术发展水平和开发利用程度,不同历史时期以及不同国家和地区对新能源的界定也会有所区别。发达国家一般把煤、石油、天然气、核能以及大中型水电都作为常规能源,而把小水电归为新能源范围。

我国是发展中国家,经济、科技水平跟发达国家差距较大,能源开发利用水平和消费结构跟发达国家有着明显不同,对新能源的界定跟发达国家也存在着较大差异。小水电在我国的开发利用历史悠久,装机容量占全球小水电装机总容量的一半以上,归为新能源显然是不合适的。核能在我国的发展历史不长,在能源消费结构中所占比重很低,仅相当于全球平均水平的八分之一,比发达国家的水平更是低得多,核能在我国应该属于新能源的范围。

根据以上分析,可以把新能源范围确定为:太阳能、风能、生物质能、地热能、海洋能、氢能、天然气水合物、核能、核聚变能等共9个品种。生物质能在广义上分为传统生物质能和现代生物质能,传统生物质能属于非商品能源,是经济不发达国家尤其是非洲国家的主要能源,利用方式为柴草、秸秆等免费生物质的直接燃烧,用于烹饪和供热;现代生物质能包括生物质发电、沼气、生物燃料等,是生物质原料加工转换产品,新能源中的生物质能仅指现代生物质能。传统生物质能和大中小水电可称之为传统可再生能源,太阳能、风能、现代生物质能、地热能、海洋能则统称为新型可再生能源,是新能源的主要组成部分。

资源评价

跟常规能源相比,新能源最显著的优势就是资源量巨大(见表1)。太阳能是资源量最大的可再生能源,即使按最保守的可开发资源量占理论资源量1%计算,每年可供人类开发的太阳能也有1.3万亿toe,约相当于目前全球能源年需求量的100倍。风能的可开发资源量较低,但开发技术难度和成本也较低,全球陆上风电年可发电量约53亿kWh,相当于46亿toe。生物质能可开发资源量为48~119亿toe,不过由于存在粮食安全和环境问题,可开发资源量难以全部转化为能源。地热能的热源主要来自于长寿命放射性同位素的衰变,每年的再生量可达200亿toe以上。按照目前的技术进展情况,全球40~50a内可开发地热资源为1200亿toe,10~20a内可开发地热资源为120亿toe。海洋能资源量并不算丰富,按照全球技术可装机容量64亿kW、年利用2000小时计算,只有11亿toe。天然气水合物属于新型的化石能源,资源量相当于传统化石能源资源量的2倍,达20万亿toe。全球铀矿资源量为992.7万t,如果用于热中子反应堆,所释放的能量约相当于1400亿toe,而如果用于快中子反应堆,所释放的能量可提高60~70倍。核聚变所消耗的燃料是氘,海水中的氘有40万亿t,理论上可释放出的能量为3万亿亿toe,按目前能源消费量计算,可供人类使用200亿年以上。氢能的制备以水为原料,燃烧后又产生水,可无限循环利用,既是二次能源也可在广义上称之为可再生能源。

从以上数据可以看出,能源资源完全不存在短缺或枯竭问题,人类需要克服的最大障碍是开发利用的技术和成本问题。随着技术的进步和能源价格的上涨,目前不可开发的新能源资源有可能变为可开发资源,因此,对新能源来说,理论资源量是相对不变的,而可开发资源量却可能会大幅度增加。

开发利用现状

不同种类的新能源在资源分布、技术难度、使用成本等多方面存在相当大的差异,因而新能源的开发利用程度各不相同。在新型可再生能源中,太阳能、风能、生物质能和地热能发展势头良好,已经进入或接近产业化阶段,尤其是太阳能热水器、风电以及生物燃料,已经形成较大的商业规模,成本也降至可接受水平。核能技术已经成熟,核电在国外已过发展高峰期,在我国则刚刚兴起。核聚变、氢能、天然气水合物、海洋能仍处于研究和发展之中,距离商业化还有较大距离。

截止到2009年2月,全球核电装机已达3.72亿kW,年发电量2.6万亿kWh,在全球一次能源结构中的比重约为6%左右。相比而言,新型可再生能源的开发利用程度还很低,以2006年为例,其在全球一次能源供应量中的比重仅为1%左右,占全部可再生能源的比例也仅为8%左右。2007年,全球新型可再生能源发电装机量为1.65亿kW,相当于全球电力装机总容量的3.7%(见表2)。德国、美国、西班牙、日本等发达国家的可再生能源产业化水平已达到较高程度,其市场规模和装备制造水平跟其他国家相比具有明显优势。我国也是世界重要的可再生能源大国,太阳能热水器产量和保有量、光伏电池产量、地热直接利用量以及沼气产量都位居世界第一。不过,我国对新型可再生能源的开发多集中在技术含量较低的供暖和制热领域,在可再生能源发电技术水平和利用规模方面跟国外相比还存在较大差距。我国新型可再生能源发电装机容量仅为905万kW,占全球5.5%,远低于我国电力装机总容量占全球16%的比重。

我国发展新能源的政策建议

我国是世界第一大碳排放国、第二大能源消费国、第三大石油进口国,发展新能源具有优化能源结构、保障能源安全、增加能源供应、减轻环境污染等多重意义,同时也是全面落实科学发展观,促进资源节约型、环境友好型社会和社会主义新农村建设,以及全面建设小康社会和实现可持续发展的重大战略举措。我国政府把发展新能源上升到国家战略的高度而加以重视,陆续出台了多部法律法规和配套措施。

从近几年的总体发展情况来看,我国新能源发展势头良好,增速远高于世界平均水平,不过由于种种原因,新能源发展过程中的许多障碍和瓶颈仍未消除,主要表现在:资源评价工作不充分,技术总体水平较低,成本跟常规能源相比不具备竞争力,产业投资不足,融资渠道不畅,市场规模偏小,公众消费意愿不强,政策法规体系不够完善。结合国内外新能源发展的历史和现状,借鉴全球各国新能源发展经验,针对目前我国新能源发展过程中存在的问题,特提出如下对策建议。

(一)正确选择新能源发展方向

根据资源状况和技术发展水平,确立以太阳能为核心、核能和风能为重点的发展方向。太阳能是资源潜力最大的可再生能源,化石能源、风能、生物质能及某些海洋能都间接或直接来自于太阳能,地球每年接收的太阳辐射能量相当于当前世界一次能源供应量的1万倍。我国的太阳能热利用已经走在世界最前列,太阳能光伏电池的产量也已经跃居世界第一,不过在太阳能光伏发电方面却与光伏电池生产大国的地位极不相符。我国应进一步扩大在太阳能热利用方面的优势,同时把发展并网光伏和屋顶光伏作为长期发展重点。风能是利用成本最低的新型可再生能源,风电成本可以在几年内降低到常规发电的水平,目前已经初步具备市场化运作的条件。我国风力资源较丰富的区域为西部地区及东部沿海,属于电网难以到达或电力供应紧张的地区,发展风电应是近期和中期的努力方向。核燃料的能量密度远高于常规能源,核电站可以在较短时间内大量建造,迅速弥补电力装机缺口,最近国家发改委已经把核电规划容量提高了一倍多。

(二)加大新能源技术研发力度

我国从事新能源技术研究的机构分布在上百个高校和科研机构,数量虽多,但由于力量分散,具有世界水平的研究成果并不多。建议整合具有一定实力的新能源研究机构,成立中央级新能源科学研究院。抓住当前因金融危机而引发全球裁员潮的有利时机,积极创造条件吸引国外高端研究人才。以新能源重大基础科学和技术的研究为重点,加强科研攻关,尽快改变我国新能源科学技术落后的面貌。密切与国外的技术合作与交流,充分利用CDM机制,注重先进技术的引进并进行消化吸收与再创新,努力实现技术水平的跨跃式发展。

可再生能源大多具有能量密度低、资源分布不均衡等缺点,对其进行低成本、高效率利用是新能源开发的首要问题。显然,可再生能源开发技术的复杂程度要比常规能源高得多,涉及资源评价、材料和设备制造、工程设计、配发和管理等多个领域,必须进行跨学科联合攻关,这对我国目前相对封闭的科研体制提出了挑战。国家需要在搞活科研创新机制、打造科研合作平台、加大知识产权保护力度等方面做更多的努力,营造良好的科研环境。

(三)有序推进新能源产业化和市场化进程

只有实现新能源的大规模产业化和市场化,才有可能使新能源的利用成本降至具有竞争力的水平,为新能源普及打下基础。在新能源开发成本较高、使用不便的情况下,推进新能源产业化和市场化必须由政府作为推手。促进产业化和市场化的措施涉及电价、配额、示范工程、技术转化、税费减免、财政补贴、投资融资等,要对各种新能源的不同特点进行充分分析,分门别类地制定合适的激励政策。为保证政策的长期有效要建立完善的督促检查机制,对违规行为进行惩处,以维护国家政策措施的严肃性。

国家应及时更新新能源产业的投资指导目录,引导、鼓励企业和个人对新能源的投资。同时,也要对新能源投资行为进行规范,避免一哄而上,造成局部重复投资或投资过热。防止企业借投资新能源套取财政补贴、减免税费或增加火电投资配额等不良行为。约束高污染新能源行业的投资行为,尤其是多晶硅副产品四氯化硅所带来的环境污染问题值得关注。

(四)及早实施“走出去”战略

我国是铀矿资源贫乏的国家,资源量远不能满足未来核电发展的需要,铀矿供应必须依赖国际市场。有关资料统计世界上铀矿资源丰富的国家有澳大利亚、美国、哈萨克斯坦、加拿大、俄罗斯等,这5个国家的资源量合计占全球的比重为三分之二。其中,澳大利亚和哈萨克斯坦都是无核电国家,所生产的铀矿主要用于出口。我国与哈萨克斯坦等国家关系良好,可作为实施铀矿“走出去”战略的重要目的国。合作重点应该放在最上游的勘探、开采领域,争取获得尽可能多的探矿权和采矿权,为我国核电站提供稳定、长期的核燃料来源。

目前全球对天然气水合物的地质工作程度还非常低,这为我国获取海外天然气水合物资源提供了绝好的机会。在油气资源领域,美国、日本等发达国家已经把全球的优质资源瓜分完毕,而在天然气水合物领域,我国还存在较多获取海外资源的机会。太平洋边缘海域陆坡、陆隆区及陆地冻土带的天然气水合物资源丰富,这一地带所涉及的国家主要是俄罗斯、美国、加拿大,应努力争取获得跟上述三国合作开发的机会。拉丁美洲国家沿海的天然气水合物资源也比较丰富,要充分利用这些国家技术力量薄弱、研究程度低的现状,加强与这些国家合作,以期能够在未来取得这些国家的天然气水合物份额。

东南亚处于热带地区,自然植被以热带雨林和热带季雨林为主,特别适合油料作物的生长,是发展生物柴油产业的理想区域。东南亚国家是我国的近邻,可为我国的生物柴油产业提供丰富而廉价的原料。我国可采取以技术、市场换资源的合作方式,在当地设立林油一体化生产基地,产品以供应我国国内为主。

(五)调整、完善新能源发展规划和政策措施

我国已经出台的新能源发展规划有《可再生能源中长期发展规划》、《可再生能源发展“十一五”规划》、《核电中长期发展规划(2005-2020年)》等,部分行业部门和地方地府也针对实际情况制定了各自的发展规划。国家级的规划存在两个问题:一是发展目标定得偏低,如风能到2010年的发展目标为1000万kW,到2020年的发展目标为3000万kW,而事实上,1000万kW的目标已经于2008年实现,3000万kW的目标也可能提前于2012年左右实现;二是缺乏设备制造产业和资源评价方面的目标。

国家有关部门应密切跟踪国外新能源现状,充分考虑新能源资源量、技术发展水平、环境减排目标、常规能源现状等因素,对我国新能源发展规划作出适当调整和完善,为新能源产业发展提供指导。我国有关新能源与可再生能源的规定和政策措施并不比国外少,但这其中有许多已经不再符合我国的实际,应立即对不合时宜或相互矛盾的规定和措施进行清理,制定出切实可行、可操作性高的配套法规和实施细则。

(六)建立符合国际标准的新能源统计体系

做好新能源的统计可为新能源科学研究、政府部门决策、企业发展目标的制定等提供重要依据和参考。我国在新能源统计方面与发达国家相比还有着相当大的差距,目前对新能源的统计主要依靠行业协会或学会,但这些机构所提供的统计数据在系统性、时效性、科学性等方面很难令人满意。迄今为止,我国没有任何机构和个人能够对新能源发展现状进行系统、全面、及时地统计,许多涉及我国的新能源统计数据只有国外网站才能提供。建议国家有关部门调集各方力量成立专门的新能源统计机构,通过各种渠道收集国内外新能源统计数据,并把数据及时公布。

国际能源机构对一次能源进行统计时,将可再生能源的发电量直接换算成油当量,并不按火电容量因子进行折算。但我国有关部门在统计时,往往是按火电容量因子(约为33%左右)把可再生能源发电量进行折算,这意味着有关部门的统计结果要比国际能源机构所提供的统计结果大2倍左右,这样极易引起误解和混乱。国际能源机构是全球最大、最权威的能源统计和研究部门,所采取的统计方法和公布的统计数据被世界各国广泛认可。为了便于对国内外新能源发展状况进行对比研究,建议国家有关部门在统计方法方面采用国际能源机构的标准。

参考文献:

1.IEA.RenewablesInformation2008[R].Paris:InternationalEnergyAgency,2008

2.赵玉文,王斯成,王文静等.中国光伏产业发展研究报告(2006-2007)[R].中国可再生能源发展项目办公室,2008

3.中国地质调查局.我国地热资源及其开发利用现状[EB/OL].[2008-04-02]

4.WWEA.Windturbinesgeneratemorethan1%oftheglobalelectricity[R].Bonn,Germany:WorldWindEnergyAssociation,2008

5.REN21.Renewables2007GlobalStatusReport[R].Paris:RenewableEnergyPolicyNetworkforthe21stCentury,2008