欧姆定律本质范例6篇

前言:中文期刊网精心挑选了欧姆定律本质范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

欧姆定律本质

欧姆定律本质范文1

常见考点知识总结

1.三种表达式:(1)I = ;(2)E = U外+U内;(3)U端 = EIr.

2.路端电压U和外电阻R外关系:R外增大,U端变大,当R外 = ∞(断路)时,U端 = E(最大);R外减小时,U外变小,当R外 = 0(短路)时,U端 = 0(最小).

3.总电流I和外电阻R外关系:R外增大,I变小,当R外 = ∞时,I = 0;R外减小时,I变大,当R外 = 0时,I =(最大). (电源被短路,是不允许的)

4.几种功率:电源总功率P总 = EI(消耗功率);输出功率P输出 = U端I(外电路功率);电源损耗功率P内损 = I2r(内电路功率);线路损耗功率P线损 = I2R线.

一、在图像问题中的应用

例1利用图1所示电路可以测出电压表的内阻.已知电源的内阻可以忽略不计,R为电阻箱.当R取不同阻值时,电压表对应有不同读数U.多次改变电阻箱的阻值,所得到的R图像应该是 ( )

解析设电源电动势为E,电压表内阻为RV,电压表的读数为U,则由闭合电路的欧姆定律可得I = ,则U = EIR = E,由此可得R = RV,由此判断A正确.

二、在非纯电阻电路中的应用

例2如图2所示为汽车蓄电池与车灯(电阻不变)、启动电动机组成的电路,蓄电池内阻为0.05 .电流表和电压表均为理想电表,只接通S1时,电流表示数为10 A,电压表示数为12 V;再接通S2,启动电动机工作时,电流表示数变为8 A,则此时通过启动电动机的电流是( )

A.2 AB.8 AC.50 AD.58 A

解析只接通S1时,由闭合电路欧姆定律得:E = U+Ir = 12 V+10.05 V = 12.5 V,R灯 == = 1.2 ,再接通S2后,流过电动机的电流为:I电动机 = I′= A8 A = 50 A,故选项C正确.

三、在动态电路中的应用

例3为了儿童安全,布绒玩具必须检测其中是否存在金属断针,检测时可以先将玩具放置在强磁场中,若其中有断针,则断针被磁化,用磁报警装置即可检测到断针的存在.图3所示是磁报警装置中的一部分电路示意图,其中RB是磁敏传感器,它的电阻随断针的出现而减小,a、b接报警器,当传感器RB所在处出现断针时,电流表的电流I、ab两端的电压U将 ( )

A.I变大,U变大B.I变小,U变小

C.I变大,U变小D.I变小,U变大

解析由题意知RB的电阻随断针的出现而减小,即外电路的电阻减小,由闭合电路欧姆定律有I总 = ,可知I总必增大,再由U外 = EI总r可知,外电压U减小.而由U1 = I总R1可知,U1增大,U2必减小,由电流表的电流I = I总I2可知,电流表的电流必变大.故选项C正确.

四、在含容电路中的应用

例3如图4所示,电源电动势E = 12 V,内阻r = 1 ,电阻R1 = 3 ,R2 = 2 ,R3 = 5 ,电容器的电容C1 = 4 F,C2 = 1 F,求C1、C2所带电荷量.

解析根据闭合电路欧姆定律,

I == A = 2 A,

U1 = IR1 = 6 V,U2 = IR2 = 4 V,

UC1 = U2 = 4 V,UC2 = U1+U2 = 10 V.

根据电容器的电容的表达式Q = CU可得:

Q1 = C1UC1 = 406 C = 1.605 C

Q2 = C2UC2 = 1060 C = 105 C.

五、在综合类问题中的应用

例6图5甲所示为某电阻R随摄氏温度t变化的关系图像,图中R0表示0℃时的电阻值,k表示图线的斜率.若用该电阻与电池(电动势为E,内阻为r)、电流表(满偏电流为Ig、内阻为Rg)、滑动变阻器R′串联起来,连接成如图5乙所示的电路,用该电阻做测温探头,把电流表的电流刻度改为相应的温度刻度,于是就得到了一个简单的“电阻温度计”.

(1)使用“电阻温度计”前,先要把电流表的刻度改为相应的温度值,若温度t1< t2,其对应的电流分别为I1、I2,则I1、I2谁大?

(2)若该“电阻温度计”的最低适用温度为0℃,即当温度为0℃时,电流表恰好达到满偏电流Ig,则变阻器R′的阻值为多大?

(3)若保持(2)中电阻R′的值不变,将电流表刻度盘换为温度刻度盘,刻度均匀吗?

解析(1)由图5甲可知温度越高,电阻R越大,对应电路中的电流越小,故I1>I2.

(2)由闭合电路欧姆定律得:Ig = ,

得:R′=R0Rgr.

(3)由图(a)得R = R0+kt.

再由闭合电路欧姆定律得:

I = ,解之得:t = (),由t = ()可知,t与I不是一次线性关系,故刻度不均匀.

例7受动画片《四驱兄弟》的影响,越来越多的小朋友喜欢上了玩具赛车.某玩具赛车充电电池的输出功率P随电流I变化的图像如图6所示.

(1)求该电池的电动势E和内阻r;

(2)求该电池的输出功率最大时对应的外电阻R(纯电阻);

(3)由图像可以看出,同一输出功率P可对应两个不同的电流I1、I2,即对应两个不同的外电阻(纯电阻)R1、R2,试确定r、R1、R2三者间的关系.

解析(1)由图像可知I1 = 2 A时,有Pm == 2 W.

I2 = 4A时,输出功率为P=0,此时电源被短路,即:I2 = ,联立解得:E = 2 V,r = 0.5 .

(2) 电池的输出功率最大时有R = r,故 r = R = 0.5 .

(3)由题知:()2R1 = ()2R2,整理得r2 = R1R2.

例8如图7所示的电路中,两平行金属板A、B水平放置,两板间的距离d = 40 cm.电源电动势E = 24 V,内电阻r = 1 ,电阻R = 15 .闭合开关S,待电路稳定后将一带正电的小球从B板小孔以初速度v0 = 4 m/s竖直向上射入板间.若小球带电荷量为q = 102 C,质量为m = 202 kg,不考虑空气阻力.那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?此时,电源的输出功率是多大?(取g = 10 m/s2)

解析小球进入板间后,受重力和电场力作用,且到达A板时速度为零.设两板间电压为UAB,由动能定理得:mgdqUAB = 0mv02,解得UAB = 8 V.

欧姆定律本质范文2

(一)知识目标

1、知道电动势的定义.

2、理解闭合电路欧姆定律的公式,理解各物理量及公式的物理意义,并能熟练地用来解决有关的电路问题.

3、知道电源的电动势等于电源没有接入电路时两极间的电压,电源的电动势等于内、外电路上电势降落之和.

4、理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题.

5、理解闭合电路的功率表达式.

6、理解闭合电路中能量转化的情况.

(二)能力目标

1、培养学生分析解决问题能力,会用闭合电路欧姆定律分析外电压随外电阻变化的规律

2、理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题.

3、通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析问题能力.

(三)情感目标

1、通过外电阻改变引起电流、电压的变化,树立学生普遍联系观点

2、通过分析外电压变化原因,了解内因与外因关系

3、通过对闭合电路的分析计算,培养学生能量守恒思想

4、知道用能量的观点说明电动势的意义

教学建议

1、电源电动势的概念在高中是个难点,是掌握闭合电路欧姆定律的关键和基础,在处理电动势的概念时,可以根据教材,采用不同的讲法.从理论上分析电源中非静电力做功从电源的负极将正电荷运送到正极,克服电场力做功,非静电力搬运电荷在两极之间产生电势差的大小,反映了电源做功的本领,由此引出电动势的概念;也可以按本书采取讨论闭合电路中电势升降的方法,给出电动势等于内、外电路上电势降落之和的结论.教学中不要求论证这个结论.教材中给出一个比喻(儿童滑梯),帮助学生接受这个结论.

需要强调的是电源的电动势反映的电源做功的能力,它与外电路无关,是由电源本生的特性决定的.

电动势是标量,没有方向,这要给学生说明,如果学生程度较好,可以向学生说明,做为电源,由正负极之分,在电源内部,电流从负极流向正极,为了说明问题方便,也给电动势一个方向,人们规定电源电动势的方向为内电路的电流方向,即从负极指向正极.

2、路端电压与电流(或外电阻)的关系,是一个难点.希望作好演示实验,使学生有明确的感性认识,然后用公式加以解释.路端电压与电流的关系图线,可以直观地表示出路端电压与电流的关系,务必使学生熟悉这个图线.

学生应该知道,断路时的路端电压等于电源的电动势.因此,用电压表测出断路时的路端电压就可以得到电源的电动势.在考虑电压表的内阻时,希望通过第五节的“思考与讨论”,让学生自己解决这个问题.

3、最后讲述闭合电路中的功率,得出公式,.要从能量转化的观点说明,公式左方的表示单位时间内电源提供的电能.理解了这一点,就容易理解上式的意义:电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中.

教学设计方案

闭合电路的欧姆定律

一、教学目标

1、在物理知识方面的要求:

(1)巩固产生恒定电流的条件;

(2)知道电动势是表征电源特性的物理量,它在数值上等于电源没有接入电路时两极间的电压.

(3)明确在闭合回路中电动势等于电路上内、外电压之和.

(4)掌握闭合电路的欧姆定律,理解各物理量及公式的物理意义

(5)掌握路端电压、输出功率、电源效率随外电阻变化的规律.

2、在物理方法上的要求:

(1)通过电动势等于电路上内、外电压之和的教学,使学生学会运用实验探索物理规律的方法.

(2)从能量和能量转化的角度理解电动势的物理意义.

(3)通过对路端电压、输出功率、电源效率随外电阻变化的规律的讨论培养学生的推理能力.

(4)通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析

二、重点、难点分析

1、重点:

(1)电动势是表示电源特性的物理量

(2)闭合电路欧姆定律的内容;

(3)应用定律讨论路端电压、输出功率、电源效率随外电阻变化的规律.

2、难点:

(1)闭合回路中电源电动势等于电路上内、外电压之和.

(2)短路、断路特征

(3)应用闭合电路欧姆定律讨论电路中的路端电压、电流强度随外电阻变化的关系

三、教学过程设计

引入新课:

教师:同学们都知道,电荷的定向移动形成电流.那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差.)

演示:将小灯泡接在充满电的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭.)为什么会出现这种现象呢?

分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差.当用导线把小灯泡和电容器两极板连通后,电子就在电场力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减少为零,所以电流减小为零,因此只有电场力的作用是不能形成持续电流的.

教师:为了形成持续的电源,必须有一种本质上完全不同于静电性的力,能够不断地分离正负电荷来补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.电源在维持恒定电流时,电源中的非静电力将不断做功,从而把已经流到低电势处的正电荷不断地送回到高电势处.使它的电势能增加.

板书:1、电源:电源是一种能够不断地把其他形式的能量转变为电能的装置.它并不创造能量,也不创造电荷.例如:干电池是把化学能转化为电能,发电机是把机械能、核能等转化为电能的装置.

教师:电源能够不断地把其他形式的能量转变为电能,并且能够提供恒定的电压,那么不同的电源,两极间的电压相同吗?展示各种干电池(1号、2号、5号、7号),请几个同学观察电池上面写的规格,发现尽管电池的型号不同,但是都标有“1.5V”字样.我们把示教电压表直接接在干电池的两端进行测量,发现结果确实是1.5V.讲台上还摆放有手摇发电机、蓄电池、纽扣电池,它们两端的电压是否也是1.5V呢?(学生回答:不是)那么如何知道它们两端的电压呢?(学生:用电压表直接测量)·

结论:电源两极间的电压完全由电源本身的性质(如材料、工作方式等)决定,同种电池用电压表测量其两极间的电压是相同的,不同种类的电池用电压表测量其两极间的电压是不同的.为了表示电源本身的这种特性,物理学中引入了电动势的概念.

板书:2、电源电动势

教师:从上面的演示和分析可知,电源的电动势在数值上等于电源未接入电路时两极间的电压.

板书:电源的电动势在数值上等于电源没有接入电路时其两极间的电压.

例如,各种型号的干电池的电动势都是1.5V.那么把一节1号电池接入电路中,它两极间的电压是否还是1.5V呢?用示教板演示

,电路如图所示,结论:开关闭合前,电压表示数是1.5V,开关闭合后,电压表示数变为1.4V.实验表明,电路中有了电流后,电源两极间的电压减少了.

教师:上面的实验中,开关闭合后,电源两极间的电压降为1.4V,那么减少的电压哪去了呢?用投影仪展示实验电路,介绍闭合电路可分为内、外电路两部分,电源内部的叫内电路,电源外部的叫外电路.接在电源外电路两端的电压表测得的电压叫外电压.在电源内部电极附近的探针A、B上连接的电压表测得的电压叫内电压.我们现在就通过实验来研究闭合电路中电动势和内、外电压之间的关系.

板书:3、内电压和外电压

教师:向学生介绍实验装置及电路连接方法,重点说明内电压的测量.实验中接通电键,移动滑动变阻器的滑动头使其阻值减小,由两个电压表读出若干组内、外电压和的值.再断开电键,由电压表测出电动势.分析实验结果可以发现什么规律呢?

学生:在误差许可的范围内,内、外电压之和等于电源电动势.

板书:在闭合电路中,电源的电动势等于内、外电压之和,即.

下面我们来分析在整个电路中电压、电流、电阻之间的关系.

教师:我们来做一个实验,电路图如图所示

观察电键S先后接通1和2时小灯泡的亮度.

结论:把开关拨到2后,发现小灯泡的亮度比刚才接3V的电源时还稍暗些.怎么解释这个实验现象呢?这就要用到我们将要学习的内容——闭合电路的欧姆定律.

板书:闭合电路的欧姆定律

教师:在图1所示电路图中,设电流为,根据欧姆定律,,,那么,电流强度,这就是闭合电路的欧姆定律.

板书:4、闭合电路的欧姆定律的内容:闭合电路中的电流强度和电源电动势成正比,和电路的内外电阻之和成反比.表达式为.

同学们从这个表达式可以看出,在电源恒定时,电路中的电流强度随电路的外电阻变化而变化;当外电路中的电阻是定值电阻时,电路中的电流强度和电源有关.

教师:同学们能否用闭合电路的欧姆定律来解释上一个实验现象呢?

学生:9V的电源如果内电阻很大,由闭合电路的欧姆定律可知,用它做电源,电路中的电流I可能较小;而电动势3V的电源内阻如果很小,电路中的电流可能比大,用这两个电源分别给相同的小灯泡供电,灯泡的亮度取决于,那么就出现了刚才的实验现象了.

教师:很好.一般电源的电动势和内电阻在短时间内可以认为是不变的.那么外电阻的变化,就会引起电路中电流的变化,继而引起路端电压、输出功率、电源效率等的变化.

几个重要推论

(1)路端电压随外电阻变化的规律

板书:5几个重要推论

(l)路端电压随外电阻变化的规律演示实验,图3所示电路,

4节1号电池和1个10Ω的定值电阻串联组成电源(因为通常电源内阻很小,的变化也很小,现象不明显)移动滑动变阻器的滑动片,观察电流表和电压表的示数是如何随变化?

教师:从实验出发,随着电阻的增大,电流逐渐减小,路端电压逐渐增大.大家能用闭合电路的欧姆定律来解释这个实验现象吗?

学生:因为变大,闭合电路的总电阻增大,根据闭合电路的欧姆定律,,电路中的总电流减小,又因为,则路端电压增大.

教师:正确.我们得出结论,路端电压随外电阻增大而增大,随外电阻减小而减小.一般认为电动势和内电阻在短时间内是不变的,初中我们认为电路两端电压是不变的,应该是有条件的,当无穷大时,0,外电路可视为断路,0,根据,则,即当外电路断开时,用电压表直接测量电源两极电压,数值等于电源的电动势;当减小为0时,电路可视为短路,为短路电流,路端电压.

板书5:路端电压随外电阻增大而增大,随外电阻减小而减小.断路时,∞,0,;短路时,,.

电路的路端电压与电流的关系可以用图像表示如下

(2)电源的输出功率随外电阻变化的规律.

教师:在纯电阻电路中,当用一个固定的电源(设、r是定值)向变化的外电阻供电时,输出的功率,

又因为,

所以,

当时,电源有最大的输出功率.我们可以画出输出功率随外电阻变化的图线,如图所示.

板书6:在纯电阻电路中,当用一个固定的电源(即、是定值)向变化的外电阻供电时,输出的功率有最大值.

教师:当输出功率最大时,电源的效率是否也最大呢?

板书7:电源的效率随外电阻变化的规律

教师:在电路中电源的总功率为,输出的功率为,内电路损耗的功率为,则电源的效率为,当变大,也变大.而当时,即输出功率最大时,电源的效率=50%.

板书8:电源的效率随外电阻的增大而增大.

四、讲解例题

五、总结

探究活动

1、调查各种不同电源的性能特点。

(包括电动势、内阻、能量转化情况、工作原理、可否充电)

2、考察目前对废旧电池的回收情况。

(1)化学电池的工作原理;

(2)废旧电池对环境的污染主要表现在哪些方面;

(3)当前社会对废旧电池的重视程度;

(4)废旧电池的回收由哪些主要的途径和利用方式;

欧姆定律本质范文3

关键词:物理;规律教学;思维

物理规律(包括定律、定理、原理、公式等)反映了物理现象、物理过程在一定条件下必然发生、发展和变化的规律,反映了物质运动变化的各个因素之间的本质联系,揭示了物理事物本质属性之间的内在联系,是物理学科结构的核心。整个中学物理是以为数不多的基本概念和基本规律为主干的一个完整体系,物理基本概念是基石,基本规律是中心,基本方法是纽带。要使学生掌握学科的基本结构,就必须让学生学好基本规律。

纵观整个初中物理,可以将物理规律分为以下三类:

1.实验规律

物理学中的很多规律都是在观察和实验的基础上,通过分析归纳总结出来的。我们把它们叫做实验规律。如杠杠平衡原理、欧姆定律、阿基米德原理等。

2.理想规律

有些物理规律不能直接用实验来证明,但是具有足够数量的经验事实。如果把这些经验事实进行整理分析,抓住主要因素,忽略次要因素,推理到理想的情况下,总结出来的规律,这样的规律我们把它叫做理想规律,如牛顿第一定律、真空不能传声等。

3.理论规律

有些物理规律是以已知的事实为根据,通过推理总结出来的,我们把它叫做理论规律。如并联电路中电阻大小的计算等。

怎样才能搞好规律教学呢?

1 联系新旧知识、收集事实依据,学会研究物理规律的方法

物理规律本身反映了物理现象中的相互联系、因果关系和有关物理量间的严格数量关系。因此在物理规律的教学中必须将原来分散学习的有关概念综合起来。只有用联系的观点来引导学生研究新课题提出新问题才能激发学生新的求知欲与新的兴趣。另一方面物理规律本身总是以一定的物理事实为依据的。因此学生学习物理规律也必须在认识、分析和研究有关的物理事实的基础上来进行。尤其是初中学生他们的抽象思维能力不强理解和掌握物理规律更需要有充分的感性材料为基础。

2 建立思维方法,理解物理规律

初中阶段所研究的物理规律一般着重于用文字语言加以表达即用一段话把某一规律的物理意义表述出来,有些规律还用公式加以表达。对于物理规律的文字表述要认真加以分析,使学生真正理解它的含义而不是让学生去死记结论。例如牛顿第一定律这一理想规律的教学就可采用“合理推理法”,即在实验的基础上进行推理想象,由有摩擦的情况推想到无摩擦时的运动情况,最后把这一规律的内容表述出来。在理解时要弄清定律的条件是“物体没有受到外力作用”。还要正确理解“或”这个字的含义,“或”不是指物体有时保持匀速直线运动状态有时保持静止状态,而是指如果物体原来是静止它就保持静止状态,如果物体原来是运动的它就保持匀速直线运动状态;许多理论物理规律的内容可以用数学形式表达出来就是公式。要使学生从物理意义上去理解公式中所表示的物理量之间的数量关系而不能从纯数学的角度加以理解。例如:对于欧姆定律的表达式应当使学生理解这一公式表达了电流的强弱决定于加在导体两端电压的大小和导体本身电阻的大小,即某段电路中电流的大小与这段电路两端的电压成正比与这段电路中的电阻成反比,公式中的I、U、R三个物理量是对同一段电路而言的。把公式进行变换得到电阻的定义式R=U/I。如果不理解公式的物理意义就可能得出“电阻与电压成正比”这一错误的结论。

3 明确物理规律的适用条件和范围

每一个物理规律都是在一定的条件下反映某个物理现象或物理过程的变化规律,而规律的成立是有条件的。因此每一规律的适用条件和范围也是一定的。学生只有明确规律的适用条件和范围才能正确地运用规律来解决问题才能避免乱用规律、乱套公式的现象。例如,欧姆定律I=U/R,适用于金属导体,不适用于高电压的液体导电,不适用于气体导电,不适用于含源电路或含有非线性元件的电路。而且I、U、R必须是同一段电路上的三个物理量。

4 认清关系,加以区别

物理规律总是与许多物理概念紧密联系在一起的,与某些物理规律也是互相关联的,应当使学生把物理规律与同它相关的物理概念和物理规律之间的关系搞清楚。如:牛顿第一定律与物体的惯性虽有联系但二者有本质的区别不能混为一谈。在教学中经常发现学生把惯性与运动状态等同起来,把物体不受外力作用保持原来的运动状态说成是“保持物体的惯性”。我们知道惯性是物体的固有属性,物体无论是静止还是运动、是否受力,任何时候都有惯性。而牛顿第一定律是一个反映这些客观事实的物理规律,两者不能混为一谈。

5 联系实际应用,掌握物理规律

欧姆定律本质范文4

中学物理逻辑性很强,许多刚刚步入高中的学生很难适应高中物理的学习,认为高中物理不易学、学不懂.面对这种状况,教师应该时刻关注学生的心理,及时有效的帮助学生克服这种心理障碍,使他们能够对学习物理充满信心.物理教师还要改善自己的教学方式,设计新颖的教学方案,激发学生对物理学习的兴趣,提高学生对物理学习的积极性,整体改善物理的教学质量.

一、中学物理课堂教学新型设计分析

(一)设计物理教学方法的思路

1.结合哲学方法

结合哲学方法分为:质变和量变法、否定和肯定法、内容和形式法、本质和现象法、相对和绝对法、原因和结果法、空间和时间法、统一和对立等法.

2.结合数学方法

结合数学方法:图像法、函数法、几何法、极限法等.

3.突出物理方法

物理有自身独特的学习方法:观察法、实验法、守恒定律法、对称法、化方法等.

4.思维方法

思维方法:判断和推理法、综合和分析法、分类和比较法、概括法、演绎和归纳法、具体和抽象法、类比法等.

(二)设计在物理课堂教学的作用

1.是科学教授物理的需要

通过物理科学的方法,让学生更好理解物理知识.例如:某教师在讲解电容和电场强度设计教案时,应考虑电容和电场强度的定义,而它们是根据比值进行定义的,通过比值可以将抽象的概念具体化、数字化,再联合实验,促进学生更好地理解物理知识.

2.促进中学生建立科学观念

物理是科学学科,包含大量的科学观念和概念,促进学生建立正确的科学观念,懂得从现象到本质、从偶然到必然、从未知到已知.

例如:某物理老师讲解《惯性定律》设计问题“静止的小车启动时,为什么小车上的木板向后倒?”“小车停止运动时,为什么小车上的木板会向前倒?”引导学生对实验现象进行全面思考,科学利用定律解决物理问题,促进学生建立科学观念.

二、学生的个体差异

为了了解学生对物理的学习情况,笔者对某所学校学生的力学和电学进行了调查.发放调查问卷143张,共收回137张,回收率是95.80%.数据显示,力学中关于自行车下坡行驶时不可以用前闸刹车,77.20%的学生很清楚;15.20%的学生知道一些;6.70%的学生不太清楚;2.20%的学生完全没听过.电学中关于灯泡灯丝在开灯瞬间最容易被烧断,66.30%的学生很清楚;22.80%的学生知道一些;9.80%的学生不太清楚;1.10%的学生完全没听过.

生活中物理学处处可见,但是调查显示有些学生对生活中的物理现象缺乏了解,个体之间存在差异.因此教师应将生活实际、学生的个体差异等因素和物理教学联合起来,提高分析解决物理问题的能力.

三、新的教学方法

(一)注重物理生活化

结合生活实际教学,以此吸引学生思考问题,让学生感受到物理是兼备实用性、趣味性的科学学科.

例如:某教师讲解《重力势能》这节课结合生活实际提出“质量不同的物体从同一高度下落,可以观察到什么现象?”“质量相同的物体从不同高度下落,又可以观察到什么现象?”让学生清楚观察到质量、高度与重力势能之间的关系.

(二)物理教学方式要灵活

教学过程中,教师要根据学生的学习情况灵活教学.例如:某教师讲解《欧姆定律》,首先分析欧姆定律的概念和应用条件,如果学生接受情况较好,那么教师可以继续根据欧姆定律解决实际问题;如果学生接受情况不好,教师可以做些实验便于学生理解,还可以绘制伏安特性曲线.灵活教学,帮助学生深刻理解物理定义.

(三)既要针对学生者整体又要尊重个体差异教学

物理课堂是辅助学生学习的教育手段,教师要根据学生整体学习情况进行教学,综合考虑学生知识基础、接受知识能力、学习能力;也要尊重个体差异,降低一些学习要求,争取让所有学生都能在课堂上有所收获.

(四)建立场景

欧姆定律本质范文5

关键词:数学方法;物理问题;分析

一、数学知识的应用能力在物理学习中占据着重要的地位

首先,数学是物理的语言,它以简洁精确的特点描述物理概念和规律。例如,物理量的定义,像加速度、电阻、电场强度、磁感应强度等物理量的定义均用了比值定义。在物理规律的表达如牛顿第二定律、欧姆定律等都体现了函数关系自变量与函数的关系。在运动学中如v-t图像更能形象地描述运动特点、运动过程。所以在物理概念规律时正是体现了数学的逻辑性。所以,对学生来说,需要有良好的数学基础,如公式变形、比例运算、三角函数、函数方程、图象、对数、数列……

其次,分析和解决物理问题的过程,就是应用所学物理知识和原理,将问题给出的物理情景,抽象或简化成各种概念模型和过程模型,用数学化的公式或方程表达出来,最后用数学知识解得结果。在高中物理学习中,除了要掌握概念、规律,更重要的是应用规律概念解决问题。在高中物理的学习中,解决力学、电磁学的三种途径;牛顿第二定律、能量、动量贯穿了整个高中物理的始终。从平衡等式到牛顿第二定律到动能定理机械能守恒定律,到动量定理,到动量守恒定律,无不是列方程去解决物理问题。

二、高中物理学习中数理结合的具体体现

高中物理“培养学生运用数学处理物理问题的能力”的要求是:学生能理解公式和图象的物理意义,能运用数学进行逻辑推理,得出物理结论,要学会用图象表达和处理问题;能进行定量计算,也能进行定性和半定量分析。要实现上述目标,必须在物理学习中注重数理结合。在中学阶段,运用数学工具解决物理问题的学习主要表现在以下两个方面:

1.运用数理结合进行物理概念和物理规律的学习

物理概念是对物理现象的概括,是从个别的物理现象、具体过程和状态中抽象出的具有相同本质的物理实体。它反映的是物理现象的本质属性,是构成物理知识的最基本的单位。如:加速度定义式、电场强度的定义式、磁感应强度定义式、欧姆定律,电容的定义式、决定式等,动能定理表达式、机械能守恒定律表达式、动量定理表达式、动量守恒表达式等,在抽象出一类物理现象和物理过程的共同特征和本质属性之后,用简洁的文字语言、数学式子或图表表达物理概念。

2.运用数理结合进行实验数据的处理

应用准确的实验方法得出实验数据后,从实验数据中分析、计算得出实验结论,是实验能力的主要方面。在实验数据的处理中,数学工具的应用使得处理过程显得特别简捷、直观。例如:验证匀变速实验中求解加速度我们可以用逐差法,还可用v-t图象斜率球加速度。再有在电学实验中描绘小灯泡的伏安特性曲线通过图线的变化趋势判断电阻的变化。在测电源电动势和内阻的实验中闭合电路的伏案特性曲线的截距、斜率的值各是我们沿得到的电动势和内阻值,这比列方程就解更准些。

三、物理解题中常用的数学知识

物理解题运用的数学方法通常包括方程(组)法、比例法等。

1.方程法

在物理计算题中是通过物理方程求解物理未知量的,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的。

2.比例法

比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化。应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,

每个量在公式中的作用,所要讨论的比例关系是否成立。同时,要注意比例条件是否满足:物理过程中的变量往往有多个。讨论某两个量比例关系时要注意只有其他量为常量时才能成比例。

欧姆定律本质范文6

一、后现代科学观

后现代科学观是后现代主义在批判现代科学观尤其是科学主义科学观的基础上建立起来的对科学的总体认识,其核心观点之一是质疑科学的客观性和真理性,强调科学的可变性和暂时性。科学主义者认为,科学的研究对象是纯粹的客体,科学的观察和实验是客观的,所得证据和数据是客观的,对证据和数据的分析也是客观的,因此所得结论也是客观的,因而科学具有不容质疑的客观性和真理性。然而,随着科学的发展和对科学现象认识的深入,人们发现科学主义对科学的理解是简单、幼稚和肤浅的。在后现代科学观看来,研究者的“前理解”使任何科学活动都成为一种参与、解释、转换、修正,使任何观察陈述或事实都成为暂时而不是绝对和永恒。例如,用尺子测量一本书的长度,不同的人会得出误差程度不同的结果,如25.54cm、25.53cm、25.61cm、25.63cm等。在后现代科学观看来,尽管尺子和书本都是纯粹的客体,但不同人的“前理解”不同,以至得出了不同测量数据,这些测量数据都不同程度地接近书本的真实长度,但都不是真实长度。很显然,测量工具越精密,越接近书本的真实长度,但永远测不出书本的真实长度。就像用多边形内接或外接一个圆,多边形的边越多,就越接近圆,但永远无法和圆重合,即它永远都不是圆。因此,激进的后现代主义者费耶阿本德甚至认为,所谓的“实在”只是人为的产物,当人的认识与新的观察方式、新的知识概念相结合时,他就会获得新的物理实体。[1]这样,观察陈述与事实的具有普遍意义的“元话语”角色被否认,科学理论的本体论承诺不复存在。科学基础本体意义的丧失,使科学成为了一门解释的学问,而不再是一门具有体论意义的揭示客观真理的知识;科学理论的真理性只存在于一定的语境和关系中,只是一种综合性的具有暂时性质的对话。[2]因此,后现代科学观转而强调对事物认识的多元化,不同理论是从不同角度对事物的透视,它们之间是不可通约的,但它们之间是“平权”的,各有价值所在。显然,后现代科学观在消解科学客观性和真理性的同时,过于强调其主观性、可变性、暂时性,是有失偏颇的。但是,后现代科学观所否定的是把科学看作绝对真理的化身,并没有否定科学是对世界的一种解释。就此而言,后现代科学观有助于人们扭转思维定势,拓展思维空间,激活创造性思维。

二、在物理教学中渗透后现代科学观,培养创新精神

在科学主义者看来,既然科学是绝对真理,那就不必要怀疑它,接受它即可。显然,科学主义有助于学生短时高效地学习确定的科学知识,但不利于质疑精神和创新精神的培养。雅斯贝尔斯曾指出:物理教育把科学知识当作不变的真理来教学、考试,忽视科学知识的真正形成过程,机械地对学生进行科学研究程序和方法的训练,忽视科学的局限性,使学生误以为科学不可错和无所不能,可以解决人类的一切问题,具有至高无上的权威,进而导致科学迷信和科学崇拜。[3]在我国物理教学中,更是一直把科学看成是确定的理论体系,只重视科学知识确定性的一面,过分强调学习结果,轻视知识的获得过程,对其可变性、暂时性重视不够,再加上受片面追求升学率的影响,这种教学的消极后果是将科学理论静止化、僵化、神圣化、教条化,以至思维狭窄,缺乏创新。例如,在一次提出问题能力测试中,笔者用自制的简易器材,给初三尖子班和普通班学生演示一个“怪坡”实验,实验中的双锥体自动沿斜槽架子向上滚,而不是向下滚,然后请学生根据这个奇怪现象,把感兴趣的问题写下来。结果尖子班学生提出的问题数量较少,而且基本都可用已有知识回答,而普通班学生提出的问题数量明显多于尖子班,而且问题大多需要进一步探究才能回答。这与国外一些研究者发现不一样,他们发现学习成绩高和学习成绩低的学生提出的问题数量没有显著差异,但问题的质量却有显著差异,高水平学生提出的问题大多需要进一步探究才能回答,而低水平学生提出的问题大多在问题情境中直接就可以找到答案,或用已有知识可以回答。[4]这种差异很显然与国情有很大关系。我国物理教学受科学主义的影响更大,忽视了学生的自主探究能力的培养,容易造成学生对教师、对书本、对权威的迷信,缺乏发散思维、批判思维和想象力等,这种现象在尖子班更甚。无疑,要改革我国物理教育的这一顽疾,后现代科学观提供了新的视角。在后现代科学观看来,既然科学是可变的、暂时的、发展的,那么现行知识就值得怀疑,那就需要探究它,甚至重新建构。因此,我国“物理课程标准”强调“注重科学探究,提倡学习方式多样化”的课程理念,这表明了我国中学物理课程改革的后现代科学观意蕴。在享有指导美国跨世纪科学教育改革“圣经”之誉的《面向个体美国人的科学》一书中,美国科学促进协会把科学世界观作为科学素养的重要组成部分,包括“科学可以认识世界、科学是可变的、科学不可能解决所有问题”,这里的科学世界观其实与后现代科学观是一致的。后现代科学观消解科学的客观性,强调科学真理的相对性,其积极意义在于把科学看成为永无止境的探索过程,而不是一成不变的知识体系。后现代科学观认为:公共知识是建构的产物,而不是发现的结果。[5]“发现”意味着不管你发没发现,它都“存在”着,具有客观的独立性;而“建构”则渗透着人们的主观意趣,知识的建构是基于人们的立场、趣味、眼界、胸襟而实现的。这意味着一切都可以质疑,一切都可以修正,甚至一切都可以推倒重来。这样一来,知识就可以成为解放人的力量,而不是压抑人的力量。我们以对“电流与电压、电阻的关系”这一内容进行科学探究为例,说明科学主义科学观和后现代科学观的不同的教学处理。按照科学主义的观点,电流与电压、电流与电阻之间存在惟一的确定关系,这种关系如同地下的矿藏一样,不管你是否发现,它都客观存在着。表1是某学生得出的数据,从中可以看出“电流随电压的增大而增大、电流随电阻的增大而减小”的定性关系,但并不能一目了然地看出精确的定量关系。教师在引导学生分析这些数据时,往往会说电流数据存在误差,没有误差的真实数据应该如表2,由此得出“电流与电压成正比、电流与电阻成反比”的定量结论。但是,如果教师不引导,学生自主分析表1的测量数据,那么他们可能会得出什么结论呢?尽管学生不知道那些没有误差的真实数据,但他们已习惯了老师平时的说法:初中阶段研究的都是比较简单的关系,如相等、正比、反比等,这种说法已经变成了学生根深蒂固的“前理解”,以至于看到B随A增大而增大,就想当然地把B与A的关系看成正比;看到D随C增大而减小,就想当然地把D与C的关系看成反比,因此学生仍然可以得出“电流与电压成正比、电流与电阻成反比”的结论。这些结论都与书本上的欧姆定律一致,于是师生皆大欢喜,探究成功了。然而,在这种没有教师引导的“自主”科学探究中,学生的“前理解”仍然摆脱不了“唯书”、“唯上”、“唯师”的思维定势的束缚,并没有一丁点的质疑和自主建构,因此除了比讲授式教学多学了一点控制变量法,以及对所学知识理解更深之外,对探究结论的暂时性、可变性、多样性毫无了解,而后者却是科学探究的核心之一。假如书本上没有欧姆定律,学生也没有因受教师影响而形成的“前理解”,那么学生会如何处理表1的数据呢?实际上,如果把表1的数据输入计算机,完全可以建构出不同的结论,而欧姆定律只是其中一种结论。可以预料,在这些不同的结论中,欧姆定律是比较简洁的结论,而其他结论可能很复杂。那么,面对如此丰富多彩的、合理的建构结果,教师应该怎么办呢?这是一个带有共性的问题。按照后现代科学观,面对不同的建构结果,需要科学团体的协商,被科学团体所接受的结论即上升为科学理论,写在教材上,供后来人学习。协商的原则至少有两个,一是真的原则,即建构结果是否与实际相符;二是美的原则,即建构结果是否美,即多样统一、简洁、和谐、对称美。很显然,这些建构结果都与实际相符,但其中一个建构结果———“电流与电压成正比、电流与电阻成反比”更简洁,这个建构结果就是欧姆定律,这样欧姆定律就被接受了,写在教材上,成为一代又一代学子学习的经典内容。然而,在物理史上,并非所有的建构结果都符合美学原则,如对于光的折射,一千多年前就已经得到折射角与入射角成正比的结论,够简洁的了,但后来人们又得出了折射角正弦与入射角正弦成正比的结论,很显然后者更复杂,但更真。如果这样看,对于电流与电压、电阻的关系,欧姆定律只是一种建构结果,而其他的建构结果虽然不够简洁,但很可能更真。既然如此,为什么一定强调欧姆定律的唯一性?为什么把其他建构结果一概排斥?为什么我一定要接受前人的建构结果?无疑,这样挑衅式的质疑和反叛有助于促使我们对传统物理的教育观念、传统教育模式、传统的知识灌输的教学行为进行反思,并对长期统治物理教育领域的科学主义范式进行清算。然而,一些教师往往持一种非此即彼的观点,把后现代科学观教学处理当成一种惟一的教学处理,以一种片面性克服另一种片面性。例如,在一次“后现代科学观及其对物理教育的辩证影响”讲座前,笔者用一份问卷测试听课教师的科学观,然后在讲座中注意持不同科学观的教师对笔者讲座内容的态度反应。在互动讨论中,持科学主义科学观的教师发出质疑:知识重要还是科学观重要?如果这样上课,什么时候才可上完?怎么考试?等等。实际上,后现代科学观的教学处理的确费时费力,不可能在每个概念、规律教学时都要大张旗鼓来一番质疑,重新建构。但是,如果教师能够注意适时地渗透后现代科学观的思想,如提醒学生“这是到目前为止,我们得到的比较好的结果”,“这是前人得到的,说不定将来哪位同学会改变这一结果”等等,让学生意识到所学习的内容仅是一种可选择的建构结果,这个建构结果是可变的、暂时的,这种做法对学生的创新精神的养成会有不可估量的深远意义。超级秘书网

三、结束语

尽管物理课程改革蕴含着后现代科学观,但仍有学者认为“我国社会现阶段并不是如有些人所想象的那样已进入后现代社会,‘科学主义’或‘工具理性’肆虐了”[6],并批评有人“从后现代主义课程理论的两个概念出发,揭示出教学活动的本质,分析我国课堂教学对教学活动本质的背离”。[6]但有学者则把这些观点称之为“发霉的奶酪”[7],“是狭隘的国家意识和民族意识在作祟”。[7]笔者认为,任何一种哲学思潮、教育思潮都不是解决所有教育问题的灵丹妙药,各种理论各有妙处,适用于解决不同的问题,那些脱离社会历史背景进行简单地、机械地类推或否定的做法,都会使之偏颇的。我国物理教学受科学主义影响过深,忽视学生的自主探究,以至于学生“唯书”、“唯上”、“唯师”,缺乏质疑和创新精神,而后现代科学观无疑为根治这一顽疾提供了新的视角。

[参考文献]

[1][美]费耶阿本德著,周昌忠译.反对方法[M].上海:上海译文出版社,1992.

[2][德]伽达默尔著,洪汉鼎译.真理与方法[M].上海:上海译文出版社,1999.

[3][德]雅斯贝尔斯著,邹进译.什么是教育[M].北京:生活•读书•新知•三联书店,1991.

[4]ChristineChin,G.Kayalvizhi.Posingproblemsforopeninvesti2gations:Whatquestionsdopupilsask[J].ResearchinScience&TechnologicalEducation,2002(20).