超高层建筑抗震设计范例6篇

前言:中文期刊网精心挑选了超高层建筑抗震设计范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

超高层建筑抗震设计

超高层建筑抗震设计范文1

关键词:超高层建筑;抗震设防;专项审查

Abstract: at present, the domestic and worldwide tall building more and more, tall building the seismic fortification special review not only can improve the reliability of the seismic design of high-rise building, avoid seismic safety concerns, but also can promote the development of the technology of high building. This paper mainly studies the tall building the seismic fortification special examination technology, can for tall building seismic fortification special review provide certain reference.

Keywords: tall building; Seismic fortification; Special review

中图分类号:TU97文献标识码:A 文章编号:

1前言

随着我国经济建设的发展,超高层建筑越来越多[1]。据不完全统计,5年之后,中国的超高层建筑总数将超过800座,约为现今美国总数的4倍。目前,已建成的全球十大超高层建筑中,中国已经占据6席。台北101大厦以508米楼高位居世界第三,上海环球金融中心主体高度492米排名第四,南京紫峰大厦高450米位居第七,金茂大厦高420.5米排名第八,香港国际金融中心二期420米排名第九,广州中信广场大厦以391米高度排名第十。而超高层建筑不仅总高度超过现有规程规范,而且结构形式也越来越多,需要进行专门的抗震设防专项审查,避免抗震安全隐患。本文简要地分析了不同结构形式的超高层建筑抗震设防专项审查技术,供相关超高层建筑参考。

2超高层建筑抗震设防的专项审查

由于近年来超高层建筑总高度超过规范、规程的最大适用范围很多,抗震设防审查时,需着重于以下几个方面:(1)对不同结构体系进行对比,尽量采用适用高度更大的结构类型。(2)仔细论证超高层建筑中加强层的数量、位置和构造。(3)严格控制混凝土剪力墙的剪应力应。(4)要保证关键部位的细部构造在大震下的安全。

3转换结构抗震设防的专项审查

超高层建筑的转换结构一般有两类:墙体转换及柱或斜撑转换。墙体及其转换大梁形成拱,对框支柱有向外推力,轴柱的转换梁是空腹桁架的下弦杆,次内力较大,有时不考虑空腹桁架的空间作用。不同的转换要有不同的设计方法,框支转换大梁的设计和空腹桁架下弦杆的设计有明显的不同,不可相混。有时,结构在两个主轴方向的转换类型不同,在一个方向为框支转换,另一个方向为轴柱转换,此时需分别处理;在一个方向为框支柱,另一个方向为落地墙的端柱,计算框支柱数量时,两个方向应区别对待。

底部带转换层结构抗震设计时,应避免底部结构破坏,结构的延性耗能机制宜在上部结构中呈现。底部结构包括:落地墙、框支柱、转换构件、转换层以上二层的楼板、柱和墙体。转换层以下必须布置足够的上下连续的落地墙。当主体结构底部楼层侧向刚度比上部楼层侧向刚度减少较多时,宜通过增加落地墙刚度或减少上部墙体刚度等措施加以调整。

对高位转换,如8度区底部5层为商业建筑,上部的抗侧力墙体在五层顶转换,需要考虑高位转换与低位转换的不同:低位转换主要按相邻层的侧向刚度比控制,高位转换不仅要控制相邻层的刚度比,而且要对不转换的结构与转换结构在转换高度处的总体刚度进行比较,使二者的总体刚度比较接近。这里,侧向刚度计算时,需要注意转换大梁的正确模拟:将大梁作为线性杆件计算时,其轴线位置应按截面的抗弯中心确定,相邻上下层的竖向构件,需要考虑对应的刚域。当在裙房顶板处进行高位转换时,还需考虑转换层以下裙房参与主楼整体工作的程度,分别处理,使侧向刚度比的计算能反映结构实际工作状态。

4连体结构抗震设防的专项审查

连体结构大致可有四类:(1)两个主塔间用刚性连接的结构体相连,连接体可以是一个或多个,每个连接体可以是一层或多层;(2)两个主塔间采用人行通廊相连,一般按支座可滑动的结构处理;(3)平面为开口很大的槽形,不满足刚性楼盖假定,在开口处每隔若干楼层设置连接构件加强楼盖的整体性,减少扭转位移比;(4)房屋立面开设大洞口,在洞口顶部设转换构件将洞口两侧相连。不同的连体,设计方法不同。

当连体与两端铰接时,至少一端应采用可滑动连接,根据震害经验,设计时应保证大震下不坠落,应考虑支座处两个主塔沿连体的两个主轴方向在大震下的弹塑性位移,然后按位移设计。当两个主塔高低不同,主轴方向正交或斜交时,需要考虑双向水平地震同时作用。当连体为多层时,不仅要考虑支座处的位移,还需考虑相关楼层的位移。

当连体与两端刚接时,要算出两端支座在大震下的内力和变形,确保连体本身和连接部位的安全。对高低的主塔、主轴方向不一致的情况,同样要仔细的分析计算。

对开口处的连接构件,可按中震下不屈服设计,并提高连接部位的抗震等级。

9度设防时不应采用连体结构。连体本身在8度时应考虑竖向地震,此时,支座处的竖向地震可能比地面加大,可通过考虑竖向地震输人的弹性时程分析,计算连体的竖向振动。

对大跨度的连体,其竖向振动问题是否影响正常使用,也需要予以考虑。对于连体与主塔的连接,有条件时可采用隔震支座和消能阻尼器等技术。此时,应进行专门的计算分析和支座的构造设计。

5特殊体型结构抗震设防的专项审查

近来,某些建筑设计,由于使用功能和美观要求,导致体型特别不规则,平面扭转效应很大或楼板内被大洞口严重削弱,竖向刚度突变,上下构件不连续,上部构件超长悬挑,动力特性不同的多塔彼此相连等等。尤其是多项不规则性同时并存,结构计算分析模型难以正确反映实际情况,需要借助各种简化手段。

这种特殊复杂结构,可根据具体情况详细研究其地震下的受力特点,按基于性能设计的要求,提出结构设计方案,对薄弱部位从抗震承载力和延性两方面采取措施提高抗震能力。

针对结构的复杂情况,抗震设防审查时要求所有钢柱按设防烈度不屈服设计,四片巨型衍架在结构屋面要形成封闭圈,出屋面的单片大桁架利用屋盖围护结构的斜杆加强,应考虑四个L形框架筒横截面的翘曲,并在错层的连接处设置钢板剪力墙,还要求进行模型试验,根据试验结果调整细部构造。

6结论

本文对对超高层建筑抗震设防专项审查技术进行了研究,有关高度超限、高位转换、连体结构以及特殊体型结构的超高层建筑的一些概念设计方法及关键技术可供参考。

参考文献

超高层建筑抗震设计范文2

关键词:超限高层建筑、抗震设计、超限审查

中图分类号:S611 文献标识码:A 文章编号:

随着国民经济发展,高层建筑除了满足建筑使用功能的要求,对建筑个性化的体现越来越重视,使高层建筑的平面、立面均极其特殊,各种新的复杂体形结构(如连体结构、主裙楼整体连接结构、大底盘多塔楼结构、立面多次收进退层结构及大悬挑结构等)、复杂结构体系(如各种类型的结构转换层、多重组合结构和巨型结构等)出现。

1超限高层的设计方法

复杂结构设计分析,采用多个相应恰当的、合适的力学模型进行抗震验算分析,不是用所谓截然不同的、不合理的模型进行比较分析。“抗规”要求的不同力学模型,还应属于不同的计算分析程序。分析结果具体体现在:结构与结构构件在地震作用下,抵抗地震作用的承载力具有客观存在性,在相应设计阶段主要振动周期、振型和地震作用最大受剪承载力(底部总剪力 V0)应出入不大。整体结构应进行弹性时程分析补充计算 (应注意地震波采集须符合规范要求);宜按弹塑性静力或弹塑性动力分析方法补充计算;受力复杂的结构构件,宜按应力分析结果校核配筋设计。

超限高层根据结构抗震性能设计,选择性能目标控制,选定性能设计指标。第一性能水准的结构应满足弹性设计要求(多遇地震),结构的层间位移、结构构件的承载力及结构整体稳定等均应满足规范规定;按设防烈度(中震)的结构,构件承载力在不计入风荷载作用、不考虑与抗震等级要求相关的内力增大系数时需要满足弹性设计和抗震承载力要求。第二性能水准的结构,在中震或预估罕遇地震作用下,与第一性能水准的结构的差别是,框架梁、连梁等耗能构件正截面承载力只需要满足“屈服承载力”设计,即采用构件材料标准值和重力、 地震作用组合标准值工况下的验算。第三性能水准的结构,在中震或预估罕遇地震作用下,允许部分框架梁、连梁等耗能构件正截面承载力进入屈服阶段,受剪承载力宜按“屈服承载力”设计,竖向构件及关键构件正截面承载力应满足“屈服承载力”设计的要求;整体结构进入弹塑性阶段,应进行弹塑性分析。第四性能水准的结构,应进行结构弹塑性计算分析,在中震或预估罕遇地震作用下,关键构件抗震承载力应满足“屈服承载力”设计的要求;允许部分竖向构件及大部分框架梁、连梁等耗能构件进入屈服阶段,但构件受剪截面应满足界面限制条件要求;结构的抗震性能必须通过结构弹塑性计算分析,在预估的罕遇地震作用下找出弹塑性层间位移角、屈服构件的次序和塑性铰分布、塑性铰部位的材料受损程度。第五性能水准的结构,应进行结构弹塑性计算分析,在预估罕遇地震作用下,关键构件抗震承载力宜满足“屈服承载力”设计的要求;应注意同一楼层的竖向构件不宜全部进入屈服并控制整体结构承载力下降的幅度不超过10%。

隔震与消能减震设计,是一种有效地减轻地震灾害的技术,在提高结构抗震性能上具有优势(即抗震设防目标能力有所提高)。隔震技术一般可使延长整个结构体系的自振周期达到使水平地震加速度反应降低60%左右(相当于常规抗震设计设防烈度降低1.0度~1.5度),从而达到大大降低地震作用,并能获得很好的经济效益。隔震设计计算分析方法一般为时程分析法, 强调隔震层设计与构造措施的重要性。消能减震通过消能器(分为速度型和位移型阻尼器)设置控制预期的结构变形、 增加结构阻尼达到减少地震反应,较好地发挥出经济效益。 设计计算分析方法一般为非线性时程分析法,与常规抗震设计设防烈度约降低 1.0 度设计。因此在部分楼层增设粘滞阻尼消能支撑(设计往往布置在计算分析层间位移角较大的部位,并注意两个主轴方向的均匀布置),通过提高结构的附加阻尼比来降低结构的位移反应。整体结构的非线性时程分析结果表明,在框架-抗震墙结构中增设消能支撑,可以较为经济地控制结构的楼层位移,提高结构的抗震安全储备。

建筑抗震性能化设计,根据设防目标立足于结构承载力与变形能力的综合考虑,具有针对性和灵活性(或对整个结构、或对某些具体部位或关键构件)设计分析方法达到预期的性能目标,分为构件或结构弹性分析、弹塑性分析,基于提高建筑抗震安全性(承载力、变形、构件延性)或满足使用功能的专门要求。

“小震不坏,中震可修,大震不倒”三水准目标,即第一水准按众值烈度或多遇地震影响时,结构抗震分析采用弹性反应谱进行弹性分析设计,主要是承载力验算,又称第一阶段线弹性设计;第二水准按基本烈度或设防地震影响时,考虑非线性弹塑性变形及承载力略有提高,属于第二阶段弹塑性变形验算;第三水准按最大预估烈度或罕遇地震影响时,主要通过概念设计和抗震措施满足结构设计要求,即第一阶段和第二阶段分析(通过静力非线性分析、又称静力推覆分析和动力非线性分析、又称弹塑性时程分析)过程,并采取相应的抗震措施。

2超限高层的抗震设计审查

根据《超限高层建筑工程抗震设防管理规定》(建设部111 号令)、《超限高层建筑抗震设防专项审查技术要点》(建质[2010]109 号通知),建设工程施工图设计审点应放在抗震概念设计上,是否符合现行工程设计标准、规范要求的基础上,施工图设计文件编制深度是否满足要求,认真分析结构计算模型及计算分析与实际情况的相符性、合理性,结构超限判断、抗震设防目标及抗震设防措施的准确性,力求审查过程以提高施工图设计质量为目的,不拘泥于传统的形式,应有前瞻性,跟进专业技术的新发展和趋势,专研技术疑难问题,认识新的结构体系、运用新的结构分析手段,设计方法和施工技术得到发展,推动了建筑行业科技进步的现实, 注重设计的合理性、经济性,促进建筑工程设计对公众安全、公共利益质量监督作用。通过工程超限高层审查专家组的审查意见,设计能够掌握和切中要点,反应全面和关键部位(如薄弱层、软弱层)采取结构抗震加强综合措施,提高结构能力水准。

工程设计送审审查资料一般从几个步骤入手,即工程概况、工程设计、结构计算结果及分析、结构不规则类型及超限的描述和判别、结构超限应考虑的问题及解决办法应对的加强措施,即内容应翔实,针对性强。《超限高层建筑工程抗震设防专项审查技术要点》详细规定了相关内容。

目前,视工程抗震专项审查项目的超限程度具体情况,超限工程专家组技术审查意见包括了省住房和城乡建设厅抗震办委托全国或省抗震专家提出的意见,不仅肯定了超限高层设计判别,同时进一步调整和补充了计算分析和采取抗震加强措施的要求的必要性,也是对工程设计的指导性意见、第二阶段施工图审查的审查依据参考之一。

3结语

总之,建筑结构抗震概念设计的不断发展,指导工程抗震设计重要性日趋显示出来。我们还可从文献[1]、文献[2]、文献[3]中关于建筑结构抗震设防审查工程看出 ,超限及不规则建筑工程结构的研究分析思路、设计与计算方法,对建筑超限判断、超限部分所采取更为严格的措施等,提高工程结构的防震救灾综合能力;文献[1]还强调了在内在的设计技术发展和创新、推进、完善和补充现行规范方面提出操作性较好的说明。这一切,恰好说明了建筑结构抗震概念设计作为基本设计和审查思路的必要性。

参考文献:

[1] 超限高层建筑工程抗震设防专项审查技术要点[S]. 北京:中国建筑工业出版社,2010.

[2] GB 50011-2010建筑设计抗震规范[S].,2011.

超高层建筑抗震设计范文3

关键词:超限高层;空间结构振型分解法;抗震性能目标;弹塑性分析;构造措施

1.工程概况

某住宅综合楼,地上32层,地下2层,标准层平面布置为L形(见图1),总建筑面积为20680.800O。地上1层为商铺,2层为社区健身中心,3~32层为住宅;结构主体高度为99.600米,高宽比为4.5。主楼地下1层为管道夹层,地下2层战时为甲类核6级防空地下室,平时为戊类库房;裙楼为地下1层车库,板顶有2.100m的覆土。结构嵌固端的位置为主楼地下1层楼面(±0.000m)处;主楼地下2层楼面(-2.100m,裙楼顶板)与裙楼楼板连为一体(见图2)。结构主体采用全现浇钢筋混凝土剪力墙结构。

2.结构设计等级及设计参数(详见表1)

3.结构主体设计

3.1结构平面规则性分析

根据建设单位对建筑造型、功能的要求及规划场地的现状,结构平面呈L型,属于《高层建筑混凝土结构技术规程》(JGJ 3--2010)第3.4.3条中图3.4.3(c)类情况。

3.1.1根据《高规》表3.4.3的规定,可知:本建筑物平面中

(1)L/B=33.6m/13.4m=2.5

(2)l/Bmax=10.8m/24.2m=0.45>0.30,2≥[(L-b)/b=20.4m/13.2m=1.5]>1,(L-b)/L=20.4m/33.6m=0.61≥0.3,不满足要求;

(3)l/b=10.8m/13.2m=0.8

3.1.2根据《高规》第3.4.6条中“有效楼板宽度不宜小于该层楼面宽度的50%”的规定及《建筑抗震设计规范》(GB 50011--2010)表3.4.3-1中第三种类型的定义和参考指标,本建筑平面中1-4~1-10/1G~1F部位,楼面总宽度为13.4m,总的开洞尺寸为4.45m+3.40m=7.85m,有效楼板宽度为13.4m-7.85m=5.55m,而5.55m /13.4m=41%

有上述两条可知,建筑平面布置有不规则的情况,造成楼板平面内刚度降低,楼盖整体性较差,对结构抗震产生不利影响。

3.2结构竖向规则性分析

本工程结构采用全现浇钢筋混凝土剪力墙体系,建筑的竖向体型规则、均匀,无过大的外挑和收紧(见图2)。为使结构的侧向刚度按照下大上小的规律均匀变化,剪力墙截面尺寸等均沿竖向逐渐减少,混凝土强度等级也逐渐减少。

根据2010年版《超限高层建筑工程抗震设防专项审查技术要点》及相关规范、规程的中的规定,本工程属于平面一般不规则,竖向规则的结构体系。

4.基础设计

根据场地的地层结构及物理力学性质,并结合上部结构的特点,综合分析后采用整体性好的平板式筏型基础。主体筏板的厚度为1.500m,地下二层的层面标高为-7.800m,基础的埋深为9.300m,埋置深度为结构主体高度的1/10.7,大于1/15。

5.结构分析

5.1分析软件及主要计算参数

根据《高规》第5.1.12条及《抗规》第3.6.6.3条的规定,本工程应采用不少于两个的不同力学模型,并对其计算结果进行分析比较。

本工程因现场地形等建筑要求而造成平面一般不规则,根据上述现行规范的要求,采用中国建筑科学研究院PKPM CAD工程部编制的结构分析程序(高层建筑结构空间有限元分析与设计软件)SATWE(2010网络版)进行结构分析,并采用PMSAP软件进行补充分析,对计算结果进行对比。

在以空间结构振型分解法进行计算时,计算振型数为18个,周期折减系数为0.95,考虑5%的偶然偏心和双向水平地震作用。中梁刚度增大系数为2.00,梁端弯矩调幅系数为0.85,连梁刚度折减系数为0.55,梁扭矩折减系数为0.40。

5.2计算分析内容

计算分析主要包括以下几方面:

(1)整体结构多遇地震及风荷载作用下的弹性分析

进行整体结构多遇地震及风荷载作用下的弹性分析,并对SATWE和PMSAP两种软件的结果进行对比,目的在于确定结构的构件尺寸,保证整体结构具备必要的承载力、合适的刚度、良好的变形能力和消耗地震能量的的能力,各项指标满足规范的要求。

(2)整体机构的弹性时程分析

根据规范要求,对结构进行整体的弹性时程分析,与振型分解反应谱法的计算结果进行比较,以确保结构分析的全面性,保证结构受力安全可靠。

(3)罕遇地震作用下弹塑性静力分析

5.3计算模型及基本假定

在使用SATWE和PMSAP程序进行分析时,均按照实际结构建立的准确的模型,包括屋面的构架。结构计算分析的过程中,考虑了以下的设计假定,以模拟结构真实的受力状态:

(1)地下1层抗侧刚度大于地上1层抗侧刚度的2倍,计算时假定结构嵌固端在地下1层顶板处。

(2)结构整体的施工模拟,依照施工顺序,分层加载。

(3)开洞较大的楼层洞口周边楼板设置为弹性楼板。

5.4主要结构计算结果及分析

5.4.1多遇地震作用下的弹性分析

(1)周期等指标计算结果详见表2:

(2)内力与位移计算结果详见表3。

结果分析:

(1)计算结果表明,两种软件分析的结构周期基本接近,结构周期合理。

(2)结构具有良好的抗扭刚度,第一扭转周期(T3)与第一平动周期(T1)的比值均小于0.90,满足规范要求;剪重比均大于规范限值3.200%;刚重比均大于2.7;有效质量系数均大于规范限值90%。

(3)结构在两个主轴方向的动力特征相近,第二平动周期(T2)与第一平动周期(T1)的比值不小于0.80。

(4)根据《高规》第3.7.3.1条,高度不大于150m的高层建筑,当采用剪力墙结构时,其楼层层间最大位移与层高之比Δu/h的限值为1/1000,计算结果均满足要求。

(5)层间位移均符合规范、规程限值要求,平面扭转规则。

(6)根据计算结果,剪力墙轴压比最大值为0.46(0.47),满足规范要求。

(7)结构计算的有效质量系数均大于90%,振型数已经选够。

经比较:两种程序的电算结果非常接近,各类参数反应出PMSAP模型仅仅比SATWE的刚度有所变化,是因为PMSAP开发了楼板用的多边形楼板单元,计算时进入整体结构分析,严格考虑了楼层之间构件之间的耦合作用,使得结构整体刚度有所不同。但SATWE中考虑全楼弹性楼板时,也可以计算楼板平面内、外刚度,故计算结果相差甚微。

5.4.2整体机构的弹性时程结果分析计算结果

计算结果表明,弹性动力时程分析每条时程曲线计算所得结构底部剪力大于振型分解反应谱法计算结果的65%,七条时程分析曲线计算所得结构底部剪力的平均值大于振型分解反应谱法计算结果的80%,且振型分解反应谱法计算结果曲线均能包络时程分析曲线的平均反应曲线。

5.4.3罕遇地震作用下的弹塑性静力分析

与需求点对用的顶点位移为145.89mm,层间弹塑性位移角最大为1/229,小于规范限值1/120,满足规范要求;该楼层在持续加载下变形平滑,具有充足的强度和变形能力安全储备,可保证大震不倒。

6.本工程采取的结构抗震加强措施

根据结构平面不规则的情况,本工程采用了如下的抗震加强措施:

6.1构件布置在满足建筑专业的要求下,采用将外边缘梁加宽及加高的做法,增强结构的整体性和抗扭刚度(抗扭纵筋及箍筋沿梁长加密),较少地震作用下的扭转效应。

6.2在外伸端及结构的细腰处均增加板厚,楼板配筋率适当增大以减少楼板较窄对结构抗震不利的影响,使外伸端与主体及细腰两侧结构能变形调谐。

6.3在二层层顶,扩大楼板加厚的部位,并采用双层双向配筋,使二层成为加强层,起套箍的作用,加强结构的整体性。

6.4在楼板有较大开洞的部位两侧采用双层双向配筋,以抵抗该部位的应力集中,增强其抵抗变形的能力。建筑平面有较大凹槽处设置拉梁,并且适当增大周边梁板刚度(图1阴影部分为加强区)。

6.5为了加强地下室梁、墙的协同工作,使一层的地震力通过地下室顶板很好的扩散至周边的梁、墙上,增加了地下室顶现浇板的厚度,并采取双层双向配筋,每层每向配筋率不小于0.25%。

6.6在地下车库的主裙楼间增设了沉降后浇带,减小基础的不均匀沉降对主体的影响。

6.7要求设备预留洞在管线安装完毕后均用混凝土封堵,加强楼板的整体性。

7.总结

本工程为竖向规则,平面有两项超限不规则的超限高层。依据《高规》要求进行了两个不同程序软件计算对比,计算结果无异常。各项重要指标的计算结果均满足高规及抗震的相关要求。

7.1.1为体现抗震设防目标三水准(小震不坏,中震可修,大震不倒)的要求,本工程进行了在多遇地震(超越概率63%)下采用弹性反应谱法进行结构承载力及弹性侧移验算,可以满足第一、第二水准的抗震要求;并进行了罕遇地震作用下的弹塑性静力分析,达到了第三水准的要求。

超高层建筑抗震设计范文4

关键词:复杂高层;超高咏ㄖ;结构设计;设计要点

中图分类号:TU97 文献标识码:A

在建筑行业发展中,越来越多新技术、新工艺和新材料应用其中,这就对工程结构设计提出了更高的要求。尤其是在当前复杂高层和超高层建筑的结构设计中,可能受到一系列客观因素影响,为工程结构埋下安全隐患,影响工程结构设计质量。尤其是在高层建筑结构设计中,相较于普通的建筑而言,结构设计要求更高,需要充分结合建筑特性,把握复杂高层和超高层建筑设计技术要点,提升设计合理性,为后续施工活动有序开展打下坚实的基础。

一、复杂高层和超高层建筑结构设计

某建筑工程总高度78.5m,高22层,主楼地下两层,地面20层。建筑结构为框剪结构,通过多方设计方案论证,桩基工程选择后压浆钻孔灌注桩,选择端承-摩擦桩的装荷载形式,压浆钻孔灌注桩295根,φ700桩252根,有效桩长18m~19m。采用标号C25的混凝土,关注前0.5m?~0.5m?碎石置于空洞地步。关注过程中,导管同孔底之间的距离为0.5m,连续灌注混凝土。

复杂高层和超高层建筑结构设计中,相较于普通的建筑结构设计而言存在明显的差异。一般其概况下,普通建筑的高度是在200m以下,复杂高层和超高层建筑的高度则超过了200m,这就对建筑工程稳定性提出了更高的要求。普通建筑多为钢筋混凝土结构,而复杂高层和超高层建筑结构则是多为钢结构或是混合结构,设计技术含量较高,结构更为复杂。此外,在复杂高层和超高层建筑结构设计中,需要充分考虑到建筑抗震要求、环境因素、自重以及风荷载等因素的影响,设计内容较为复杂,所以复杂高层和超高层建筑结构设计难度更大。

二、复杂高层和超高层建筑概念设计

(一)提升对概念设计的重视程度

近些年来,在复杂高层和超高层建筑结构设计中,设计理念不断创新,积累了丰富的结构设计经验,其中最具代表性的就是概念设计。在概念设计中,提升结构设计规则性和均匀性;结构中作用力传递更为清晰;结构设计中应该充分体现高标准的要求;结构设计中融入节能减排理念,促使结构设计更为科学合理;设计中,提升建筑材料利用效率,在满足建筑结构整体设计要求的同时,迎合可持续发展要求。基于此,为了满足上述设计要求,设计人员应该同建筑工程师进行密切的交流,在充分交流基础上,提升建筑结构设计合理性。

(二)选择合理的结构抗侧力体系

在复杂高层和超高层建筑结构设计中,为了可以有效提升结构设计安全性,选择抗侧力体系是尤为必要的。在选择结构抗侧力体系中,应该根据建筑具体高度来选择,明确结构抗侧力体系和建筑物高度之间的关系,如果建筑高度在100m以下,可以选择框架、框架剪力墙和剪力墙体系;如果建筑高度在100m~200m以内,则选择框架核心筒、框架核心筒伸臂;建筑高度在600m左右时,选择筒中筒伸臂、桁架、斜撑组合体;在结构设计中,需要充分考虑到结构内部各个部件之间的关系,形成一个整体;如果建筑工程结构中存在多个抗侧力结构体系,应该分别对这些抗侧力结构体系进行分析,在此基础上科学分析和判断。

(三)提高建筑抗震设计重视程度

提高建筑抗震设计重视程度是尤为必要的,尤其是在复杂高层和超高层建筑结构设计中,抗震设计对于建筑安全影响较大。在选择抗震方案中,需要选择合理的施工材料,质量符合建筑要求;尽可能降低地震过程中能量的扩大,对建筑构件的承载力进行验收,计算地震下建筑结构位移数值;高层建筑工程设计中,结构抗震手段的应用需要在得到位移数据基础上实现,设计更加合理的建筑工程结构设计方案,一旦建筑结构发生变形可以起到有效的保护作用;结构设计中体现出建筑构件的生产要求和界面变化情况,提升结构设计稳定性和牢固性。

(四)复杂高层和超高层建筑结构设计融合经济理念

在复杂高层和超高层建筑结构设计中,由于工程项目较为庞大,在具体的结构设计中,可能受到客观因素影响出现一系列成本问题。故此,在建筑结构设计中,需要充分融合经济型设计理念,对结构设计方案优化处理,避免建筑工程结构冗长带来的资源和资金浪费,提升资金利用效率。

三、复杂高层和超高层建筑结构设计精准性

(一)选择合理的结构设计软件,提升设计结果精准性

在复杂高层和超高层建筑结构设计中,设计工程师需要充分掌握前沿的设计手段和方法,能够选择合理的分析软件,提升计算结果准确性。当前我国复杂高层和超高层建筑结构计算软件种类繁多,但是不同软件侧重点存在明显的差异,这就需要在结构设计中,设计人员可以了解到不同软件的具体功能和应用范围,结合工程结构设计要求来选择合理的计算机软件。此外,在复杂高层和超高层建筑结构设计中,还应该对力学理念合理判断和分析,结合自身丰富的设计经验,提升计算结果精准性。

(二)加强荷载和作用力的考量

在复杂高层和超高层建筑结构设计中,设计工程师需要充分结合复杂高层和超高层建筑结构特性,明确结构自身的竖向荷载力大小和风荷载的影响因素,将其融入到后续的结构设计中,提升设计合理性。复杂高层和超高层建筑结构设计中,除了需要考虑到结构稳定性问题以外,还可以组织风洞试验,测试建筑的抗风能力。在后续的实验中,可以设计模型来模拟在不同风场环境下,建筑物的抗风能力和受力情况,有针对性提升建筑物结构的稳定性。

建筑工程结构设计中,还需要考虑到倒塌水准,主要表现在以下几个方面:其一,复杂高层和超高层建筑的延性结构构件,构件的弹性变形能力高低同结构抗震能力存在密切联系;其二,对于复杂高层和超高层建筑中的构件,满足各项技术要求;就复杂高层和超高层建筑结构设计要求,对于建筑物中的控制构件,满足建筑结构抗震设计要求,能够在不同环境下保持相应的弹性。

(三)科学计算自振周期

复杂高层和超高层建筑结构设计中,需要充分把握震动规律,提升设计合理性。但是不同的振幅和频率,可能出现大幅度震动现象,进而影响到建筑结构稳定性。故此,在建筑结构设计中,需要科学计算出自震周期,结合抗震强度、建筑高度进行科学计算,确保自振结果精准性。

(四)建筑的垂直交通设计

复杂高层和超高层建筑的结构形式主要为框架―剪力墙和核心筒结构,此种建筑结构形式可以有效提升结构稳定性,同时垂直交通体系结构可以产生较大的水平在和抵抗力。除了需要考虑到楼梯、电梯和卫生间等区域以外,向平面中央集中,可以有效减少空间占地面积,赋予建筑更好的交通环境和采光效果。垂直交通结构体系设计中,需要充分协调采光和节能之间的关系,便于后续的维护工作开展。

结论

综上所述,复杂高层和超高层建筑由于自身特性,建筑物高度较高,在结构设计中需要充分考虑到建筑抗震性能、垂直交通设计和载荷计算等问题,确保建筑工程结构稳定性和安全性,满足高层建筑使用要求,维护人们的生命财产安全。同时,对于建筑行业长远发展具有更加突出的促进作用。

超高层建筑抗震设计范文5

关键词:高层建筑;抗震设计;结构设计

引言

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

参考文献:

超高层建筑抗震设计范文6

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。 二、建筑平面布置设计问题建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。