前言:中文期刊网精心挑选了新疆职称论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
新疆职称论文范文1
关键词: 人工植被 灌丛沙堆 风洞实验 表面压力
灌丛沙堆是干旱地区沙漠、半干旱半湿润沙地和沙质海岸带常见的一种生物风积地貌类型〔1, 2〕。论文多数学者认为植被盖度、风力强度和沙子供应量三个主要因素控制着灌丛沙堆的形成演化过程〔3-10〕。hesp等〔11〕曾经推断草丛沙丘附近的流场结构,朱震达等〔12, 13〕在风洞实验中模拟了灌丛沙堆流沙模型的形态演化过程。但是限于灌丛沙堆形成因素的复杂性,迄今为止,对灌丛沙堆形成演化的动力学机制知之甚少。由于传统的模拟二维流场只能反映沿气流方向沙丘纵断面上的气流运行状况,并未反映出沙堆表面风压变化规律,如果把两者观测模拟结合起来可望在三维流场结构分析中深入研究气流作用于沙丘表面的动力过程。本文基于新疆和田河流域风沙地貌野外考察资料,在完成纯气流流场风洞模拟基础上,拟进一步通过风洞模拟实验,查明无植物“沙堆”和有植物“沙堆”模型的表面压力分布特征,这对深入阐明灌丛沙堆表面在风沙流作用下的风积、风蚀机制具有重要意义。
1 风洞实验
1.1 风洞基本参数和实验相似理论
本项风洞模拟实验在
2.3 圆锥形沙堆的表面压力分布特征
从圆锥形沙堆各个风速下的表面压力分布模拟结果来看(图2e-2h),圆锥形沙堆的表面压力分布情况可以简单划分为沙堆迎风坡正压增压区、背风坡降压负压区和两翼高压区。
在圆锥形沙堆迎风坡分布着正压增压区(主要在a、b两区内)。从等压线分布图上可见,在圆锥形沙堆的迎风坡坡脚处等压线较稀疏,顺坡向上等压线逐渐加密且分布比较均匀,系迎风坡气流不断爬坡增速所致,在锥顶附近表面压力达到最大值,风速也相应地为最大值。与半球形沙堆相比,圆锥形沙堆迎风坡风压梯度变化均匀增大。
在圆锥形沙堆的背风坡分布着降压负压区(主要在e、f两区内)。当气流翻越沙堆后,在背风坡气流回旋,风速迅速降低,表面压力0值等值线区域顶点接近沙堆丘顶,再往下则气流回旋反向,医学论文负压值不断升高,在约1/3h2高度处负压值达到极值,并形成一个负压高值区,整个负压区俯视平面形态大致呈现三角形。其负压中心区风压值与半球形沙堆相比,要高出许多(对比图2a、2b、2e和2f)。
在圆锥形沙堆的两侧对称分布着高压区(主要分布在c、d、g和h区内)。从等压线分布图上可见,圆锥形沙堆两翼的高压区是对称分布的,但是高压区延伸方向是从侧翼坡脚一直到沙堆顶部,与风洞试验段气流方向垂直相交,这与半球形沙堆侧翼高低压相间分布、延伸方向与风向平行的状态明显不同。这与野外观察到的圆锥形沙堆退化过程中沙堆两侧发生的连续风蚀现象是吻合的。
2.4 有“植物”圆锥形沙堆的表面压力分布特征
从有植物的圆锥形沙堆各个风速下的表面压力分布模拟结果来看(图2f-图2g),有植物的圆锥形沙堆的表面压力分布情况可以简单划分为沙堆迎风坡正压变压区、锥顶负压区、背风坡负压区和两翼高压区。
与无植被的圆锥形沙堆的表面压力的分布情况相比较,植被对圆锥形沙堆的表面压力的影响突出地表现在锥顶附近部位和背风坡负压区。在沙堆的迎风坡锥顶附近,由于植物的干扰,迎风坡气流在锥顶附近加速到高值后迅速降低,等压线值表现为先均匀增高后迅速降低,在圆锥的顶部形成一个闭合的负压区,背风坡仍为负压区,负压区的范围明显地比无植物影响的扩大,而且负压区的中心负值区风压比无植物的削弱10~40 pa以上,并且整个背风坡负值区域在局部也扰分解成更小的负值区。
3 结 论
通过以上纯气流风洞模拟实验,结合新疆和田河流域的野外考察分析,初步获得了无植被覆盖与有植被覆盖条件下半球形沙堆和圆锥形沙堆的表面压力分布特征。其基本结论如下:
(1)无植被半球形沙堆的表面压力分区可以划分为沙堆迎风坡正压增压区、丘顶高压区、背风坡负压区和两翼高低压相间分布区。半球形沙堆迎风坡下部坡度较陡是造成沙堆迎风坡前气流压缩汇集形成涡流的主要原因。
(2)有植物半球形沙堆的表面压力分区可以划分为沙堆迎风坡正压增压区、丘顶高压破碎区、背风坡负压区和两翼高低压相间分布区。植物造成半球形沙堆丘顶的高压区破碎化,丘顶风蚀压力被弱化。
(3)无植被圆锥形沙堆的表面压力分区可以划分为沙堆迎风坡正压增压区、背风坡降压负压区和两翼高压区。圆锥形沙堆顶部无明显正压区和负压区,迎风坡对气流的压缩汇集作用不明显。
(4)有植物的圆锥形沙堆的表面压力分区可以划分为沙堆迎风坡正压变压区、锥顶负压区、背风坡负压区和两翼高压区。植物的影响使锥顶附近形成负压区,迎风坡风压值先均匀增加再迅速降低,同时弱化了背风坡涡流负压值。
(5)沙堆几何形态对沙堆的表面压力分布特征影响较大。职称论文比较半球形沙堆和圆锥形沙堆表面压力分布特征,半球形沙堆迎风坡下半部等压线分布稀疏,易造成气流在坡前汇集,形成较强的涡流,顶部存在闭合的高压区,易遭强风侵蚀,同时背风坡负压区风压较弱,以致背风坡涡流较弱;圆锥形沙堆反之,迎风坡等压线分布由疏到密递增梯度均匀,迎风坡前涡流较弱,背风坡负压区负压值较大,致使涡流也较强,顶部不存在明显的高压区,强风侵蚀不明显。
(6)野外观察在沙堆植被衰败、遭受风蚀的过程中,半球形沙堆的丘顶往往最先遭受风蚀形成风蚀坑,两侧出现环绕沙堆侧翼分布的风蚀凹槽,而圆锥形沙堆衰退过程中丘顶风蚀降低和侧翼风蚀过程同步进行,沙堆风蚀降低过程中圆锥形形态可以维持较长时间,即圆锥形沙堆更易与区域气流场达到形态动力平衡。野外考察中发现的不同形态沙堆演化特征也基本印证了本项模拟实验勾画出的表面压力分布特点。
参考文献(references)
〔1〕 cook r. c., warren a. & goudie a. s. desertgeomorphology〔m〕.london: ucl press, 1993, 526.
〔2〕 michaela. mares. encyclopedia of deserts〔m〕.university of o-klahoma press: norman. 1999, 189.
〔3〕 nickling, w. g. &wolfe, s. a. the morphology and origin ofnabkhas, regionofmopt,i mal,i westafrica. journalofarid〔j〕.environments, 1994, (28): 13-30.
〔4〕 wasson r j,hyde r. factors determining desert dune type〔m〕.nature, 1983, 304(28): 337-339.
〔5〕 wassonr j,nanningepm.estimatingwind transportofon vegeta-ted surfaces〔j〕. earth surface and landforms, 1986. 11(5): 505-514.
〔6〕 mu guijin. types, origin and evolution of the vegetation cones of taklimakan desert〔j〕. arid zone research, 1995, ( supple-ment): 31-37.〔穆桂金.塔克拉玛干沙漠灌草丘类型、成因及演变规律〔j〕.干旱区研究, 1995,增刊: 31-37.〕