高层建筑结构设计要点范例6篇

前言:中文期刊网精心挑选了高层建筑结构设计要点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高层建筑结构设计要点

高层建筑结构设计要点范文1

【关键词】高层建筑结构设计;扭转;受力性能;结构方案;计算简图

中图分类号:TU208 文献标识码: A

前言

高层建筑的出现是科技发展、社会进步、建筑行业提升的重要标志,当前,国家和城市发展越迅速,高层建筑的数量和层次就越高,很多大城市已经开始了超高层建筑的设计和施工,并已经逐渐成为一种社会和行业发展的趋势。在这样的趋势下,高层建筑结构设计工作就显得尤为重要,在设计工作中要通过科学的手段、统筹的方法和高超的技巧将设计的合理性、安全性和需要的广泛性和差异性有效地统合在一起,满足从行业到社会,从个人到集体,从需要到发展等各方面的需要。当前,各界为建筑行业提出了做好高层建筑结构设计的要求,因此,在高层建筑结构设计中要了解高层建筑结构的特点,注意设计中的要点,重点对高层建筑结构的扭转和受力性能进行关注,在坚持安全、质量和经济的原则下,提升高层建筑结构设计的水平。

一、高层建筑的结构特点

1、重视对待轴向变形。高层建筑中,由于竖向负荷较大的原因,可能会引起在柱中较大程度上的变形,从而对连续梁、弯矩产生比较大的影响,该影响包括两个方面:一方面是,会增大端支座负弯矩的数值或者是增大跨中正弯矩的数值,另一方面是,减小连续梁中间支座的负弯矩值。除了这两方面的影响外,还会影响预测构件的侧移和剪力,以及影响构件的下料长度,对于对构件的侧移和剪力的影响,将其和构件竖向变形相比较,就会得出较为不安全的结果;对于对预测构件下料长度的影响,可以采取根据计算轴向变形数值,然后针对性的对下料长度进行调整分配。

2、重要的高层建筑结构设计指标是结构延性。高层建筑和低层建筑的区别之一就是:在建筑结构方面,高层建筑的结构较柔和,同时也就保障在地震作用下高层建筑的变形更大。为了避免高层建筑在遭受较大冲击后,在进人高层建筑塑性变形阶段的前提下,高层建筑仍可以具有较强的变形能力,也就是避免高层建筑的倒塌,需要在高层建筑结构设计时采取恰当合理的措施,达到保障高层建筑结构具有应对较大冲击的延性。

3、高层建筑结构设计的决定性因素是水平荷载。一方面,对于大多数的高层建筑楼房来说,竖向荷载基本上是定值,而水平荷载,比如地震作用和风负载,荷载值随着高层建筑结构动力特性的不同而发生较大程度上的浮动变化;另一方面是,由于高层建筑楼房自身的重量和楼面引起的弯矩和轴力的数值,与建筑物的高度的一次方成正比,而水平荷载产生的倾覆力矩和引起的轴力与建筑物高度的二次方成正比。

三、高层建筑结构设计的要点

1、高层建筑的构造措施

高层建筑结构设计中要重点对剪力、压力、柱体等相关结构和特性进行强化,同时要加强弯力矩的防护,提高拉力的大小,提升构造梁的性能,要注意对薄弱部位的加强,特别重点考虑的构造要点有:延性、温度应力、薄弱层厚度,钢筋锚固长度,抗震结构层次等主要环节,要达到高层建筑结构的设计合理化,就必须做好上述构造方面的设计。

2、高层建筑结构的计算简图

计算简图是高层建筑结构设计和高层建筑结构计算时的中要基础,因此,需要选择适宜的高层建筑结构计算简图。在计算简图中要对高层建筑结构的刚节点和铰节点进行重点把握,同时要控制计算简图的误差,使其限定在高层建筑结构设计的允许范围中。在高层建筑结构计算简图的应以中要对构造的重点防护措施进行强化,这样有利于控制高层建筑结构的稳定。

3、高层建筑结构的方案

结构方案的经济性、科学性和合理性是整个高层建筑结构设计的关键,要采用高层建筑结构的合理形式和经济形式,这样可以使高层建筑结构得主要性能和要求达到相应的设计。在方案中要注意竖向和水平向的规则,同时,要注意在同一结构单元内不能应用同样结构体系和方式,以避免高层建筑结构出现问题。

4、高层建筑的基础方案

在高层建筑结构进行基础设计师要重点考虑高层建筑结构的荷载分布、高层建筑工程的地质条件、高层建筑的施工条件。设计高层建筑结构时要重点考虑到对地基潜力的挖掘,因此,在高层建筑结构设计阶段要对工程地质勘查报告的内容和技术参数进行重点了解,以便形成具有科学性和合理性的高层建筑结构基础方案。

四、高层建筑结构设计的基本要求

1、高层建筑结构设计的规则性

高层建筑结构设计应符合抗震概念设计的要求,应采用规则的设计方案,不应采用严重不规则的结构体系。高层建筑结构设计应该具备多道抗震防线;具有合理的承载力和刚度分布的结构水平和竖向布置,避免因扭转和突变效应造成局部薄弱部位。

2、高层建筑结构设计的平面规则布置

高层建筑结构平面布置需要能抵抗竖向和水平荷载,对称均匀,明确受力,传力直接,减少扭转的影响。在地震作用下,建筑的平面要简单规则,在风力作用下可以适当放宽要求。建筑的抗震设防要求建筑的平面形状宜对称、简单、规则,才能达到减震的目的。

五、高层建筑结构设计问题的防范和处理

1、高层建筑结构设计中的扭转问题

在进行结构设计时,我们需要建筑的三心尽可能汇于一点,即三心合一。高层建筑结构设计的扭转问题就是指建筑的三心在结构设计过程中未达到统一,结构在水平荷载的作用下发生扭转振动的效应。

2、高层建筑结构的受力性能

对于高层建筑物最初的方案设计,建筑师考虑更多的是应该是它的受力性能,而不是详细地确定它的具体结构。沉降缝两侧单元层数不同时,由于高层的影响,低层的倾斜往往很大,因此沉降缝宽度可按高层单元的缝宽要求来确定。

3、高层建筑结构设计中的其它问题

一是,剪力墙的墙肢与其平面外方向的楼面梁连接时,应采取在墙与梁相交处设置扶壁柱或暗柱,或在墙内设置型钢等至少一种措施,减小梁端部弯距对墙的不利影响。二是,对各抗震等级框支梁纵向钢筋的最小配筋率提高了要求,同时增加了最小面积配箍率的要求。三是,严格要求各抗震等级剪力墙在各种情况下的厚度与层高。四是,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

六、结束语

综合全文,近些年我国的高层建筑建设行业迅速发展,而高层建筑结构设计是高层建筑建设行业的关键因素,高层建筑建设行业的进一步发展,使得对高层建筑结构设计质量的要求越来越高。高层建筑结构设计质量好坏直接影响到整个高层建筑是否具有安全性,直接影响到高层建筑建设行业是否达到可持续发展。本文从高层建筑结构设计的原则人手,对高层建筑结构设计的特点进行详细的概述,进而引出高层建筑结构设计中应该注意的问题,并对这些问题进行简单的概括。

[参考文献]

[1]蒋最.浅探高层建筑设计和城市空间合理化[J].城市建设理论研究(电子版)

高层建筑结构设计要点范文2

关键词:高层建筑;结构设计;问题;要点

中图分类号:TU97文献标识码: A

一、高层建筑结构设计特点

1、水平作用是决定因素

首先,因为结构自重和楼面使用荷载在竖向构件中所引起的轴力及弯矩的数值,仅仅和建筑高度的一次方成正比,但是水平作用对结构产生的倾覆力矩和在竖向构件中引起的轴力,与建筑高度的两次方成正比;另外,对一些一定高度的建筑来说,竖向荷载基本上是固定值,但作为水平作用的地震作用和风荷载却是不确定的。

2、侧移是控制指标

和多层建筑不同,高层建筑结构设计中的结构侧移是关键因素。随着建筑高度的不断增长,水平作用下结构的侧移变形也随之迅速增加,结构顶点侧移与建筑高度的四次方成正比。所以结构在水平荷载作用下的侧移必须要控制在一定限度之内。

3、结构延性成为重要设计指标

延性是指构件和结构屈服后,在承载能力不降低或基本不降低的情况下,具有足够塑性变形能力的一种性能,一般用延性比来表示。受弯构件会随着荷载的增加,首先受拉区混凝土出现裂缝,出现非弹性变形。然后受拉钢筋屈服,受压区高度降低,受压区混凝土被压碎,最后导致构件被破坏。

4、轴向变形也不容轻视

在高层建筑中,竖向荷载数值会较大,会在柱中引起很大的轴向变形,从而导致对连续梁弯矩产生一系列的影响,使连续梁中间支座处的负弯矩值变小,跨中正弯矩值和端支座负弯矩值变大,对预制构件的下料长度也会产生影响,这就要求依据轴向变形计算值,对下料的长短做出相应调整;另外对构件剪力和侧移也会产生影响。不考虑构件竖向变形与考虑构件竖向变形相比较,计算结果会偏于不安全。

二、高层建筑结构设计问题

1、设计人员基础知识薄弱

在部分小型设计公司,有一些设计人员根本不了解施工工艺流程,离开设计图库和计算机作业根本不能设计和画图,缺乏施工现场设计代表的经验,不能以专业知识及经验指导施工技术难题。类似于这样一些纯粹纸上谈兵的建筑图纸,充斥着低成本小型建筑项目市场,比如说拆迁项目返建等,最终导致建筑使用寿命缩短等大量技术隐患问题。

2、结构抗震概念设计不足,标准及规范推广应用落后。

在高层建筑结构设计中,普遍存在结构抗震概念设计不充分的情况。由于我国的地震带分布不一,部分省市对于结构抗震的要求较为忽视,导致结构抗震概念设计处于缓慢发展的状态。比起日本和美国等在结构抗震概念设计领域成果突出的国家,我国的抗震概念设计标准及规范的应用推广相对较为落后。

3、建筑物超高问题

随着建筑物高度的不断加大,在抗震性能和建筑质量方面都面临着更严峻的问题。出于高层建筑抗震性能的较高需要,规范对建筑物的高度作出了严格的规定,超高建筑在设计方面要确保满足抗震的要求。在目前的高层建筑市场中,仍然存在着建筑超高但没采取更严格的措施的问题。

4、短肢剪力墙的设置

短肢剪力墙是指墙肢截面高度与厚度之比为5~8的剪力墙。近年兴起的短肢剪力墙结构,虽然有利于住宅建筑布置,也可减轻结构自重,但在高层住宅中,剪力墙肢不宜太短,因为短肢剪力墙的抗震性能较差,地震区应用经验不多,为安全起见,高层建筑结构不应采用全部为短肢剪力墙的剪力墙结构。

三、高层建筑结构设计要点

1、地基与基础设计

地基与基础设计已经得到结构工程师的重视,这不仅由于该阶段设计过程合理与否将直接影响到后期设计工作的进行,也是整个项目成本的决定性因素。因此,这个阶段,存在的问题可能会很严重,也甚至会造成不可估量的损失。高层建筑应根据整体布局来选可满足承载力和变形的要求、并可以调整不均匀沉降的基础形式。高层建筑宜设置地下室以减小地基的附加应力和沉降量, 有利于满足天然地基的承载力和上部结构的整体稳定性。此外,基础设计应注意本地的规范的重要性。

2、建筑结构受力性能

对于最初的建筑设计,建筑师考虑更多的是建筑的空间组合,而不是详细地确定其具体的结构。建筑物底面建筑空间的形式在水平方向和垂直方向的稳定性是非常重要的,因为一些建筑物是由又大又重的组合物来组成,因此结构必须能将它本身的重量传至基础,结构的荷载总是向下作用于基础面的,而在建筑设计中的一个基本要求是要理清所选择的体系中向下的作用力与地基土的承载力之间的关系,因此在建筑设计阶段,就有必要对主要承重柱和承重墙的数量和分布做出整体构想。

3、建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,建筑三心尽可能汇于一点,即三心合一,这是是结构设计的要求。结构的扭转问题就是指在结构设计过程中没有做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,要在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转效果的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于街景与建筑空间的限制,高层建筑不可能全部采用简面形式,当需要采用不规则T形、L形、十字形等比较复杂的平面形式时,应将突出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构设计布局时,最大可能使建筑状态的结构是对称的。

4、建筑高度、高宽超限问题

现行的规范、规程给出了房屋的最大适用高度和高宽比限值。某些高层建筑房屋高度超过最大适用高度或高宽比超出规范限值,甚至个别建筑高度和高宽比均超出规范限值。在结构设计过程中,对于建筑的高度、长宽比和尺寸的复杂程度超过现行规范、规程的高层建筑,应按超限高层建筑进行设计。同时,另一点不容忽视的问题是,建筑适用高度除与结构体系类型及抗震设防烈度有关外,还与场地类别与结构是否规则等因素有关,当位于Ⅳ类场地或结构平面与竖向布置不规则时,其最大适用高度应适当降低。

5、抗震设计要求更高

高层建筑结构设计的抗震设防要求,需要正确计算正常使用时的竖向荷载和风荷载,应当具有良好的抗震性能。

6、概念设计和理论计算具有同等重要性

抗震设计有两部分:计算设计、概念设计。虽然分析手段在不断提高,分析的原则在不断完善,但由于抗震设计计算是在一定的假想条件下进行,而地震作用具有很大的复杂性和不确定性,同时地基土影响和结构体系本身都极复杂,因此理论分析计算很有可能会和实际情况相差甚远。特别是结构进入弹塑性阶段后,构件局部可能会开裂甚至破坏,此时就很难用常规的计算原理去分析结构。而高层建筑的概念设计,诸多实践证明,对建筑结构设计有着重要的意义。

结束语

高层建筑在现代经济体系中已经如此发达,结构设计的相关人员追求更加合理的力学模型和更新颖的建筑物结构形式,在这一个方向上经过高素质高知识结构的专业化人才不断探索,我们可以期待,高层建筑在城市中的应用将变得空前广阔。

参考文献

[1]孙凯.高层建筑结构设计的问题及对策探讨[J].价值工程,2011(06).

高层建筑结构设计要点范文3

【关键词】高层建筑;结构体系;分析方法

引言

随着我国国民经济不断发展和人民生活的迅速提高,业主及建筑师的创新艺术使得钢筋混凝土高层建筑发展被广泛应用。高层建筑结构设计给工程设计人员提出了更高的要求,下面就结构设计中的要点进行探讨。

1 结构的设计过程

结构设计一般分为三个阶段,结构方案.计算和施工图设计阶段。方案阶段包括:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来初步确定建筑的结构形式( 例如。砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承霞体系和受力构件。

结构计算阶段包括:首先,荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载.施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如.结构的自鼋荷载,使用荷载.装修荷载等等) 上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。其次,构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。再次,内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力。扭矩轴心压力及拉力等等。最后.构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比.剪跨比,跨高比,裂缝和挠度等等) 来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。

施工图设计阶段包括,根据结构计算的结果来用结构语言表达在图纸上。首先要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。

2 高层建筑的结构体系

2.1 框架结构体系

从结构体系上看,早期多采用框架结构。由于它平面布置灵活,空间大,能适应较多功能的需要,因此成为高层建筑的主要结构形式。但是,框架结构的侧向刚度较小,在一般节点连接情况下,当承受侧向的风力或地震作用时,将会有较大的变形。因此,限制了这种结构形式的建造高度和层数。

2.2 剪力墙结构体系

为了满足更高层数的要求,结合住宅、公寓和宾馆对单开间的需求,出现了较高层数的剪力墙结构。剪力墙结构具有良好的侧向刚度和规整的平面布置,按照功能要求,设置自下而上的现浇钢筋混凝土剪力墙,对抵抗侧向风力和地震作用是十分有利的,因此,它允许建造的高度远远高于框架结构。剪力墙结构的不足之处在于,平面布置的灵活性较差,使用上也受到一定限制。因此,它的适用范围较小,仅适用于住宅、公寓和宾馆等建筑。目前全国各地的大量高层住宅建筑,绝大多数均采用剪力墙结构。

2.3 框架―剪力墙结构体系

建筑功能要求有较大的灵活性,但同时又能满足风和地震作用的考验,取框架和剪力墙结构两者之长,形成框架―剪力墙结构。框架结构具有布置灵活的优点,而剪力墙结构具有良好的抗侧力能力,结合后的结构体系可满足一般建筑功能要求,在适当位置设置一定数量的剪力墙,既是建筑布置需要,又是结构抗侧力需要。因此,框架―剪力墙结构体系的适用范围和适应的高度较宽,是一种较好的结构体系,已广泛应用。

2.4 筒体结构

筒体结构是近年来发展起来的新体系,它的出现满足了高层建筑更高层数的要求,包括单简体、简体―框架、筒中筒、多束筒等多种形式。筒体结构具有很好的整体性和抗侧力性能,在平面布置和满足功能要求方面也有明显的优势,为众多高层和超高层建筑结构所采用。

3 抗震分析与设计在高层建筑的应用

在罕遇地震作用下,抗震结构都会部分进入塑性状态。为了满足大震作用下结构的功能要求,有必要研究和计算结构的弹塑性变形能力。当前国内外抗震设计的发展趋势,是根据对结构在不同超越概率水平的地震作用下的性能或变形要求进行设计,结构弹塑性分析成为抗震设计的必要的组成部分。我国现行抗震规范GB 50011―2001要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用。用弹性方法计算内力及位移。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行罕遇地震作用下(大震)的变形验算。

4 高层建筑结构的分析方法

4.1 基于常微分方程求解器的分析方法

对高层建筑结构分析,现在国内外学者已经开发研制了相当有效的常微分方程求解器(ordinary deferential equation solver),功能很强,尤其自适应求解,可以满足用户预先对解答精度所指定的误差限。我国清华大学包世华教授和袁驷教授在高层建筑结构分析中应用此方法,解决了高层建筑结构考虑楼板变形时静力计算、动力计算和稳定计算。这些问题若完全用离散化方法求解,其计算量都极其巨大,用微分方程求解器法求解,因其方程组数目少,显示出极大的优越性,在高层建筑结构分析中成功地运用此方法,具有独到之处。

4.2 基于有限条法和样条函数法的分析方法

在高层建筑中,经常会遇到几何形状和物理特性沿高度方向比较规则的情况,这样的结构体系采用有限条法很有效。有限条法只需沿着某些方向采用简单多项式,其他方向则为连续、可微且事先满足条端边界条件的级数。在采用有限条法时,合理地选择结构计算模型,等效连续体的物理常数和条元的位移函数是提高精度、简化计算的三个关键。样条函数是分段多项式的一种,与一般有限单元法相比,它的位移模式曲线拟合度好、连续性及通用性强,系数矩阵稀疏、计算量小,且具有紧凑、收敛、完备和稳定等方面特征。因此,计算结果与试验结果吻合良好,不失为一种较好的方法,在高层建筑中得到了应用。

4.3 基于分区广义变分原理与分区混合有限元的分析方法

有限元,特别是杂交元和非协调元的发展,促进了分区广义变分原理的研究。清华大学龙驭球教授在分区混合广义变分原理基础上提出了分区混合有限元法。它将弹性体分成势能区和余能区,势能区采用位移单元,以节点位移为基本未知量;余能区采用应力单元,以应力函数作为基本未知量,而区交界面通过引入附加的能量项在积分意义下满足位移和力的连续条件,从而保证了收敛性,最后通过取总能量泛函为驻值建立分区混合有限元法基本方程。

4.4 基于最优化理论的结构分析方法

结构最优化设计是把数学上最优化理论结合计算机技术应用于结构设计的一种新型设计方法。它的出现,使设计者能从被动的分析、检验而进入主动“设计”。因而对于一定的空间要求,高层建筑结构的优化设计应以最小重量产生最大刚度,框架剪力墙结构中剪力墙的最优数量和最优布置是优化设计在高层建筑结构中应用的一个课题。

5 结语

总之,由于目前我国高层建筑发展迅速;机构设计中经常遇到各种问题,需要我们设计人员积累经验,利用正确概念进行设计。而创新是结构工程师对设计、业主和社会的最大贡献。所以,结构工程师必须在每一个工程项目的设计中都能做到不断地探求自然法则,不懈地追求相对的最佳最优,要通过反思比较,在经验积累中不断提高自己的判断力和创新力。

参考文献:

[1]周炳章.20年来我国高层建筑结构及抗震技术的发展[J].建筑技术,2004(1O)

[2]王全凤.高层建筑结构力学分析的进展[J].力学与实践,1994,16(2)

[3]阴 杰.高层建筑结构设计若干问题分析[J].山西建筑,2008,34(22)

高层建筑结构设计要点范文4

关键词:复杂高层;超高建筑结构;设计要点

结构设计并不是一项简单的设计工作,其能效发挥与不确定因素的控制效果是相互关联的,尤其是复杂高层的层高特点,会直接造成设计难度的进一步增加,因此这就需要从建筑需求入手,开展有针对性的设计工作,并将相应影响因素纳入重点考量范畴中,一旦结构设计环节缺少对结构布置的合理性规划,不仅后续建筑施工流程难以正常推进,建筑质量更会受到直接影响,而建筑结构缺少稳定性,也会导致其使用寿命不断缩短,因此,这就需要不断强化对复杂高层及超高层建筑结构设计的研究,充分掌握其设计要点。

一、复杂高层及超高层建筑结构设计要点

1.强化对概念设计的重视

在当今社会,设计可以说是建筑施工的灵魂,尤其是复杂高层及超高层建筑,结构设计的优化性也就显得至关重要。目前,我国的设计师也将工作重心放在了高层结构设计上,在实际设计环节根据对设计项目的研究及总结,也逐渐形成了一定的规范化标准,其中最为主要的就是强化概念设计。首先,复杂高层及超高层由于层高较高,这就对结构的稳定性提出了更要的要求,在实际设计环节应当以此为关键点,在结构设计中不断加强对结构受力的均匀性设计,使其更加符合应用的规范化标准。

其次,设计内容中应该涵盖着对应力高效传递的优化研究项目,使其能够在应用过程中实现力的快速分解及传递;第三,在结构设计环节,应当确保其标准内容能够直接体现在结构整体上,实现对结构的完善性规划整理;第四,当今社会的各个领域中都倡导应用绿色能源,减少浪费及污染问题,而这一理念也应当在结构设计中得以灌输,只有这样才能有效提升复杂高层及超高层建筑的环保性能;第五,在推进设计工作时应当在结合工程实际情况的基础上,将建筑材料与结构进行有机结合,使二者能够更加具有协调性,从而从根本上提高材料利用率,使其能够在后续应用中承受高强度的结构荷载力。总体来说,为了将以上几点落实到设计主w中,需要建筑以及结构工程师的密切配合,在互相交流经验及工程项目研讨过程中,不断对设计图纸进行优化调整,使其更加具有参考价值。

2. 科学选择结构抗侧力体系

为了在复杂高层与超高层建筑结构设计中,能够充分体现出安全性问题,我国相关设计师总结出,提高结构抗侧力体系的科学性是基础。选择该体系的过程中,应当注重以下几点:结构体系的合理选择应当根据具体的建筑高度来确定,我国相关工作人员在近年来的工作中总结出了不同结构抗侧力体系与不同高度建筑之间的关系。

例如,在建筑高度小于等于100m 的时候,该体系最佳组合为框架、框架剪力墙及剪力墙;当建筑物的高度在100~200m之间的时候,最佳体系为剪力墙和框架核心筒;当建筑物高度在200~300m之间时,该体系最佳组成为框架核心筒、框架核心筒伸臂;如果该建筑高度小于600m时,该结构抗侧力体系的最佳构成应该为筒中筒伸臂、巨型框架、桁架、斜撑及组合体;在进行设计的过程中,应注重以上提及的相关结构抗侧力构件能够保持高度的连接,最好能够形成一个统一的整体。

3. 高度重视建筑抗震设计

复杂高层与超高层建筑当中,其抗震设计应当在建筑功能充分发挥的基础上进行确立,同时该环节也是确保建筑拥有较高安全性的重要部分。抗震方案在高层建筑当中,最重要的一点就是科学选择建筑材料;实现有效减少地震过程中的能量增加。在这项工作当中,验收承载力是使用建筑构件最主要的方式,并且应当有效控制地震情况下建筑结构的层间位移限值;在实际高层建筑的过程中,结构抗震手段的应用应当在位移的基础上建立,并定量分析相关设计方案,促使地震发生时结构的变形弹性能够对建筑产生一定程度的保护作用;精确分析地震发生时建筑构件会产生的变形及位移在建筑结构中的体现具有重要意义,这样一来,能够对构建变形值进行有效的确立;针对性设计应当体现在建筑构件的生产要求及建筑界面的应变分别当中,同时应当注重场地的坚固性,这也是有效降低地震发生时能量输入的重要方式。

4. 坚持高程建筑结构设计经济理念

复杂高程和超高层建筑是一项较大的项目,在结构设计和施工过程中,会面临很多成本输出问题。因此,在建筑结构设计过程中,应该坚持经济型设计理念。对于结果设计方案,应该坚持优化处理,避免在建设过程中由于结构冗长而造成成本浪费的问题。

二、复杂高层与超高层建筑结构设计中确保计算和设计的准确性

1. 合理选择分析软件、合理计算结果

现阶段,复杂高程与超高层建筑结构计算软件的种类很多,侧重点也有所不同,在结构设计过程中,设计人员首先应该明确不同的软件的作用,然后根据实际需要合理选择合适的计算软件。与此同时,还应该对具体的设计计算结果进行科学分析,从力学理念和工程设计经验方面进行合理判断,确保计算结果的合理性和准确性。

2. 重视荷载与作用方面的考虑

对于复杂高层与超高层建筑的结构设计,由于高层建筑很容易受到风载荷的影响,因此在高层建筑,尤其是超高层建筑结构设计中,应该重点考虑风载荷的影响。例如,在某大楼设计过程中,不仅需要考虑相关设计规范,而且还进行了相关风洞试验,从而提高建筑物的抗风载能力。在具体的试验过程中,设计了一个以 1:500 为比例的模型在半径为 600m 的风场环境中进行试验,验证建筑在不同风况下的受力情况。

现阶段,对于地震灾害的预测,在技术方面还有一定的限制,很难准确预定地震灾害。有些发达国家对于地震的研究十分深入,但是依然无法准确预估地震发生的时间和地点。因此,在高层建筑设计过程中,应该加强抗地震力的设计。与此同时,还应该重点考虑建筑主楼、裙楼在地震力作用下的不同反应。

综上所述,随着科学技术水平的不断提高,人们生活质量不断上升,我国城市建设过程中复杂高层与超高层建筑增加,在对这类建筑进行设计的过程中,应当充分考虑到抗震设防烈度、结构方案及类型等因素。经过我国建筑行业近年来积累的经验,总结出复杂高层与超高层建筑结构设计要点包括概念设计、结构抗侧力体系及抗震设计等内容。新时期,我国建筑行业相关工作人员只有在实践中不断加强对这些方面的重视,才能够促进我国建筑业不断进步。

参考文献:

高层建筑结构设计要点范文5

关键词:转换层,高层建筑,结构设计

中图分类号: TU318 文献标识码: A 文章编号:

一、工程概况

本工程为一幢综合型高层建筑,总面积为25700m2,总层数为26层。1到3层为商场(地下室由箱型基础组成,4到10层为办公楼,11到25层为住宅,26层为机房等。1到2层层高为4.2m,第3层为5.6m,第4层为3m,5到6层为2.8m。根据建筑设计要求,3层以下需较大空间,上部为分隔较多的小空间,因此结构方案采用上部为剪力墙,下部为框一剪结构,在第3层楼面设置结构转换层,板厚250mm。

二、结构转换层类型的选择

转换层的结构形式一般可分为梁式、板式和箱形式三种基本类型。箱形和板式转换层受力较为复杂,利用三维空间计算程序作整体受力分析后还要用有限元法进行局部分析后才能用于设计,同时箱形和板式转换层混凝土耗用量较大,造价高,而梁式转换层(包括析架式、空腹析架式等杆系转换层)受力简单,三维空间计算程序结果可直接用于设计,同时施工方便,混凝土耗用量少,造价低,是一般高层建筑转换层广泛采用的一种结构形式,因此本工程选用梁式结构转换层。

三、带转换层的高层建筑结构设计关键问题

根据建设部关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知,本工程属于超限高层建筑,结合本工程设计总结了以下带梁式转换层的高层建筑结构设计的主要抗震措施。

(1)保证大空间层有足够的刚度,防止沿竖向刚度变化过于悬殊,严格控制转换层上下结构侧向刚度比.抗震设计时,转换层结构侧向刚度不小于其上一层结构侧向刚度的70%.根据《高规》附录E控制转换层上下结构等效侧向刚度比宜大于1.0,不应大于1.3.为此应保证一定比例的剪力墙落地,加大落地剪力墙的厚度,提高落地剪力墙混凝土强度等级,减小洞口尺寸,使纵横墙尽量连接形成筒体.

(2)加强转换层楼板平面内的整体性和刚度,采用现浇混凝土楼板,板厚取为200mm,同时加强转换层下一层楼板平面内刚度,板厚取为150mm;结构布置尽量左右对称,加强薄弱部位楼板的厚度及配筋;在结构整体分析中,考虑薄弱部位楼板平面内变形对结构受力的影响;通过调整剪力墙的布置方式,使结构质心和刚心接近,避免扭转;平面尽量布置规则。

(3)控制风荷载和地震作用下结构层间位移角,地震作用要满足规范对地震基底剪力与重力荷载代表值的比值限制;控制结构底部加强区剪力墙及其他部分剪力墙、框支柱及非框支柱轴压比。

(4)适当加强框支剪力墙转换层以下竖向构件的配筋率.按《高规》验算结构抗倾覆和整体稳定;采用现浇钢筋混凝土楼板,增强结构整体性;核心筒内部楼板厚采用150mm,双层双向配筋;围护材料选用新型轻质材料,有利于减轻建筑自重,减小地震反应。

四、转换梁刚度对剪力墙内力的影响

由于转换层附近结构内力分布非常复杂,一般在实际工程中首先根据建筑设计要求和估算确定剪力墙的布置,对转换梁构件尺寸进行试算、调整。对转换梁尺寸的选择带有一定的盲目性,根据本工程选择的16种不同转换梁尺寸的电算结果分析表明,结构转换层刚度对上部结构内力的影响存在一定的规律。

1.转换梁高度对剪力墙超限构件数量的影响

转换梁刚度D=EhI,当混凝土强度等级确定后,I是影响刚度的主要因素,根据材料力学公式I=bh3/12可知,刚度与梁的宽度成正比,与梁的高度的3次方成正比,故梁的高度变化明显影响梁的刚度变化,因此首先分析梁的高度变化与剪力墙内力变化的规律。以梁宽b=0.8m为例,分别绘出当h=1.0、1.5、2.0、2.5m时剪力墙的超限构件数量关系,梁的高度越大,构件的总超限数越少,各层的超限构件数目与总超限构件数目变化趋势一致。同时超限构件数目集中在转换层上(第4层),占总超限构件数目约50%以上,且转换梁的高度越大,所占比例越大(h=2.5、2.0、1.5、1.0m时分别为70%、53%、50%、45%),可见梁的高度越大,沿高度剪力墙内力变化越大,反之亦然.但总的影响高度基本不变(至第9层)。当梁的高度为lm时,超限构件数目明显增加(本例从1.5m— 1.0m,超限构件数目增加1.5倍;2.5-1.5m之间每级增加约20%),即当梁的高度太小时,结构的受力状态明显变差,设计时转换梁的高度不宜太小。

2.转换梁刚度对剪力墙超限构件数量的影响

以上讨论了转换梁高度对上部剪力墙内力的影响规律,为了综合上述转换梁尺寸变化对上部结构内力的影响,讨论转换梁的刚度变化对超限构件数目影响的变化规律具有一定意义。为了便于分析,以0.6m*1.0m的转换梁刚度为1.0,其余各梁的刚度取相对值。梁的刚度和超限构件数量变化曲线为一抛物线,当梁的相对刚度小于1时,越限构件数量明显增加;梁的相对刚度大于1时,构件超限数量增加很少,因此在设计中应合理选用转换梁尺寸。

3.带转换层结构上部剪力、内力与普通框支剪力墙内力的比较

根据对电算结果的分析及与普通框支剪力墙内力分析的比较,表明两者之间存在较明显的差别:

(1)转换梁的刚度对上部剪力墙内勺的影响范围有明显作用,而框支剪力墙上部内力的影响范围仅与框架的净跨L0有关;

(2)带转换层结构的上部剪力墙一般都开有洞口,且位置随建筑要求不同而不同,故上部结构内力变化较为复杂,有时局部出现异常(如本例第7层),而一般框支剪力墙的内力变化符合弹性理论的分析结果。

(3)带转换层结构的上部剪力墙内力变化规律数据具有一定的离散性,而框支剪力墙的内力变化完全可按弹性理论的方法进行分析。

七、结束语

带结构转换层的高层建筑的结构设计在现代建筑设计中应用的十分普遍,必须做好这方面的研究和实践,推动带结构转换层的高层建筑的结构设计的发展。

参考文献:

【1】郭英伟. 对高层建筑结构设计探讨[J]. 中小企业管理与科技(下旬刊). 2010(08)

高层建筑结构设计要点范文6

关键词:高层建筑;结构设计;问题

中图分类号: TU97 文献标识码: A 文章编号:

1.高层建筑结构设计中应注意的问题

1.1高层建筑结构选型设计阶段

结构工程师在选型设计阶段应注意以下几个方面。

1)结构规则性方面。新旧规范在结构规则性方面的内容有了很大的变动,新规范在结构规则性方面增加了很多限制条件,比如平面规则性、嵌固端上下层刚度比等信息,并明确指出建筑不得采取严重不规则的建筑设计方案。基于此,作为结构工程师必须遵守新规范中的限制条件,还应注意避免后期的施工图设计工作出现被动。

2)结构超高方面。现行的抗震规范和高规中,对结构总高度有着严格的限制,不仅把原有限制高度设为A级高度建筑,还增添了B级高度建筑。所有,就结构的此项控制因素必须严格注意,只要结构是B级甚至超过了B级高度建筑,则意味着设计方法与处理措施都会发生很大的变化。而在实际结构设计过程中,经常出现因结构类型变更而忽略了这一问题,导致施工图难以通过审查,要么重新设计要么开专家辩证会议,这些对工程的造价和工期等具有巨大的影响。

3)设置嵌固端方面。高层建筑通常都有两层或两层以上的人防和地下室,人防顶板和地下室顶板都有可能是嵌固端的设嚣点。而就这个问题,结构设计师通常疏忽了嵌固端设置而带来的一些需要注意的问题,比如,嵌固端的楼板设计问题,嵌固端上下层的刚度比限制、嵌固端上下层的抗震等级是否一致性,若忽略任意一方面的问题都将给后期工作带来安全隐患。

4)设置短肢剪力墙方面。在新规范内容中,就短肢剪力墙定义为墙肢截面高厚tL5~8的墙,并结合实际经验和实验资料,在高层建筑中应用短肢剪力增添了很多限制,因此,肢剪力墙比普通剪力墙抗震等级要提高一级,这样会使建筑成本提高,但短肢剪力墙对使用上有很大的便利。基于此,在高层建筑结构设计中,作为结构工程师对于短肢剪力墙结构体系也不能全部否定,应该有所比较的选择,看主要注重哪一方面,再来选择结构体系。

1.2高层建筑地基基础设计阶段

地基基础设计阶段成果的好坏直接对后期设计工作有着重大的影响,更是工程造价的决定性因素。所以在地基基础设计阶段,所出现问题将会更加严重甚至损失无法估量。由于我国地域辽阔,地质条件及其复杂,我国的相关地基基础设计标准难以符合每个地区的需要,因此,应注意一些地方性的地基基础设计规范问题,搜罗多个地方的地基基础类型与设计处理手段。因此,在高层建筑地基基础设计阶段,一定要深入学习地方性的规范,从而避免给整个建筑结构设计以及后期设计工作造成重大影响。

1.3高层建筑结构计算和分析阶段

在高层建筑结构计算和分析阶段,只有准确高效的分析工程内力,并结合规范要求进行处理与设计,才能确保工程设计质量。作为结构工程师应注意以下几方面问题。

1)如何选择结构整体计算软件。当前。结构整体计算软件通常有RRAT、TBSA、SAP、ETABS、SATWE等软件。然而,这些软件在计算模型采用时存在一些差距,从而造成各汁算软件的结构有着不大不小的区别。因此,在选择结构整体计算软件时,应结合结构类型及计算软件模型的特点进行分析,选择切实可行的计算软件,并根据不同的汁算软件的计算结果。

2)考虑地震力是否需要放大以及建筑隔墙给自振周期带来的影响。在新旧规范内容中,就地震力是否需要放大以及建筑隔墙给自振周期带来的影响都有提到。不同的是在新规范结合大键工程的实际测量周期,并就多种结构体系下的高层建筑结构的自振周期折减系数也有了明确的指出。

3)考虑振型数目足够与否。在新规范内容,新增了振型参与系数这一新概念,并对其参数有了明确的限值。而在旧的规范内容中,并为提及振型参与系数这一概念,即使有这一概念,也没有就其参数设置限值,即使设置了也难以符合新规范的设计要求。基于此,在高层建筑结构计算和分析阶段,必须针对计算结果中这一参数的结果进行准确判断,并决定振型数目的取值是否需要调整。

4)考虑是否分开计算多塔间地震周期相互干扰、近年来,我国涌现了很多底盘大、塔楼多的新型高层建筑类型。作为建筑结构层工程师,必须分析是把结构作为整体并根据多塔类型计算,还是把结构人为的分开而计算。假如多塔之间的刚度相差很大,就容易导致即使振型参与系数达标,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而给结构带来安全隐患。

5)考虑如何做好非结构构件的计算与设计。在高层建筑结构设计过程中,通常存在很多因为建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。针对这一部分内容,特别是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大。因此,必须严格根据新规范中增加的非结构构件的计算处理措施而进行设计。

2.高层建筑结构的设计特征

2.1水平荷载成为决定因素

在竖构件中使用荷载引起弯矩和轴力的楼房自重和楼面,与楼房高度的一次方成正比例关系;而对结构产生倾覆力矩和在竖构件中引起轴力的水平荷载,与楼房高度的2次方成正比例关系。在一定高度的楼房中,竖向荷载多为定值,但风荷载和地震作用的水平荷载,是伴随结构不同动力的特征进行不同幅度变化的。

2.2轴向变形不容忽视

竖向荷载很大的高层建筑,在柱中不仅能引起很大的轴向变形,还会对连续梁弯矩产生很大的影响,最终减少连续粱中间支座的负弯矩值,增大跨中正弯矩值和端支座负弯矩值。除此之外,预制构件中的下料的长度也会受其影响,所以。要根据轴向变形的计算值,对下料长度进行调整时。

2.3侧移成为控制指标

与较低的楼房有很大的不同之处。受楼房高度直线增加的影响,水平荷载下的结构下的侧移也将会随其增大,造成在水平荷载作用下的结构侧移被控制在一定范围之内。

3.结构延性是重要设计指标

与较低楼房相比较而言,高楼的结构的柔和度会更好点,在地震作用下发生的变形也会较大点。为了确保结构具有较大的延性,在其进入塑性变形阶段之后,还具有很强的变形力,以防止倒塌,所以在其构造上要选用一些相对应的措施。

4.结构体系的合理性分析

规范特别强调了整体结构的科学性和合理性。规范中用于控制整体结构合理陛的指标主要是周期比、位移比、刚度比、刚重比和剪重比等。

4.1周期比是控制结构扭转效应的重要指标。

限定周期比的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至于出现过大的扭转。也就是说,限定周期比是使得结构承载布局合理。《高规》第4.3.5条对周期比的限值给出了规定。如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员应增大结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。

4.2层间位移比是控制结构平面不规则性的重要指标。

在《建筑抗震设计规范》和《高规》中均对位移比的限值作了明确的规定。需要指出的是规范中规定的位移比限值是按刚性板假定得出的,如在结构模型中设定的是弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以计算出正确的位移比。在得出的位移比值满足要求之后,去掉“对所有楼层强制采用刚性楼板假定”的选择,按弹性楼板假定进行后续配筋计算。

4.3刚度比是控制结构竖向不规则的重要指标。

根据《抗震规范》和《高规》的要求,软件分别提供了地震剪力与地震层问位移比,剪切剐度和剪弯刚度的计算方法。正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键。地震剪力与地震层间位移比可用于判断地下室顶板能否作为上部结构的嵌固端。剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定。剪弯刚度主要用于底部大空间为多层的转换结构。

5.结语

受高层建筑快速发展的影响,对高层建筑的材料、力学分析模型以及力学等方面的要求也日益增加。所以,新的结构形式和更为合理的力学模型,是现阶段高层建筑结构设计人员的主要目标,只有得到新型的建筑结构形式以及合理的力学模型,城市中的高层建筑才会发展得更好。

参考文献:

【1】刘大海,杨翠如等,高楼结构方案优选【M】陕西:陕西科学技术出版社,2008

【2】赵西安,高层结构设计【M】.中国建筑科学研究院结构研究所,2008