多层建筑结构设计范例6篇

前言:中文期刊网精心挑选了多层建筑结构设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

多层建筑结构设计范文1

关键词:多层建筑结构设计

中图分类号: TU318 文献标识码: A 文章编号:

1、建筑设计作用

1.1 建筑设计应首要解决功能问题

功能是什么?功能就是空间使用者对空间环境的各种要求,包括生理要求和心理要求。人类大量的活动要在建筑中进行,所有与人生理有关的问题都应得到解决,如呼吸、行走、坐、卧、进食、排泄、取暖、避寒等等。这是建筑设计要解决的第一步,也是人为自己创造空间的基本要求。其次,作为高等动物的人有比其它动物更高的需求。如:羞耻感(隐秘性)、光线、适宜的高度、声音,最后应满足人们社会性需求和精神文化需求。所以,功能所体现的就是人(设计者)在充分考虑自身多种需求的条件下为人(使用者)所创造的空间环境。然后,人(使用者)在这样的环境下长期生活,这样的空间的优缺点又在生理及心理或是文化习惯上影响着人。

1.2 建筑设计与城市的关系

讨论建筑设计的作用首先应该讨论建筑设计与城市的关系。人类营造城市所投入的巨大劳动和智慧让一个个文明灿烂登场又黯然谢幕。今天即使古代文明灰飞烟灭了,但当我们看到遗迹的时候依然会为那壮美与精致而震惊。众所周知,人类在河流的渡口和道路的节点聚居形成了村镇,随着经济活动的开展,有了市场的出现,城市的功能骤然形成了。所以建筑设计直接关系到城市的风格与文明程度,从而得出“人创造了空间,空间反过来又影响了人”的结论。

1.3 建筑为人服务人创造了建筑,建筑反过来又影响了人。

2、现代建筑结构设计存在的问题

明确建筑设计的作用后,再来看看建筑师对建筑物最初设计方案时的考虑:建筑师更多的是考虑空间组成特点及安全问题,而不是详细地确定它的具体结构。对于低层、多层和高层建筑,竖向和水平向结构体系的设计基本原理都是相同的,但是,随着高度的不断增加,竖向结构体系成为设计的控制因素,其原因有两个:

(1)较大的垂直荷载要求有较大的柱、墙或者井筒;

(2)侧向力所产生的倾覆力矩和剪切变形要大得多。与竖向荷载相比,侧向荷载对建筑物的效应不是线性增加的,而随建筑高度的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比,地震的作用效应更加明显。在现代高层建筑中,问题不仅仅是抗剪,而更重要的是整体抗弯和抵抗变形,.信宜市景泰豪庭小区,6度区,带一层地下室,有8栋塔楼,13-16层不等,塔楼均为纯剪力墙结构,约5.6万平方米;可见,现代建筑的高层结构受力性能与低层建筑有很大的差异,存在扭转、共振、水平侧向位移及剪重比等问题。

2.1 现代建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能使建筑物做到三心合一。

2.2 现代建筑结构设计中的共振问题

当建筑场地发生地震时,如果建筑物的自振周期和场地的特征周期接近,建筑物和场地就会发生共振。因此在建筑方案设计时就应针对预估的建筑场地特征周期,通过调整结构的层数,选择合适的结构类别和结构体系,扩大建筑物的自振周期与建筑场地特征周期的差别,避免共振的发生。例如:东莞市南国雅苑K区怡景居,6度区,局部一层地下室,16层,有3栋塔楼,框剪结构,约2万平方米;设计的就比较好.

2.3 水平侧向位移问题

水平侧向位移即使是满足建筑结构规程的要求,并不能说明该结构是合理的设计。同时还需要考虑周期及地震力的大小等综合因素。因为结构抗震设计时,地震力的大小与结构刚度直接相关,当结构刚度小,结构并不合理时,由于地震力小则结构位移也小,位移在规范允许范围内,此时并不能认为该结构合理。因为结构周期长、地震力小并不安全;其次,位移曲线应连续变化,除沿竖向发生刚度突变外,不应有明显的拐点或折点。一般情况下剪力墙结构的位移曲线应为弯曲型;框架结构的位移曲线应为剪切型;框一剪结构和框一筒结构的位移曲线应为弯剪型。

2.4 剪重比及单位面积重度问题

结构的剪重比A=VJG是体现结构在地震作用下反应大小的一个指标,其大小主要与结构地震设防烈度有关,其次与结构体型有关,当设防烈度为7、8、9度时,基本周期大于5.0s的结构,最小剪重比分别为0.0 12(0.018), 0.024 (0.032), 0.0 4 0;扭转效应明显或基本周期

多层建筑结构设计范文2

关键词:斜山坡;多层建筑;结构设计;基础处理

引言

随着经济的发展,我国的建筑业也在不断前进,但是前进的过程中也遇到了很多問题,比如土地紧缺問题,而在斜山坡上建造多(高)层建筑是缓解用地紧张、塑造良好建筑环境的有益尝试。在这种场地上建造房屋,地形、地貌及地质条件往往很复杂,既有利于设计出独特风格的建筑作品,也容易因结构设计不当而酿成事故,也容易因结构设计不当而造成安全隐患。

1.场地的稳定性分析及处理

工程场地地质条件异常复杂,不良的工程地质会影响场地的稳定性。

1.1整体稳定性

建筑场地范围内斜坡土体下为层片状基岩(产状为∠30-32°),若破坏原有的稳定平衡状态,可导致土体滑坡。

1.2局部稳定性

局部稳定性問题的主要表现体现在:挖、填土形成的多级临空台阶,破坏了原有的稳定状态;堆填土在雨水渗入软化时会沿原坡面滑塌。

1.3基础的稳定性

基础的稳定性即地基承载力可靠,满足建筑物正常使用极限状态的要求。

1.4处理方法

为不破坏地基原有稳定性,在确定楼、地面的标高及台阶时应考虑到既要依地形顺坡设计,确保整体稳定。也做好地面排水设计,避免加剧地基差异风化及溶蚀作用。

2.结构设计

(1)挡土墙设计坡地建筑中,设计好挡土墙的意义重大,挡土墙是影响到上部结构设计的关键。挡土墙的设计及施工中都应遵循安全,经济、合理的原则,从实际场地出发,结合地形地质条件及使用要求,因地制宜,以取得最好的社会效益,山区地形地质条件千变万化,每个工程都有其特殊性。工程设计时根据实际情况,因地制宜,力求达到挡土墙建筑物的完美组合,通常坡地建筑挡土墙设计做法有两种:考虑挡土墙与主体结构分开;结合主体结构布置挡土墙。挡土墙要有足够刚度,使墙身在土压力作用下不发生移动或转动。挡土墙设计应满足以下要求,挡土墙强度计算:在静止土压力及水压力作用下,挡土墙计算模型按1m板带宽度,上端简支,下端固定的单向板进行计算,土压力按静止土压力取值,K取0.5。结构刚度要求:在挡土墙高度范围内框架柱截面高度取挡土墙厚的两倍。由于挡土墙内侧为地下室,不能直接设置泄水孔,因此在挡土墙背面底部及中部设置排水盲沟,沿挡土墙顺坡导入地下室外侧边沟。

(2)上部结构设计。山区建筑主要震害表现为:由于架空层太高形成柔弱底层而使结构严重破坏;采用长短柱将坡地架空,短柱易发生剪切破坏;错层处楼梯柱,楼梯板破坏严重;陡坎边缘地带建筑物震害较重等。《建筑抗震设计规范》2010年版规定,当需要在条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙类以上建筑时,除保证其在地震作用下的稳定性外,尚应估计不利地段对设计地震参数可能产生的放大作用,其地震影响系数最大值应乘以增大系数,其值可根据不利地段的具体情况确定在1.1-1.6范围内。由于挡土墙与主体结构是整体设计的主体计算时应考虑侧向土压力的影响,根据理正软件取1m板带宽度挡土墙按上端简支下端固定模型计算出上端的支座反力,再乘以框架柱的水平受荷宽度,得出集中力。在进行上部建筑结构设计时应采取以下措施:选择建筑场地时应尽量避开不稳定的边坡;由于山地建筑竖向刚度不规则,扭转效应明显,设计时底部应加强,从概念设计上重视并采取必要的抗震措施,避免出现短柱和上刚下柔的情况;设置防震缝,在建筑高差变化较大处设置防震缝,在底层连廊与主体结构問设置防震缝,均可有效地减少地震作用、温度变形、不均匀沉降等造成的不利影响。加强上部与基础的协调,采用墩基础的形式可减少建筑不均匀沉降的程度,在建筑底层人工挖孔墩的承台問设连系梁,将各墩、柱相互牵制连为一个整体而共同工作,可有效传递水平力,避免因个别墩失稳或失效而引起建筑整体破坏;变形观测,加强监测地基在建筑施工过程的不同阶段因加载的变化引起地基的变形,沉降、滑移情况,检查边坡的稳定性,以便及时发现隐患,采取必要的处理措施。

3.基础处理

3.1基础方案选择

基础方案主要包括:柱下独立基础、柱下条形基础、筏形基础。经承载力计算,基础的地基反力都远小于地基承载力特征值,但前两种基础型式显然因有地下室难以满足防水要求,而梁板式筏形基础型式还合适。经变形计算,如果仅从变形值结果看,应该没有問题,但即使在地形平坦和地质非常均匀土层的场地上进行理论变形计算结果与实际测试结果都有较大误差,更何况在该持力层厚度和坡度变化较大的场地上计算变形值与实际有多大的偏差就更难以估计。最常用的地基稳定性计算方法有:圆弧滑动法、平面滑动法、折线滑动法、赤平极射投影法、实体比例投影法、数值分析法。根据地基土的物理特性,桩基础方案应根据场地岩土条件进行选择,如表1:⑨-1层混合土相对松散,局部含滚石,均匀性较差;⑨-2层含砾粉质粘土强度尚可,但其埋深变化较大;⑩-1层全风化花岗岩强度较高,但其埋深变化较大;⑩-2层强风化花岗岩强度较高,但其厚度变化较大;⑩-3层中风化花岗岩层强度高,分布尚稳定。因此,上述各岩土层均不宜选作为桩基础持力层,对于钻孔灌注桩,由于⑨-1层相对松散、护壁较为困难,普遍含有滚石、施工相对困难,因此不宜使用,故最合适的是选用人工挖孔灌注桩。

3.2人工挖孔灌注桩计算和施工

3.2.1成桩可能性分析

由于⑨-1层混合土含水丰富,适合用人工挖孔桩方案应采用混凝土护壁。由于持力层层面变化较大,桩基础施工时应按实际层位控制为准,以避免桩长不满足承载力要求。

3.2.2桩承载力计算

当滑坡推力的水平分力小于桩的水平承载力时就是安全的,在水平力计算过程中需要考虑的因素太多,要让每个假定都符合实际困难较大,力求符合设计的计算模型和构造要求。

3.2.3施工要求

斜坡地上嵌岩桩的护壁材料应采用钢筋混凝土制作,护壁内配置一定数量的水平环向钢筋和竖向钢筋,护壁厚度和配筋应加大。编制爆破作业施工方案时必须采用爆破作业向下炸岩进行松动爆破和凿除处理时炸药爆破应合理布孔,以尽量减小冲击波对护壁的破坏及对周围环境的影响。在孔井口应采取能泄爆又能阻挡碎碴飞溅的有效措施,爆破时必须由专人统一指挥。炸药爆破后,爆破人员先下井检查,挖孔人员方可下井。在挖孔过程中遇到不良地质时必须处理:桩基成孔后,保证桩基底部持力范围内有完整的基岩层。当桩基处于竖向软弱裂隙带或深熔洞顶部,可在该桩侧补桩,加大桩截面及持力底面层。或者在该桩侧一定范围内补两根桩。穿越土洞的桩基,护壁外侧土洞应填实。对桩基穿越大溶洞时,可以采用喷浆加固溶洞、填砌毛石或砌块。对桩底局部的溶槽、溶沟、石牙等,对桩底,应根据具体情况放置钢筋予以加强。

4.结语

山坡地形情况非常复杂,怎样做好基础及上部结构的设计,选择合理的施工方案,尤其是控制建筑物的沉降量符合规范要求,沉降均匀,以确保工程质量、结构安全、节省工程造价,是建筑工程技术人员面临着的一个长期艰巨的课题。在山坡上建造大体量的多(高)层建筑时,需将建筑物跨越各级台阶顺坡建造,其建筑及结构设计具有特殊性,也容易因结构设计不当而酿成事故,建筑结构设计的关键是基础设计及处理問题。因此,研究斜山坡上多层建筑结构设计及基础处理具有一定的现实意义。

参考文献

[1]王方,杨智,李夕兵.山坡地上大体量建筑嵌岩桩基设计与施工[J],中南大学学报(自然科学版),2004(03).

[2]江正荣.我国地基与基础施工技术的新进展——新版《建筑施工手册》第12章内容精选.

[3]莫运明.岩溶区溶洞及土洞对建筑物地基稳定性影响的处理方法探讨[J].企业导报,201 1(11).

多层建筑结构设计范文3

关键词:多层建筑 ;高层建筑;结构设计

中图分类号:TU208.3 文献标识码:A 文章编号:

1. 高层建筑结构受力方面

随着社会的发展,都市的生活在给人们带来繁华的同时,人口问题和住房压力也让我们陷入困境之中,因此多层建筑逐渐消失与历史舞台,取而代之的是一座座拔地而起的高层建筑。而相对于多层建筑,高层建筑的结构设计也更为复杂,面对诸多的设计难点,受力问题就是要解决的当务之急。

空间组成特点是一个设计师在进行方案设计的时候首要应该关注的讲点,而不是急于确定其详细的设计结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

很多人认为底层、多层和高层建筑的结构是不同的,其实这种观点是片面的。在实际的结构设计当中,对于低层、多层和高层建筑,竖向和水平向结构体系的设计基本原理都是相同的,但是,随着高度的不断增加。竖向结构体系成为设计的控制因素,其原因有两个:其一,较大的垂直荷载要求有较大的柱、墙或者井筒;其二,侧向力所产生的倾覆力矩和剪切变形要大得多。

当然,在实际处理竖向力和侧向力的过程当中,通过实践我们不难发现,与竖向荷载相比,侧向荷载对建筑物的效应不是线性增加的,而随建筑高度的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比,地震的作用效应更加明显。在高层建筑中,问题不仅仅是抗剪,而更重要的是整体抗弯和抵抗变形,可见,高层建筑的结构受力性能与低层建筑有很大的差异。

2. 结构选型阶段

结构的设计和选型阶段对于高层建筑的设计来说,是最为重要的,所以在这个阶段,设计师一定要综合多方面考量。同时针对建筑过程中可能遇到的问题要进行正确的预估。

2.1结构的规则性问题

要熟悉结构设计的规则,在最新的规范当中,许多内容都是与旧规范相悖的,所以一定要熟知规范规则。例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

2.2结构的超高问题

在结构设计的时候,要对高层建筑的高度有一个严格的限制。最新的规范也将高度作为重点项目进行规范,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此。必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。

如果事前不能对建筑的高度做出正确的预估,就很可能会造成严重的经济损失。以往我们也遇到过类似情况,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

2.3嵌固端的设置问题

现在的高层建筑一般都带有地下室,因此嵌固端设置的为止也是结构设计的一个重要环节。因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

3. 地基与基础设计方面

无论是多层建筑还是高层建筑,打好地基都是一项基础性的工作,也是安全性的重要保障。因此,地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。

我国对地基的设计和建筑方面有着明确的规范,一定要严格按照规范措施实施操作。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。

想要保障地基基础建设的安全工作,就要深入的了解地方性的法规政策。地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

4. 高层建筑结构分析的基本原则

4.1 整体参数的设定

在机构的计算方面,最初就应该把握好高层建筑的具体数字,严格按照法规中的参数来设置。在进行抗震计算时需考虑振型的数量,数量多了会浪费时间,并可能使计算结果发生畸变,数量太少又会使计算结果失真,《高规》第5.1.13.2款规定抗震计算时振型数不应小于15。最大地震力作用方向可由设计软件自动计算,但若该角度绝对值超过1 5度,就应重新计算。结构的基本周期是计算风荷载的重要指标,设计初期可能不知道其准确值,可待计算之后从计算书中读取,并重新计算。

4.2 结构体系的合理性分析

结构的合理性是保障建筑的能够顺利进行的重要帮手,所以一定规范结构设计原则。周期比是结构扭转为主的第一自振周期与平动为主的第一自振周期之比,它是控制结构扭转效应的重要指标,结构设计中应限定周期比,以便使抗侧力的构件的平面布置更有效更合理。层间位移比和刚度比分别是控制结构平面不规则性及竖向不规则的重要指标,《建筑抗震设计规范》和《高规》中均对它们做出了明确的要求。此外,为了建筑结构的整体稳定性及安全性,还应控制好结构的刚重比和剪重比。

4.3 结构构件的优化设计

为保障机构设计的合理性,在进行的过程中,要对高层建筑的结构设计做出优化,还应计算结构单个构件内力和配筋,如计算梁、柱、剪力墙轴压比,优化构件截面设计等。采用软件对混凝土梁计算时,出现以下几种情况时,便会提示超筋:梁的弯矩设计值超过梁的极限承载弯矩;超过《抗震规范》要求梁端纵向受拉钢筋的最大配筋率2.5% ;混凝土梁斜截面计算结果不符最小截面的要求。当剪力墙连梁超筋时,表明其在水平地震力作用下抗剪承载力不够,应予以调整。规范中允许适当折减地震作用下剪力墙连梁的刚度,使其出现塑性变形,但还应保证其配筋满足弹性变形时承载力的要求。以上计算得出初始设置的构件截面和形状后,还应在考虑结构的周期、位移、地震力等的前提下,适当优化构件截面,使其在满足受力要求的前提节省材料。

五、结束语

高层建筑逐步取代多层建筑是城市发展的必然选择,不仅能够有效的节省我们的土地资源,还能为我们创造更多的空间。为提高用地效率,城市建筑大多朝向高层和超高层发展,这也为建筑的结构设计提出了更高的要求。因而我们广大建筑设计人员应熟练掌握高层建筑结构设计的相关要点,合理选择建筑结构体系,做好结构设计的计算和优化,提高建筑的结构安全性,降低设计和建造成本,为社会创造出更多的高层建筑精品。

参考文献:

[1]肖峻,高层建筑结构分析与设计[J],中化建设,2008,(12)

多层建筑结构设计范文4

【关键词】民用建筑,多层框架结,设计

中图分类号:TU97文献标识码: A

一、前言

对于框架结构的内力目前多采用计算机辅助软件来进行分析和计算,但是目前有的工程设计人员过分地依赖计算机的计算结果,而缺少独立分析问题、解决问题的能力,致使在一些图纸中出现不必要的问题,为以后事故的发生埋下隐患.因此本文就多层框架电算结果中梁、柱的配筋调整和设计中应注意的问题进行了分析,并提供了一些改进措施和方法。

二、建筑框架结构设计原则

抗震验算时不同的楼盖及布置(整体性)决定了采用刚性、刚柔、柔性理论计算。抗震验算时应特别注意场地土类别。8度超过5层有条件时,尽量加剪力墙,可大大改善结构的抗震性能。框架结构应设计成双向梁柱刚接体系,但也允许部分的框架梁搭在另一框架梁上。应加强垂直地震作用的设计,从震害分析,规范给出的垂直地震作用明显不足。雨蓬不得从填充墙内出挑。大跨度雨蓬、阳台等处梁应考虑抗扭。考虑抗扭时,扭矩为梁中心线处板的负弯距乘以跨度的一半;框架梁、柱的混凝土等级宜相差一级;由于某些原因造成梁或过梁等截面较大时,应验算构件的最小配筋率;出屋面的楼电梯间不得采用砖混结构;框架结构中的电梯井壁宜采用粘土砖砌筑,但不能采用砖墙承重。应采用每层的梁承托每层的墙体重量。梯井四角加构造柱,层高较高时宜在门洞上方加圈梁。因楼电梯间位置较偏,梯井采用混凝土墙时刚度很大,其它地方不加剪力墙,对梯井和整体结构都十分不利;建筑长度宜满足伸缩缝要求,否则应采取措施。如:增大配筋率,通长配筋,改善保温,铺设架空层,加后浇带等;柱子轴压比宜满足规范要求;当采用井字梁时,梁的自重大于板自重,梁自重不可忽略不计。周边一般加大截面的边梁;当建筑布局很不规则时,结构设计应根据建筑布局做出合理的结构布置,并采取相应的构造措施;当地下水位很高时,暖沟应做防水。一般可做u型混凝土暖沟,暖气管通过防水套管进入室内暖沟。有地下室时,混凝土应抗渗,等级S6或S8,混凝土等级应大干等于C25,混凝土内应掺人膨胀剂。混凝土外墙应注明水平施工缝做法,一般加金属止水片,较薄的混凝士墙做企El较难。

三、建筑多层框架结构设计存在的问题

1.截面尺寸的选择

梁、柱的截面尺寸的选择是框架结构设计的前提,除应满足规范所要求的取值范围,还应注意尽可能使柱的线刚度与梁的线刚度的比值大于1,以达到在罕遇地震作用下,梁端形成塑性铰时,柱端处于非弹性工作状态而没有屈服,节点仍处于弹性工作阶段的目的,即规范所要求的“强柱弱梁、强节点”。

2.框架计算简图不合理

无地下室的钢筋混凝土多层框架房屋,独立基础埋置较深,在0.05m左右设有基础拉梁时,应将基础拉梁按层1输入。以某学生宿舍楼为例,该项目为3层钢筋混凝土框架结构,丙类建筑,建筑场地为Ⅱ类:层高33m,基础埋深4.0m ,基础高度0.8m,室内外高差0.45m。根据抗震规范,在8度地震区该工程框架结构的抗震等级为二级。设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在0.05m处的基础拉梁顶面基础拉梁的断面和配筋按构造设计。

基础按中心受压计算。显然,选取这样的计算简图是不妥当的。因为,第一,按构造设计的拉梁无法平衡柱脚弯矩;第二,《混凝土结构设计规范》(GB50010一2002)规定,框架结构底柱的高度应取基础顶面至首层楼盖顶面的高度。工程设计经验表明, 这样的框架结构宜按4层进行整体分析计算,即将基础拉梁层按层1输入,拉梁上如作用有荷载,应将荷载一并输入。

这样,计算剪力的首层层高为H1-4—0.8—0.05=3.15m,层2层高为3.35m,层3、4层高为3.3m。根据《抗震规范》第6.2.3条,框架柱底层柱脚弯矩设计值应乘以增大系数1.25。当设拉梁层时,一般情况下,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁顶面处的截面控制。考虑到地基土的约束作用,对这样的计算简图,在电算程序总信息输入中,可填写地下室层数为1,并复算一次,按两计算结果的包络图进行框架结构底层柱的配筋。

3.框架柱配筋的调整

框架柱的配筋率一般都很低,有时电算结果为构造配筋,但是实际工程中均不会按此配筋,因为在地震作用下的框架柱,尤其是角柱,所受的扭转剪力最大,同时又受双向弯矩作用,而横梁的约束又较小,工作状态下又处于双向偏心受压状态,所以其震害重于内柱,对于质量分布不均匀的框架尤为明显, 因此应选择最不利的方向进行框架计算,另外也可分别从纵、横两个方向计算后比较同一侧面的配筋,取其较大值,并采用对称配筋的原则。

4.框架柱的配筋率

框架柱的配筋率一般都很低,有时电算结果为构造配筋,但是实际工程中均不会按此配筋,因为在地震作用下的框架柱,尤其是角柱,所受的扭转剪力最大,同时又受双向弯矩作用,而横梁的约束又较小,工作状态下又处于双向偏心受压状态,所以其震害重于内柱,对于质量分布不均匀的框架尤为明显,因此应选择最不利的方向进行框架计算,另外也可分别从纵、横两个方向计算后比较同一侧面的配筋,取其较大值,并采用对称配筋的原则。

四、多层钢筋混凝土框架结构设计

多层钢筋混凝土框架结构是一种由梁和柱以刚接或铰接相连接成承重体系的房屋建筑结构。多层钢筋混凝土框架结构设计文件与图纸是最主要的依据之一,全面理解设计文件,并规范进程加以实施,是结构方案的主要工作。

1.现浇式框架

现浇预制框架是指梁、柱、楼板均为预制,在预制构件吊装就位后,对连接节点区浇筑混凝土,从而将梁、柱、楼板在连成整体多层钢筋混凝土框架结构。现浇式框架即梁、柱、楼盖均为现浇钢筋混凝土结构。现浇式多层钢筋混凝土框架结构的整体性强、抗震性能好,因此在实际工程中采用比较广泛。但现场浇筑混凝土的工作量较大。现浇预制框架既具有较好的整体性和抗震能力,又可采用预制构件,减少现场浇筑混凝土的工作量。因此它兼有现浇式框架和装配式框架的优点。

2.预制装配式框架

预制装配式框架是指梁、柱、楼板均为预制,通过焊接拼装连接成的多层钢筋混凝土框架结构。其优点是构件均为预制,可实现标准化、工厂化,机械生产。因此,施工速度快、效率高。但整体性较差,抗震能力弱,不宜在地震区应用。

3.多层钢筋混凝土框架结构技术交底

做好多层钢筋混凝土框架结构技术交底,根据设计要求和施工队的技术素质状况对其不熟悉的施工工艺过程,经批准实施的新工艺、新材料、新结构等,必须认真进行技术交底。明确各项工艺参数指标、操作方法、质量要求和检测办法,并认真的加以实施。

五、结束语

通过本文的研究,分别从建筑框架结构设计原则 、建筑多层框架结构设计存在的问题以及多层钢筋混凝土框架结构设计三个方面总结了民用建筑多层框架结构设计的重要性,并针对其中出现的问题提出了应对措施和方法,以促进民用建筑多层框架结构设计水平的提高。

【参考文献】

[1]翟国庆;民用建筑多层框架结构设计注意的问题[J];黑龙江科技信息;2010年23期

[2]叶安华;马昭;高层民用建筑结构设计问题浅析[J];科技信息;2011年22期

多层建筑结构设计范文5

关键词:多层建筑;框架结构:设计要点

中图分类号: TU318 文献标识码: A 文章编号:

1 前言

随着城市人口数量的不断增加,用地规模也在不断的增大,城市土地资源变得日益紧张,为了能够最大限度的利用有限的土地资源,建筑逐渐朝着多层建筑的方向发展,这使得房屋建筑的结构也变得越来越复杂化。这对于建筑结构设计的要求也不断的升高。多层建筑的机构设计难度相对较大,在设计的过程当中需要注意一些问题,文章对此进行了探讨。

2 多层框架结构建筑的设计问题及处理

2.1 基础联系梁的设计问题

当建筑的基础埋置比较深时,可以用基础联系梁来减少底层柱的计算长度。在±0.00以下设置联系梁,形成有效的框架,联系梁下的柱可按照短柱进行加强处理。有抗震设防要求时,基础间宜沿着两个主轴的方向设计基础联系梁;如果基础联系梁上作用有填充墙或者楼梯柱等荷载传来时,应该与所连柱的最大轴力设计值的10%叠加计算,基础联系梁的配筋应该满足梁的受力要求。基础联系梁的项标高宜与基础的顶端标高一致。当基础形式为独立扩展基础,施工时应先将基础联系梁下与独立基础之间的空隙部分进行混凝土浇筑,浇筑到与基础顶面平齐,然后再浇筑基础联系梁。这样可以有效减少基础联系梁的计算跨度。当基础形式为桩基础时,单桩承台应在两个互相垂直的方向上设置系梁;两桩承台应在其短向设置系梁。如果采用基础系联梁来平衡柱底的弯矩,那么基础联系梁的截面尺寸和配筋应该按照框架梁来设计。此时的梁正弯矩钢筋应该全部的拉通,而负弯矩钢筋也应该在1/2跨以上拉通,同时基础联系梁的纵筋在框架柱内的锚固、箍筋的加密以及其他抗震结构物都应该与上部的框架梁保持一致。

2.2 结构薄弱层的设计问题

结构薄弱层是指在强震下,结构首先容易产生较大弹塑性位移的部分,这些结构薄弱部位的承载力在设计时是满足抗震承载力要求的,但是当地震的震级在7级以及7级以上时,容易出现薄弱现象。通常情况下薄弱层对结构的抗震影响极大,设计应该尽量避免薄弱层的出现。而避免薄弱层通常采取的方法是加大该层的抗震侧移刚度,也就是采取加大此类薄弱层的柱截面和梁截面的措施;如果可以,应该改变薄弱层的层高或者减少基础的埋置深度。如果薄弱层无法避免,应该在结构计算和出图时,保证按照规范要求采取相应构造加强措施,除了对薄弱层的地震剪力乘以1~1.5倍的放大系数以外,还需要对结构的楼层屈服强度系数进行验算。

2.3 框架结构梁的设计问题

在对框架结构建筑进行设计时,位于梁下部或梁截面高度范围内的集中荷载,应由附加横向钢筋承担,则需要考虑设置附加箍筋和吊筋,为方便施工可优先考虑采用附加箍筋,如主次梁搭接时,可以在结构设计总说明处,画上一节点,在有次梁部位的两侧各加上3根主梁箍筋来作为补充。框架梁与次梁的端部出现相交的现象,或者弹性支承在墙体上,对于梁端支座可以按照简支梁的方式来处理,但是必须对梁的端箍筋进行加密。在设计抗扭梁时,纵筋的间距应该小于300 mm,并保证小于梁的宽度。通常在设计的时候可采用加大腰筋直径加密腰筋问距的方法来增加梁的抗扭力,同时对于纵筋和腰筋锚入支座内的长度应该符合要求。对于箍筋也应该符合抗震设防要求。在反梁板吊在梁底时,板的荷载主要由箍筋来承担,可适当加密箍筋的间距,加大箍筋直径。

2.4 框架结构柱的设计问题

如果框架结构柱在地上的部分为圆柱时,在地下的部分就尽量做成矩形柱,这样可以尽量减少施工的工序。圆柱的纵筋根数应该保证在8根以上,而圆柱的箍筋宜优先采用螺旋式,这样可以有效增加结构的整体性和柱子的刚度及承载力,施工图纸中需要注明柱子端部有一圈半的水平段;矩形柱宜优先选用井字复合箍的箍筋形式,有抗震设防要求的需按照建筑抗震设计规范进行加密设计。角柱和楼梯间的框架柱、梯柱应在全柱高范围内进行加密。通常框架结构柱的截面,非抗震时不宜小于边长250 mm,四级抗震边长不宜小于300mm,一、二、三级抗震时边长不宜小于400mm;框架柱混凝土的标号则应该在C25以上,且梁纵筋锚入柱内的水平段长度、弯折长度应该符合规范要求。

3多层建筑框架结构的设计要点

3.1 尽量避免短柱的出现

在对框架结构进行设计时,应该尽量避免出现短柱现象。因为短柱的抗震性能通常较差。但是在框架结构设计过程中, 由于楼梯问休息平台梁或者楼层的高矮等原因,有些短柱的出现很难避免。所以,如果存在短柱,就应该按照建筑抗震设计规范进行处理,尽量提高短柱的抗震性能。

3.2 中心线应该符合规定

框架梁与柱的中心线应该符合相关规定,也就是框架梁、柱中心应该尽量重合,如果中心线存在偏移现象时,需要全面考虑偏心对梁柱节点核心区受力和构造可能产生的影响, 同时也应该考虑到梁上荷载对柱子的偏心影响。如果偏心距大于该方向上柱宽度的1/4时,可以考虑采用增加梁水平方向加腋等措施。而当梁、柱偏心大于该方向柱宽的1/4时,可采用梁水平腋的措施。加腋后的梁在验算梁的剪压比和受弯承载力时,通常不会计算加腋部分截面的有利影响。

3.3 避免砌体墙的出现

在多层框架结构建筑的设计当中,通常不可以采用部分砌体墙承重的混合形式。通过对大量的震害分析来看,框架结构在地震作用下的反应,要比仅按纯框架抗侧力刚度时要大很多,尤其是有砌体墙存在的时候,在地震的作用下,砌体结构会最先受到破坏。这种情况下框架结构对于内力和配筋并没有按照实际刚度来确定,这就会使得结构的构件在地震作用下很容易受到地震波的破坏,因此,这种建筑设计会存在一定的危险因素。通过对大量震害建筑的分析来看,框架结构中的承重砌体均会出现较为严重的开裂和破坏问题,一些出层顶的楼、电梯间会因为砌体承重墙的原因出现破坏现象。所以,在多层框架结构建筑的设计中,应该避免砌体承重墙的出现。

多层建筑结构设计范文6

关键词:民宅建筑、剪力墙、垫块、框架抗震

中图分类号:G267文献标识码:A 文章编号:

剪力墙分为平面剪力墙和筒体剪力墙。平面剪力墙用于钢筋混凝土框架结构、升板结构、无梁楼盖体系中。为增加结构的刚度、强度及抗倒塌能力,在某些部位可现浇或预制装配钢筋混凝土剪力墙。现浇剪力墙与周边梁、柱同时浇筑,整体性好。筒体剪力墙用于高层建筑、高耸结构和悬吊结构中 ,由电梯间、楼梯间、设备及辅助用房的间隔墙围成,筒壁均为现浇钢筋混凝土墙体,其刚度和强度较平面剪力墙高可承受较大的水平荷载。此两类剪力墙比较复杂,最好采用有限元法借助于计算机进行计算。其计算判断过程是由整体参数来判断的有关计算方法有那些注意的问题,希望大家展开讨论.

还有个比较重要而且需要进一步理解的概念是:协同工作原理 基本的原理是这样的:框架结构和剪力墙结构,两种结构体系在水平荷载下的变形规律是完全不相同的。框架的侧移曲线是剪切型,曲线凹向原始位置;而剪力墙的侧移曲线是弯曲型,曲线凸向原始位置。在框架—剪力墙(以下简称框-剪)结构中,由于楼盖在自身平面内刚度很大,在同一高度处框架、剪力墙的侧移基本相同。这使得框—剪结构的侧移曲线既不是剪切型,也不是弯曲型,而是一种弯、剪混合型,简称弯剪型。在结构底部,框架将把剪力墙向右拉;在结构顶部,框架将把剪力墙向左推。因而,框—剪结构底部侧移比纯框架结构的侧移要小一些,比纯剪力墙结构的侧移要大一些;其顶部侧移则正好相反。框架和剪力墙在共同承担外部荷载的同时,二者之间为保持变形协调还存在着相互作用。框架和剪力墙之间的这种相互作用关系,即为协同工作原理。

一、 框架抗震等级和机构高度的调整

抗震设计的细长框架—剪力墙结构,在基本振型地震作用下,其框架部分承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,框架部分的抗震等级应按纯框架结构采用,柱轴压比限值宜按框架结构的规定采用;其最大适灾高度和高宽比限值可比纯框架结构适当增加。

目前不论手算近似方法还是计算机方法,一般均采用了楼板平面内刚度无限大的假定,即认为楼板是平面内不变形的。在框—剪结构中,剪力墙的间距较大,实际上楼板是会变形的。在水平作用下,剪力墙部位水平位移较小;而在框架部位由于框架的刚度较小,楼板位移较大,相应地框架的实际水平力比计算值大。

更重要的是,剪力墙刚度较大,承受了大部分水平力,在地震力作用下,剪力墙会首先开裂,刚度下降,从而使部分地震力向框架转移,框架承受地震力会增加。此外,框架是框—剪结构抵抗地震作用的第二道防线,有必要提高其设计地震力,以使强度有更大的储备。

因此,在地震力作用下,框—剪结构中框架的剪力标准值应适当调整,

在钢筋混凝土中不使用垫块,将无法保证钢筋位置达到设计要求,严重时会出现钢筋笼歪斜、钢筋保护层大小不一、钢筋外露等严重质量缺陷,大大降低构件承载能力,严重影响施工质量。在剪力墙浇筑过程中,为防止钢筋移位,最好的办法是使用对拉螺栓,螺栓在模板内和钢筋焊接固定,在外由模板横向牵扯,既固定了钢筋又固定了模板,是最完善的方式,完全能替代垫块的作用。其实,对拉螺栓在建筑工程中非常常见,如果有人注意观察,如混凝土水池等结构的内外壁上有些钢筋露头,最后完工后会被割除,然后在其位置涂抹沥青漆防腐,这些就是对拉螺栓的痕迹。

二、 剪力墙的机构布置

1.平面布置。剪力墙结构中全部竖向荷载和水平力都由钢筋混凝土墙承受,所以剪力墙应沿平面主要轴线方向布置。

(1)矩形、L形、T形平面时,剪力墙沿两个正交的主轴方向布置;

(2)三角形及Y形平面可沿三个方向布置;

(3)正多边形、圆形和弧形平面,则可沿径向及环向布置。

单片剪力墙的长度不宜过大:

(1)长度很大的剪力墙,刚度很大将使结构的周期过短,地震力太大不经济;

(2)剪力墙以处于受弯工作状态时,才能有足够的延性,故剪力墙应当是高细的,如果剪力墙太长时,将形成低宽剪力墙,就会由受剪破坏,剪力墙呈脆性,不利于抗震。故同一轴线上的连续剪力墙过长时,应用楼板或小连梁分成若干个墙段,每个墙段的高宽比应不小于2。

2.每个墙段可以是单片墙,小开口墙或联肢墙。每个墙肢的宽度不宜大于8.0m,以保证墙肢是由受弯承载力控制,和充分发挥竖向分布筋的作用。内力计算时,墙段之间的楼板或弱连梁不考虑其作用,每个墙段作为一片独立剪力墙计算。

2.1边缘构件的设置

一、二级抗震设计的剪力墙底部加强部位及其上一层的墙肢端部应设置约束边缘构件。对于普通剪力墙,其暗柱配筋满足规范要求的最小配筋率,建议加强区0.7%,一般部位0.5%。对于短肢剪力墙,控制配筋率加强区1.2%,一般部位1.0%;对于小墙肢其受力性能较差,应严格按高规控制其轴压比,宜按框架柱进行截面设计,并应控制其纵向钢筋配筋率加强区1.2%,一般部位1.0%;而对于一个方向长肢另一方向短肢的墙体,设计中往往就按长肢墙进行暗柱配筋。

(1)考虑梁约束作用时,结构刚度特征值 增大,自振周期T1减小,地震力增大,因而总底部剪力增大;剪力墙承担的剪力加大,但除底层外,墙弯矩反而有所减小;框架承担的剪力减小;建筑物顶点位移减小,但层间位移加大。

(2)在求得总剪力墙、总框架、总连梁内力以后,常根据各构件刚度进行第二步分配,计算构件控制断面的内力。

(3))为了减小层间位移转角 ,主要方法是增加剪力墙截面长度,设置或加大翼拄和翼墙。增加剪力墙数量和厚度不经济,不宜采用。增加厚度主要用于控制剪力墙平面外的稳定。