测量技术论文范例6篇

前言:中文期刊网精心挑选了测量技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

测量技术论文

测量技术论文范文1

推动着各公司和机构提高了对影像测量技术的重视,影像测量仪的品种和规模也不断扩大[2-4]。国外影像测量仪技术的由于起步早,技术发展比较成熟,因此市场占有比例高,产品知名度和普及度也较高。美国OGP公司设计的VidicomQualifier863,是首个使用固态CID相机和灰度图像处理技术的现代影像检测系统。该公司在影像测量技术领域拥有着多项核心技术和专利。德国蔡司(ZEISS)公司旗下的高端三坐标测量机处于行业先进水平,代表性产品为光学三坐标测量机O-INSPECT系列。其他生产影像测量仪公司如日本MITUTOYO、NIKON,瑞典HEXAGON等也有着雄厚的技术力量。国内的影像测量技术由于起步晚,技术力量薄弱,但随着国家的重视和科研经费投入的加大,相关技术水平持续提高,研究成果也不断涌现。智泰集团(3DFAMILY)代表性的VMC250S型影像仪使用XYZ全闭环伺服控制系统;采用了自主研发的OVMPro全自动光学测量系统,并具有SPC报表分析功能,提高了批量检测的效率,但难以测量高度尺寸。天准公司于2007年自主开发了一款二维自动影像测量仪,打破了国外厂家的技术垄断。其他新兴企业如冶信、新天等生产的影像测量仪器和设备也逐渐在国内市场上崭露头角,占据着一席之地。

2影像测量仪的结构分类与特点

影像测量仪主要由机械主体、标尺系统、影像探测系统、驱动控制系统以及测量软件等组成。影像测量仪的结构型式主要有柱式、固定桥式和移动桥式。柱式一般用于小量程的机器,桥式一般用于中大量程的机器。

2.1柱式影像测量仪

柱式结构底部为基座,二维工作台分别沿X和Y向移动,影像探测系统可在固定立柱上沿Z向运动,结构牢固、精度高,不过工件的重量对工作台运动有影响,不能承载过重工件,适合于中小行程影像测量仪。

2.2固定桥式影像测量仪

固定桥式测量仪的X、Y、Z轴相互正交并沿着各自导轨运动,其中Z轴上安装有影像探头并可以相对Y轴做垂直运动,而Y轴则安装在基座上。Z轴部分和Y轴部分的总成牢固装在机座两侧的桥架上端。每轴都由电机来驱动,可确保位置精度,但不适合手动操作,该结构稳定、整机刚性好。

2.3移动桥式影像测量仪

移动桥式结构是目前大量程影像测量仪中应用最广泛的一种结构形式。其中,工作台固定,其中一个桥框由导轨带动在工作台上沿X轴移动,同时由另一个导轨带动滑板在桥框上沿Y轴移动,主轴则沿Z轴移动。被测工件安放在工作台上,影像探测部件安装在主轴上。这种形式的影像测量仪结构简单、紧凑,刚度好,具有较开阔的空间。

3展望

测量技术论文范文2

基于三维数字化地图,其数据的收集形式有很多种,全站仪只是众多形式中的一种方式,这种形式比较适合在比例尺较大、准确度要求较高的三维立体空间的数据当中,并且其工作主要涉及的是面积较小的工程当中。在三维测量的工作中,在地形数据的收集方面包含了两个过程:第一就是外业的收集,主要是运用全站仪来收集地形点实际的三维空间信息。因为受到通视条件的影响和工作人员的劳动能力的限制,只能对山体地形特征点的三维空间数据进行采集。因为这部分的特征点在密度的分配方面不平均,这样就会导致某些地区的地势高低起伏的状况很难进行准确的判断。第二就是内业的加密工作,指的是对外业收集而来的数据,经过内插的形式对相应的特征点的分布以及具体的密度实施有效的分析和处理,最终获取分布较为均匀、密度适中的地形点和高程,使其能够更为准确相信的展现出地势的具体走向。

2测量流程

在所需测量的物体上选取A、B两个点位,并将这两点在水平面上的内投影点的连线作为X轴的方向,测量仪器的中心点作为坐标的原点,经过原点在水平方向上垂直X轴方向上建立Y轴,以垂直于X和Y所构成的平面的方向为Z轴,建立右手方向直角坐标系。测量原理:基于全站型的电子速测仪,也可以称之为全站仪,它是具备测距功能和测角功能的高科技仪器,所以说依据极坐标的方法对物点的三维立体坐标实施测量,为全站仪中的三维测量系统提供出有效的理论依据和技术方面的保障。它是P点在水平盘上的真实读数,剩下的符号和之前相同。在工程实际的测量工作当中,空间立体坐标系在选取方面需要依据实际的安装平面设计图来具体确立,因为在场区已有的平面控制网已经不能充分的满足实际安装的精度需求,所以说就必须要建立起一个准确度较高的控制网来实施科学有效的控制。

3测量的精度控制与分析

对全站仪系统中的三维点位的精度测量,大致分为以下三个方面:第一,全站仪中系统自身产生误差,全站仪的突发误差,系统中反射设施或者目标设施的误差这三个方面。其中前面两种是对测量精度产生误差的主要因素。

4测量数据的矫正

在实际的安装和测量的前期,在具体目标的节点位置上,运用LeicaTCA2003专用测量仪器的反射标志,而且要依据实际的测量形状以及方式计算中的三维坐标,在依据全站仪三位测量系统中的原理,利用LeicaTCA2003专业测量程序,对实际测量标记中的三维坐标(X/Y/Z)进行准确的测量,运用实时软件对实测值和预期所设置值的差值进行处理,并且及时对所指挥的目标进行安装和测量。在其内部运用外业工作所收集到的测量数据进行整体,并且在其所编辑完成的程序下实施数据的处理和分析,最后制成相应的图纸。

5平差计算

测量技术论文范文3

在直吹式制粉系统中,锅炉输粉管道内流动的是含煤粉的高速气流。用传统的差压法测量风速,不能解决前端测量元件的磨损和被堵塞的问题,采用微波衰减测量技术和相关法,可准确测量直吹式制粉系统一次风的风速。使用特殊耐磨材料制作的测量探头,可解决测量过程中前端测量元件的磨损和被堵塞问题,为直吹式制粉系统锅炉,提供准确可靠的监测手段。锅炉输粉管道中的风煤气流是典型的两相流体。对两相流体,用相关法原理进行速度测量是比较好的方法。所谓相关法,就是当被测流体在管道内作稳态流动时。在上、下游的2个微波传感器及变送器所拾取的随机流动噪声信号,可认为是符合各种状态的2个样本函数。同时,只要2个传感器的间距布置合理,且2个传感器及变送器的静态性能一致,则可认为两个随机流动信号是相似的,具有相关性。两者信号之间的相关时间,就是被测流体在测量间距内流动的时间。因此,管道内风速的非接触式测量问题,就被转化为随机流动噪声信号的拾取和相关函数的计算,确定了两者信号的峰值时间,从而就解决了两相流的测量问题。利用相关法测量风速的原理是:采用微波传感器获取两相流体的流动噪声信号,经相关处理后,求得离散相的平均风速。用相关法进行风速测量的示意图,如图1所示。该系统可用微波传感器,获取两相流体的流动噪声信号。4个微波传感器探头组合成两组,微波探头1、2作为上游传感器,微波探头3、4作为下游传感器。微波探头1、3作为微波发射探头,用于在锅炉输粉管道中激励微波,微波探头2、4作为微波接收探头,用于获取锅炉送粉管道中风煤两相流的噪声信号。信号源向微波发射探头输送微波信号,相关器可对风煤两相流的流动噪声信号进行相关处理。如图1所示,当某段煤粉混合物流过微波探头1、2和微波探头3、4之间时,微波接收探头就能收集该段混合物的浓度、温度、风煤混合程度等相关因素的信号。因为在不同时刻、不同管段间的煤粉混合物的浓度、温度、风煤混合程度等因素不可能完全相同,所以接收探头接收到的信号是随机信号,即流动噪声信号。但当探头之间的间距L不超过某个值,对于同一段风煤混合物(如A段)分别流过探头1、2和探头3、4之间时,在探头2、4上接受的信号在形式上应具有很强的相关性,但在时间上存在一个延时τ。即如果探头2测到的信号为x(t),则在探头4上测到的信号为y(t)=x(t-τ)。而延时τ就是流体流过距离L所用的时间。相关器将采入探头2上的信号x(t)和探头4上的信号y(t)=x(t-τ)。当信号数量足够多时,相关器对数据进行相关处理后,就可得到延时。

2测量系统的构成

风煤的微波测量系统,如图2所示。两组微波探头按要求安装在管道上,微波信号通过两组微波探头被送入信号处理单元,信号经过处理,送入相关性处理运算单元,经过相关器识别出相关的微波信号,然后再经过运算,得出速度信号,直接将信号送到集控室的监测界面。另一组探头输出的煤粉浓度信号,也被送入集控室的监测界面。在安装风煤的微波测量探头时,微波探头应垂直于管壁,同方向上的微波探头中心连线应与输粉管道的轴线平行。为防止两组微波互相干扰,两组探头在理论上应该互相垂直,但在实际安装中不能保证绝对垂直,故两个方向上的微波探头在轴线夹角上的最大偏差为90°±3°。

3检测与运行

经过间隔τ0时间后,由2个下游微波接收探头得到的曲线,如图3所示。从图3可知,微波探头2接收的信号,经过τ0时间后,微波接收探头4得到相似的信号。由于接收探头上产生的信号与该段混合物的浓度、温度、风煤混合程度等因素有关,所以,仅在设定的管道长度内,才能接受到相似的信号,从而得到送粉管道的风速。利用微波特性测量送粉管道风速,对被测流体的流动产生的影响很小,甚至不产生阻碍作用或附加流动阻力,无疑是最适合用于多相流的测量方法。经过多次试验,利用微波传感器获取两相流体的流动噪声信号,这种间接测量方法的重复性好,检测设备的运行非常稳定。此外,微波测量方法克服了传统风速测量探头易磨损或堵塞等缺陷。

4结语

测量技术论文范文4

关键词:网络性能测量技术性能指标分析与研究

1.引言

随着Internet技术和网络业务的飞速发展,用户对网络资源的需求空前增长,网络也变得越来越复杂。不断增加的网络用户和应用,导致网络负担沉重,网络设备超负荷运转,从而引起网络性能下降。这就需要对网络的性能指标进行提取与分析,对网络性能进行改善和提高。因此网络性能测量便应运而生。发现网络瓶颈,优化网络配置,并进一步发现网络中可能存在的潜在危险,更加有效地进行网络性能管理,提供网络服务质量的验证和控制,对服务提供商的服务质量指标进行量化、比较和验证,是网络性能测量的主要目的。

2.网络性能测量的概念

2.1网络性能的概念

网络性能可以采用以下方式定义[1]:网络性能是对一系列对于运营商有意义的,并可用于系统设计、配置、操作和维护的参数进行测量所得到的结果。可见,网络性能是与终端性能以及用户的操作无关的,是网络本身特性的体现,可以由一系列的性能参数来测量和描述。

2.2网络性能参数的概念

对网络性能进行度量和描述的工具就是网络性能参数。IETF和ITU-T都各自定义了一套性能参数,并且还在不断的补充和修订之中。

2.2.1性能参数的制定原则

网络性能参数的制定必须遵循如下几个原则:

1)性能参数必须是具体的和有明确定义的;

2)性能参数的测量方法对于同一参数必须具有可重复性,即在相同条件下多次使用该方法所获得的测量结果应该相同;

3)性能参数必须具有公平性,即对同种网络的测量结果不应有差异而对不同网络的测量结果则应出现差异;

4)性能参数必须有助于用户和运营商了解他们所使用或提供的IP网络性能;

5)性能参数必须排除人为因素;

2.2.2ITU-T定义的IP网络性能参数

ITU-T对IP网络性能参数的定义[2]包括:

1)IP包传输延迟(PacketTransferDelay,IPTD)

2)IP包时延变化(IPPacketDelayVariation,IPDV)

3)IP包误差率(IPPacketErrorRateIPER)

4)IP包丢失率(IPPacketLassRate,IPLR)

5)虚假IP包率(SpuriousIPPacketRate)

6)流量参数(Flowrelatedparameters)

7)业务可用性(IPServiceAvailability)

2.2.3IETF定义的IP网络性能参数

IETF将性能参数[3]称为“度量(Metric)。由IPPM(IPPerformanceMetrics)工作组来负责网络性能方面的研究及性能参数的制定。IETF对IP网络性能参数的定义包括:

1)IP连接性

2)IP包传送时延

3)IP包丢失率

4)IP包时延变化

5)流量参数

2.3网络性能结构模型

从空间的角度来看,网络整体性能可以分为两种结构:立体结构模型和水平结构模型。

2.3.1立体结构模型

IP网络就其协议栈来说是一个层次化的网络,因此,对IP网络性能的研究也可以按照一种自上而下的方法进行。可以以IP层的性能为基础,来研究IP层不同性能与上层不同应用性能之间的映射关系。

2.3.2水平结构模型

对于网络的性能,用户主要关心的是端到端的性能,因此从用户的角度来看,可以利用水平结构模型来对IP网络的端到端性能进行分析。

3.网络性能测量的方法

网络性能测量涉及到许多内容,如采用主动方式还是被动方式进行测量;发送测量包的类型;发送与截取测量包的采样方式;所采用的测量体系结构是集中式还是分布式等等。

3.1测量包

网络性能测量中,影响测量结果的一个重要因素就是测量数据包的类型。

3.1.1P类型包

类型P是对IP包类型的一种通用的声明。只要一个性能参数的值取决于对测量中采用的包的类型,那么参数的名称一定要包含一个具体的类型声明。

3.1.2标准形式的测量包

在定义一个网络性能参数时,应默认测量中使用的是标准类型的包。比如可以定义一个IP连通性度量为:“IP某字段为0的标准形式的P类型IP连通性”。在实际测量中,很多情况下包长会影响绝大多数性能参数的测量结果,包长的变化对于不同目的的测量来说影响也会不一样。3.2主动测量与被动测量方式

最常见的IP网络性能测量方法有两类:主动测量和被动测量。这两种方法的作用和特点不同,可以相互作为补充。

3.2.1主动测量

主动测量是在选定的测量点上利用测量工具有目的地主动产生测量流量,注入网络,并根据测量数据流的传送情况来分析网络的性能。主动测量的优点是对测量过程的可控性比较高,灵活、机动,易于进行端到端的性能测量;缺点是注入的测量流量会改变网络本身的运行情况,使得测量的结果与实际情况存在一定的偏差,而且测量流量还会增加网络负担。主动测量在性能参数的测量中应用十分广泛,目前大多数测量系统都涉及到主动测量。

要对一个网络进行主动测量,需要一个测量系统,这种主动测量系统一般包括以下四个部分:测量节点(探针)、中心服务器、中心数据库和分析服务器。有中心服务器对测量节点进行控制,由测量节点执行测量任务,测量数据由中心数据库保存,数据分析则由分析服务器完成。

3.2.2被动测量

被动测量是指在链路或设备(如路由器,交换机等)上利用测量设备对网络进行监测,而不需要产生多余流量的测量方法。被动测量的优点在于理论上它不产生多余流量,不会增加网络负担;其缺点在于被动测量基本上是基于对单个设备的监测,很难对网络端到端的性能进行分析,并且可能实时采集的数据量过大,另外还存在用户数据泄漏等安全性和隐私问题。

被动测量非常适合用来进行流量测量。

3.2.3主动测量与被动测量的结合

主动测量与被动测量各有其优、缺点,而且对于不同的性能参数来说,主动测量和被动测量也都有其各自的用途。因此,将主动测量与被动测量相结合将会给网络性能测量带来新的发展。

3.3测量中的抽样

3.3.1抽样概念

抽样,也叫采样,抽样的特性是由抽样过程所服从的分布函数所决定的。研究抽样,主要就是研究其分布函数。对于主动测量,其抽样是指发送测量数据包的过程;对于被动测量来说,抽样则是指从业务流量中采集测量数据的过程。

3.3.2抽样方法

依据抽样时间间隔所服从的分布,抽样方法可分为很多种,目前比较常用的抽样方法是周期抽样、随机附加抽样和泊松抽样[4]。周期抽样是一种最简单的抽样方式,每隔固定时间产生一次抽样。因为简单,所以应用的很多。但它存在以下一些缺点:测量容易具有周期性、具有很强的可预测性、会使被测网络陷入一种同步状态。随机附加抽样的抽样间隔的产生是相互独立的,并服从某种分布函数,这种抽样方法的优劣取决于分布函数:当时间间隔以概率1取某个常数,那么该抽样就退化为周期抽样。随机附加抽样的主要优点在于其抽样间隔是随机产生的,因此可以避免对网络产生同步效应,它的主要缺点是由于抽样不是以固定间隔进行,从而导致频域分析复杂化。

在RFC2330中,推荐泊松抽样,它的时间间隔符合泊松分布,它的优点是:能够实现对测量结果的无偏估计、测量结果不可预测、不会产生同步现象。但是,由于指数函数是无界的,因此泊松抽样有可能产生很长的抽样间隔,因此,实际应用中可以限定一个最大间隔值,以加速抽样过程的收敛。

4.性能指标的测量与分析

4.1连接性

连接性[5]也称可用性、连通性或者可达性,严格说应该是网络的基本能力或属性,不能称为性能,但ITU-T建议可以用一些方法进行定量的测量。目前还提出了连通率的概念,根据连通率的分布状况建立拟合模型。

4.2延迟

延迟的定义是[6]:IP包穿越一个或多个网段所经历的时间。延迟由固定延迟和可变延迟两部分组成[7][8]。固定延迟基本不变,由传播延迟和传输延迟构成;可变延迟由中间路由器处理延迟和排队等待延迟两部分构成。对于单向延迟测量要求时钟严格同步,这在实际的测量中很难做到,许多测量方案都采用往返延迟,以避开时钟同步问题。

往返延迟的测量方法是:入口路由器将测量包打上时戳后,发送到出口路由器。出口路由器一接收到测量包便打上时戳,随后立即使该数据包原路返回。入口路由器接收到返回的数据包之后就可以评估路径的端到端时延。4.3丢包率

丢包率的定义是[9]:丢失的IP包与所有的IP包的比值。许多因素会导致数据包在网络上传输时被丢弃,例如数据包的大小以及数据发送时链路的拥塞状况等。

为了评估网络的丢包率,一般采用直接发送测量包来进行测量。对丢包率进行准确的评估与预测则需要一定的数学模型。目前评估网络丢包率的模型主要有贝努利模型、马尔可夫模型和隐马尔可夫模型等等[10]。贝努利模型是基于独立同分布的,即假定每个数据包在网络上传输时被丢弃的概率是不相关的,因此它比较简单但预测的准确度以及可靠性都不太理想。但是,由于先进先出的排队方式的采用,使得包丢失之间有很强的相关性,即在传输过程中,包被丢失受上一个包丢失的影响相当大。假定用随机变量Xi代表包的丢失事件,Xi=0表示包丢失,而Xi=1表

示包未丢失。则第i个包丢失的概率为P[Xi|Xi-1,Xi-2,…Xi-n],Xi-1,Xi-2,...Xi-n取所有的组合情况。当N=2时,该Markov链退化为著名的Gilbert模型。隐马尔可夫模型是对马尔可夫模型的改进。

MayaYajnik等人所作的172小时的测量试验[11]结果表明,在不同的数据采样间隔下(20ms,40ms,80ms,160ms)采用三种不同的丢包率分析模型进行分析得到的结果完全不同,在不同的估计精确度的要求下实验结果也各有不同。因此,目前需要能够精确描述丢包率的数学模型。

4.4带宽

带宽一般分为瓶颈带宽和可用带宽。瓶颈带宽是指当一条路径(通路)中没有其它背景流量时,网络能够提供的最大的吞吐量。对瓶颈带宽的测量一般采用包对(packetpair)技术,但是由于交叉流量的存在会出现“时间压缩”或“时间延伸”现象,从而会引起瓶颈带宽的高估或低估。另外,还有包列等其它测量技术。

可用带宽是指在网络路径(通路)存在背景流量的情况下,能够提供给某个业务的最大吞吐量。因为背景流量的出现与否及其占用的带宽都是随机的,所以可用带宽的测量比较困难。一般采用根据单向延迟变化情况可用带宽进行逼近。其基本思想是:当以大于可用带宽的速率发送测量包时,单向延迟会呈现增大趋势,而以小于可用带宽的速率发送测量包时,单向延迟不会变化。所以,发送端可以根据上一次发送测量包时单向延迟的变化情况动态调整此次发送测量包的速率,直到单向延迟不再发生增大趋势为止,然后用最近两次发送测量包速率的平均值来估计可用带宽

瓶颈带宽反映了路径的静态特征,而可用带宽真正反映了在某一段时间内链路的实际通信能力,所以可用带宽的测量具有更重要的意义。

4.5流量参数

ITU-T提出两种流量参数作为参考:一种是以一段时间间隔内在测量点上观测到的所有传输成功的IP包数量除以时间间隔,即包吞吐量;另一种是基于字节吞吐量:用传输成功的IP包中总字节数除以时间间隔。

Internet业务量的高突发性以及网络的异构性,使得网络呈现复杂的非线性,建立流量模型越发变得重要。早期的网络流量模型,是经典流量模型,也即借鉴PSTN的流量模型,用poisson模型描述数据网络的流量,以及后来的分组火车模型,Markov模型等等。随着网络流量子相似性的发现,基于自相似模型的流量建模研究也取得了不少进展和得到了广泛的应用,譬如分形布朗运动模型和分形高斯噪声模型以及小波理论分析等等。高速网络技术的发展使得对巨大的网络流量进行直接测量几乎不可能,同时,大量的流量日志也使流量分析变得相当困难。为了解决这一问题,近几年,流量抽样测量研究已成为高速网络流量测量的研究重点。

5.网络性能测量的展望

网络性能测量中还有许多关键技术值得研究。例如:单向测量中的时钟同步问题;主动测量与被动测量的抽样算法研究;多种测量工具之间的协同工作;网络测量体系结构的搭建;性能指标的量化问题;性能指标的模型化分析[12]~[16];对网络未来状况进行趋势预测;对海量测量数据进行数据挖掘或者利用已有的模型(Petri网、自相似性、排队论)研究其自相似性特征[17]~[19];测量与分析结果的可视化,以及由测量所引起的安全性问题等等都是目前和今后所要研究的重要内容。随着网络性能相关理论、测量方法、分析模型研究的逐渐深入、各种测量工具的不断出现以及大型测量项目的不断开展,人们对网络的认识会越来越深刻,从而不断地推动网络技术向前发展。6.结束语:

本文对目前网络性能测量技术的主要方面进行了介绍和分析并对未来网络性能测量的研究重点进行了展望。

参考文献

[1]ITU-T建议1.350

[2]ITU-T,建议Y1540

[3]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents6

[4]IETF,RFC2330,"FrameworkforIPPerformanceMetrics"TableofContents11

[5]IETF,RFC2678,"IPPMMetricsMeasuringConnectivity"

[5]IETF,RFC2679,"AOne-wayDelayMetricforIPPM"

[6]IETF,RFC2681,"ARound-tripDelayMetricforIPPM"

[7]IETF.RFC3393,"IPPacketDelayVariationMetricforIPPM"

PDF文件使用"pdfFactoryPro"试用版本创建

[8]IETF,RFC2680,"AOne-wayPacketLossMetricforIPPM"

[9]H.SanneckandG.CarleGMDFokus,Kaiserin-Augusta-Allee31,D-10589Berlin,Germany,"AFramework

ModelforPacketLossMetricsBasedonLossRunlengths"

[10]MayaYajnik,SueMoon,JimKuroseandDonTowsley,"MeasurementandModellingoftheTemporal

DependenceinPacketLoss",DepartmentofComputerScienceUniversityofMassachusettsAmherst,MA01003

USA

[11]JacobsonV,"PathcharATooltoInferCharacteristicsofInternetPaths."

[12]LOPRESTIF,DUFFIELDNG,HOROWITZJ,etal.“Multicast-basedInferenceofNetworkInternet-Delay

Distributions”.UniversityofMassachusetts,Amherst,ComputerScience,TechnicalReportUM-CS-1999-055,

1999.

[13]DUFFIELDNG,LOPRESTIF.“Multicastinferenceofpacketdelayvarianceatinteriornetworklinks”.

IEEEINFOCOM2000[C].TelAvivIsrael,2000.

[14]HUANGL,SEZAKIK.“End-to-endInternetDelayDynamics”.IEICETechnicalReportofCQWG,May

2000.

[15]OHSAKIH,MURATAM,MIYAHARAH,“Modelingend-to-endpacketdelaydynamicsoftheInternet”

usingsystemidentification[A].InternationalTeletrafficCongress17[C].SalvadordaBahia,Brazil,2001.

[16]SueB.Moon,"MeasurementandAnalysisofEnd-to-EndDelayandLossinTheInternet"

[17]J.-C.Bolot.“End-to-endpacketdelayandlossbehaviorintheInternet”.InProceedingsofACMSIGCOMM,

SanFrancisco,August1993.

[18]V.Paxson,“MeasurementsandAnalysisofEnd-to-EndInternetDynamics”,Ph.D.dissertation,1997.

测量技术论文范文5

1免棱镜全站仪测量原理

日常测量中常用全站仪为SET250RX。在免棱镜模式下,该仪器测距范围为0.3~400m,测距精度0.3~200m范围为(3+2×10-6D)mm,200~350m范围为(5+10×10-6D)mm,350~400m范围为(10+10×10-6D)mm,完全满足CJJ/T8-2011《城市测量规范》和GB/T50353-2005《建筑工程建筑面积计算规范》的精度要求。免棱镜全站仪常用对边测量。对边测量也称间接测距,当两点之间不能直接测距时,可将全站仪安置在能够观测到两点的任意位置,利用全站仪同时观测仪器与镜站间的斜距、竖直角、水平角,间接计算两镜站点间的水平距离、斜距和高差[1-3]图中A、B为两测点,为了测定两点之间的水平距离D和高差h,可在与A、B两点都通视的任意点O上安置全站仪,观测O至A、B两点的斜距S1、S2和竖直角α1、α2以及水平夹角β,然后由三角高程测量原理和三角余弦定理得出此两点的水平距离和高差。计算公式如下:(2)测量时只需要使用全站仪中的对边测量程序,屏幕就会显示A、B两测点之间的水平距离、斜距、高差。对边测量有连续式和放射式两种测量模式,一般使用连续式对边测量功能。

2免棱镜测量技术的运用

2.1建筑物高度测量

建筑物高度测量可以采取常规的测量方法,如用钢尺直接量取,也可以采用光电测距通过三角高程测量的方法施测。但是,如果碰到以下几种情况,常规测量方法就无法测量了。如图2,建筑物屋顶为坡屋顶,高度需要测量至屋脊位置。图3中,建筑物为高层建筑物,屋顶虽然为带女儿墙的普通平屋顶,但是在屋顶的附属设施设备层女儿墙上,有一杆状装饰物,按照规定,该装饰物的顶部高度需要实测。图4中,建筑物屋顶有一凸出墙面的檐口H2,建筑物申报高度H=H1+H2,所以需要对檐口H2进行测量。在这几种情况下,运用免棱镜测量技术,使用对边测量功能,以建筑物室外地坪为起始点置零,对边测量上述位置,就可以精确计算建筑物的高度。

2.2建筑物面积测量

房屋建筑面积系指房屋外墙(柱)勒脚以上各层的水平投影面积,包括阳台、挑廊、地下室、室外楼梯等,且具备上盖,结构牢固,层高2.2m以上(含2.2m)。单层建筑物的建筑面积,应按其外墙勒角以上结构水平面积计算,并按不同的高度确定其面积的计算:多层建筑物首层应按其外墙勒脚以上结构水平面积计算,2层及以上楼层应按其外墙结构水平面积计算。根据规范,建筑面积计算的精度要求如下:ms为面积测算中误差,单位为平方米;s为面积,单位为平方米。在测量中,建筑物一层一般用钢尺测量建筑物的所有边长,包括门斗、阳台等,然后内业计算其面积。但是对于二层以上的部分,无法用钢尺直接测量。在实际工作中,经常碰到比较特殊的建筑物,如大酒店、办公楼、体育场馆等,每一层的建筑外轮廓线投影都不同。如图5,建筑物每一层的建筑面积都不一样,这给外业数据采集增加了很大难度。为了保证每一层建筑面积计算的精确性,必须使用免棱镜全站仪的对边测量功能,远距离测量每一边长,然后分层计算每一层的建筑面积。

2.3建筑物四至距离测量

在城市建设项目审批中,建筑物至周边规划道路红线、规划河道蓝线、绿化控制线、土地界址线的距离,建筑物与邻近建筑物的平面位置关系,都有严格规定。建筑物与四至边界的距离采用实量法,即在实地采用钢尺进行距离丈量。采用实量法时,应严格依据规划许可证附图标示位置量测,保证量测的四至数据为最小距离,并进行多余观测,两次同精度丈量较差相对误差不大于1/4000,距离应加尺长和倾斜改正。一层建筑物的距离都可以通过钢尺测量,二层以上则很难利用钢尺测量。如图6,在该项目规划许可证附图中,要求测量1号楼“砼2”至综合楼“砼5”之间的距离、2号楼“砼3”至综合楼“砼7”之间的距离。这时,就需要运用免棱镜测量技术,使用对边测量功能,架设全站仪,实地测量四至距离,然后绘制四至尺寸图。

3结语

测量技术论文范文6

锉配是指用锉削加工的方法,使两个或两个以上的零件配合在一起,达到规定的配合要求的加工过程。[8]典型锉配工件的加工简图如图1所示,图中省略了标题栏、明细表。图1中(a)为一个“V三角组合件”的装配图,(b)、(c)、(d)分别为“V三角组合件”中单件“件1”“件2”“件3”的零件图。图1中涉及到大量尺寸公差、形位公差与表面结构符号。要使加工的工件最终达到图纸上的技术要求,除了读图能力、零件加工工艺知识与钳工技能外,还要求学生必须会使用相应的量具及其测量方法。实际上,锉配就是一个将机械制图读图能力、互换性与测量技术知识与技能、零件加工工艺知识、钳工技能有机综合的过程。锉配要利用到大量的“互换性与测量技术”课程的知识与技能。如果锉配工件成品的尺寸公差、形位公差、表面结构要求没有达到图纸的要求,在装配过程中将会出现各种干涉阻碍装配进一步进行,严重的甚至会导致装配后的工件无法达到使用性能要求。成功的锉配操作经历可以让学生更好地从工程角度综合地掌握“互换性与测量技术”这门课程的知识与技能,同时也提高自身的职业能力。设计或选择一个合适的锉配工件进行“互换性与测量技术”课程的项目式教学,能较好地满足该课程对基本技能目标、专业知识目标、综合素质目标等方面的要求。因此,锉配工件是适合“互换性与测量技术”课程项目式教学的良好载体。锉配也是钳工类工种职业资格技能等级考试中操作技能考试的主要内容。我国高职院校机械类绝大多数专业的教学培养方案中都设置了1—2周的钳工实训课程,并鼓励学生考取钳工类中、高级工职业资格证书(中国人力资源与社会保障部颁发)。钳工实训条件在这些学校中是比较充足的。因此,基于钳工锉配实训的“互换性与测量技术”教学改革在绝大多数高职院校中是容易开展的。如果将钳工实训、互换性与测量技术课程进行科学地结合,可以在少量增加或不增加课时的条件下,同步改善这两门课的授课效果。但是,在本科院校机械类专业中,钳工相关的教学与高职院校的设置具有较大的差别。本科层次上的钳工理论与实践教学通常是被包括在金工实习课程中,授课时间为3—5天,授课内容为划线、锯割、锉削、钻孔、攻丝等钳工基本技能,只是要求学生对这些技能有所了解。而且本科生的钳工实践普遍不涉及锉配。因此,如果本科院校要进行本文提出的教学改革,需要额外增加相应的课时。要在不破坏传统“互换性与测量技术”课程理论教学的系统系与完整性的同时,培养学生较强的职业能力,最好的做法是在该课程理论教学结束后,再集中安排以融合了较多互换性与测量技术知识与技能的锉配工件作为载体的项目式钳工锉配实训。

二、高职“互换性与测量技术”课程教学改革的实施

(一)配备实训和师资条件

“互换性与测量技术”课程进行教学改革,首先必须具备能满足基本教学的钳工实训条件与互换性与测量技术实验或实训条件。要求建设至少能容纳一个班的钳工实训室,实训室应该包括台钻、砂轮、台钳、手锯、锉刀、丝锥、板牙、铰刀等设备和工具。互换性与测量技术实训室需要包括各类常用量具,如游标卡尺、千分尺、百分表、万能角度尺、游标高度尺、刀口尺、塞尺、校验心轴、校验止通规、铸铁平板等。在师资方面,要具备能胜任钳工实训、互换性与测量技术教学的教师各1名。

(二)组织钳工基本技能训练

在实施该教学改革前,必须组织学生进行至少一周的钳工基本技能训练,这是进行锉配的基础。钳工基本技能包括:划线、锯割、锉削、钻孔、攻丝等。如果钳工实训与互换性与测量技术被安排在相同学期,可以将两门课程联系起来,科学地规划学时。这样,可以实现少量增加或不增加课时的条件下,改善授课效果。

(三)设计教学项目

设计一个能够融入足够多互换性与测量技术核心知识与技能的锉配工件,比如图1中所示的“V三角组合件”。根据该工件的加工步骤,将该项目分解为多项任务并制定相应的教学大纲。表1为“V三角组合件”项目的分解任务及相应各项任务的相关知识与技能、课时安排的设计。与“件1”“件2”“件3”相关的知识与技能请分别参见图1(b)、图1(c)、图1(d)。

(四)开展钳工锉配实训

在“互换性与测量技术”课程教学结束之后,安排集中项目式实训教学。负责钳工实训、互换性与测量技术课程的两位老师,根据任务进行教学分工。将班级分成若干个小组,指定各组的小组长,协助老师管理工具、量具与传达通知。进行每项任务时,首先由相关的老师进行授课,然后学生再操作,每个学生独立完成一套工件的加工。在学生操作过程中,教师再有针对性地对学生进行个别指导。

(五)考核评价

实训结束后,教师根据学生在实训期间的表现、最终锉配工件的完成质量、实训报告等方面进行综合评价。锉配工件完成质量高,则说明该学生在加工工艺、形位公差理解与测量、量具使用等方面均严格按照教师布置的任务要求进行,且达到教学目标。如要进行理论笔试,可结合该锉配工件加工过程设置与课程知识点相关的试题。

三、高职“互换性与测量技术”课程教学改革的效果

(一)学习积极性提高

传统的“互换性与测量技术”课程教学普遍是以教师讲授为主,一般是理论课教师讲学生听,实验课教师演示学生看,或学生重演教师的实验操作,这样的教学方式容易造成学生学习积极性低下。采用了项目式教学之后,学生成为学习过程的主体,教师则起引导作用,学生通过自身的实践体验来获取知识与技能,学习积极性显著提高。

(二)更好地掌握了知识与技能

将“互换性与测量技术”课程中核心的知识与技能融入到锉配工件的加工中,学生通过实践较好地掌握了这些知识点,认识到该课程知识与技能对实际组件、部件生产加工及装配的重要意义。1.通过锉配,学生认识到“基准”的重要性。锉配件加工时,如果被作为基准的加工面没有达到指定的精度范围,将直接影响到后续与该基准面有关的加工,严重的直接导致最终成品的不合格。2.因为在锉配中要频繁交错地进行加工与测量,学生对常用量具达到了熟练使用的程度。3.学生较为全面地掌握平面类形位公差的测量方法,还了解到同一项形位公差的多种测量方法(即形位公差测量方法的转化)。4.学生对表面结构要求有了直接的了解,初步了解精锉、粗锉、钻孔、铰孔等加工方法与粗糙度值之间的关系。5.学生掌握孔、轴类零件的配合公差。6.如果锉配工件的加工工艺不正确,则不可能达到图纸的装配要求。这让学生较为深入地理解工艺的概念及工艺对产品合格的重要性,为学习后续机械制造及机械设计类课程打下基础。

(三)改革了考核评价方式

高职教育强调对学生技能的培养,理论知识以必须、够用为准。传统的考核形式以理论笔试为主导,对教学的促进效果不理想。该项目改变了传统的考核形式,能够反映出学生对技能的掌握情况,是一种更客观、更符合中国高职教育特点的评价方式。

(四)节省了实施成本

该教学改革的教学资源投入小,绝大多数高职院校容易达到该教学改革所需的实训条件。而在师资方面,钳工实训教师和“互换性与测量技术”课程教师之间的相互协作容易达到,能力强的教师还可以同时身兼钳工实训和“互换性与测量技术”课程的指导教师。因此,该教学改革相对容易实施,可推广性强。

(五)存在不足