高层建筑结构的设计特点范例6篇

前言:中文期刊网精心挑选了高层建筑结构的设计特点范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

高层建筑结构的设计特点

高层建筑结构的设计特点范文1

关键词:高层建筑 结构特点 基础结构设计

0. 引言

随着城市建设的不断加快,建筑业有了突飞猛进的发展,建筑用地也不断紧张, 给高层建筑的设计提出了更新更高的要求。尤其是高层建筑的结构设计越来越成为高层建筑结构工程设计工作的难点与重点,给工程设计人员提出了更高的要求。下面就高层结构设计的特点、设计原则以及基础的结构设计中存在的几个问题进行探讨。

1.高层建筑结构设计特点

1.1水平荷载成为决定因素。首先,数据显示楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值仅与楼房高度的一次方成正比,而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力与楼房高度的两次方成正比。因此,水平荷载对高层建筑稳定性的影响作用是很大的

1.2轴向变形不可忽视。高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

1.3侧移成为控制指标。与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。 另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:

1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。

2.使居住人员感到不适或惊慌。

3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。

4.使主体结构构件出现大裂缝,甚至损坏。

1.4结构延性是重要设计指标。相对于较低楼房而言, 高层建筑结构更柔一些, 在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力, 避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

1.5抗震设计要求更高。有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

2. 高层建筑结构设计基本原则

高层建筑结构设计的基本原则是:注重概念设计,重视结构选型与平、立面布置的规则性,择优选用抗震和抗风好且经济的结构体系,加强构造措施。钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。 在抗震设计中,应保证结构的整体性能,使整个结构具有必要的承载力、刚度和延性。结构应满足下列基本要求:

(l)应具有必要的承载力、刚度和变形能力。

(2)应避免因局部破坏而导致整个结构破坏。

(3)对可能的薄弱部位要采取加强措施。

(4)结构选型与布置合理,避免局部突变和扭转效应而形成薄弱部位。

(5)宜具有多道抗震防线。

3. 高层建筑结构的基础设计基本要求

基础是房屋结构的重要组成部分,房屋所受的各种荷载都要经过基础传至地基。由于高层建筑层数多、上部结构荷载很大,导致使其基础具有埋置深度大,材料用量多,施工周期长,工程造价高等特点。为此,高层建筑基础设计时应满足以下几方面的要求:

(1) 高层建筑的基础设计,应综合考虑建筑场地的地质状况、上部结构的类型、施工条件、使用要求,确保建筑物不致发生过量沉降戒倾斜,满足建筑物正常使用要求。还应注意与相邻建筑的相互影响,了解邻近地下构筑物及各项地下设施的位置和标高,确保施工安全。

(2)基础设计应根据上部结构和地质状况进行,宜考虑地基、基础与上部结构相互作用的影响。需要降低地下水位的,应在施工时采取有效措施,避免因基坑降水而影响邻近建筑物、构筑物、地下设施等正常使用和安全。同时还应注意降水的时间要求,以免停止降水后,水位过早上升,使建筑物发生上浮等问题。

(3)高层建筑应采用整体性好、能满足地基的承载力和建筑物容许变形要求并能调节不均匀沉降的基础形式。宜采用筏形基础,必要时可采用箱形基础。当地质条件好、荷载较小,且能满足地基承载力和变形要求时,也可采用交叉梁基础或其他基础形式;当地基承载力或变形不能满足设计要求时,可采用桩基或复合地基。

(4)高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。

(5)在地震区,高层建筑宜避开对抗震不利的地段;当条件不允许避开不利地段时,应采取可靠措施,使建筑物在地震地不致由于地基失稳而破坏,或者产生过量下沉或倾斜。

4. 基础的埋深问题

高层建筑的基础应该要有一定的埋深,埋置深度可以从室外地坪一直算到基础底面,对于独立的高层建筑而言,基础埋深比较容易确定,但当今多数高层建筑与地下车库都是相互连接的,当地下车库基础采用筏板基础或设有防水底板的独立基础(防水底板不宜太薄)时,高层建筑的基础埋深可从室外地坪算起,此时高层建筑地下室顶板及地下车库顶板应按嵌固层要求设计,地下车库应有足够的侧向刚度作为高层建筑的侧限。假如不满足以上条件的时候,高层建筑的基础埋深应该要从地下车库地面算起。高层建筑通常设地下室来满足埋深要求,主要有以下几点优势:

1.提高地基承载力。当高层建筑采用天然地基时,地基承载力可进行修正。随着基础埋深的增加,修正后的地基承载力随之增大,从而可满足高层建筑对地基承载力的要求。

2.有利于高层建筑上部结构的整体稳定。高层建筑地下室外墙一般采用钢筋硷墙,地下室顶板厚不宜小于160mm,地下室具有较大的层间刚度,同时地下室外墙周边土也提供了很大的侧向刚度和约束。

此外在确定埋置深度时,应考虑建筑物的高度、体型、地基土质、抗震设防烈度等因素。埋置深度可从室外地坪算至基础底面,并宜符合下列要求:

1.天然地基或复合地基,可取房屋高度的1/15;

2.桩基础,可取房屋高度的1/18(桩长不计在内)。

当建筑物采用岩石地基或采取有效措施时,在满足地基承载力、稳定性要求及本规程第12.1.6条规定的前提下,基础埋深可不受本条第1、2两款的限制。当地基可能产生滑移时,应采取有效的抗滑移措施。

5. 总结

近些年来,我国的高层建筑发展十分迅速,建筑造型新颖独特,建筑物的高度与规模不断增加。在高层建筑结构设计中,地基是大楼的基础,设计者应根据实际情况,作出合理的结构方案选择。并能根据具体情况进行具体分析采取适当的措施解决实际问题。才能不断地完善和发展高层建筑。

参考文献:

高层建筑结构的设计特点范文2

随着我国城市化进程的高速发展,建筑用地日益紧张,高层建筑拔地而起,日益增多。如何保证高层建筑的质量成了人们最为关注的问题,要想确保高层建筑的质量,首先对高层建筑结构设计提出了挑战。笔者认为,高层建筑的结构设计不仅应保证高层建筑具有足够的安全性,还应保证结构的经济性和合里性。下面,笔者对高层建筑结构设计中的几个问题谈谈自己的见解。

一、要高度重视高层建筑结构设计的概念设计

1.概念设计的意义。高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

2.概念设计的依据。高层建筑结构总体系与各分体系的工作原理和力学性质、设计和构造处理原则、计算程序的力学模型和功能,要不断吸取积累经验。

二、要高度重视高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:

1.水平力是设计主要因素在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.侧移成为控制指标与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

3.抗震设计要求更高。有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。

4.轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

5.结构延性是重要设计指标。相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

三、要高度重视高层建筑结构设计的四个问题

1.要高度重视高层建筑结构受力性能问题。对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布做出总体设想。

2.要高度重视高层建筑结构设计中的扭转问题。建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则 L 形、T 形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

3.要高度重视高层建筑结构设计中的侧移和振动周期问题。建筑结构的振动周期问题包含两方面:一方面是合理控制结构的自振周期;另一方面是控制结构的自振周期使其尽可能错开场地的特征周期。

(1)结构自振周期。高层建筑的自振周期(T1)宜在下列范围内:

框架结构:T1=(0.1-0.15)N

框一剪、框筒结构:

T1=(0.08-0.12)N

剪力墙、筒中筒结构:

T1=(0.04-0.10)N

N 为结构层数。

结构的第二周期和第三周期宜在下列范围内

第二周期:T2=(1/3-1/5)T1;

第三周期:T3=(1/5-1/7)T1.

(2)共振问题。当建筑场地发生地震时,如果建筑物的自振周期和场地的特征周期接近,建筑物和场地就会发生共振。因此,在建筑方案设计时就应针对预估的建筑场地特征周期,通过调整结构的层数,选择合适的结构类别和结构体系,扩大建筑物的自振周期与建筑场地特征周期的差别,以避免共振的发生。

(3)水平位移特征。水平位移满足高层规程的要求,并不能说明该结构是合理的设计。同时还需要考虑周期及地震力的大小等综合因素。因为结构抗震设计时,地震力的大小与结构刚度直接相关,当结构刚度小,结构并不合理时,由于地震力小则结构位移也小,位移在规范允许范围内,此时并不能认为该结构合理。因为结构周期长、地震力小并不安全。其次,位移曲线应连续变化,除沿竖向发生刚度突变外。不应有明显的拐点或折点。一般情况下剪力墙结构的位移曲线应为弯曲型。框架结构的位移曲线应为剪切型。框一剪结构和框一筒结构的位移曲线应为弯剪型。

4 要高度重视位移限值、剪重比及单位面积重度问题

(1)位移限值在结构整体计算的输出结果中,结构的侧移(包括层间位移和顶点位移)是一个重要的衡量标准,其数值大小从一个侧面反映出结构的整体刚度是否合适,过大或过小都说明结构刚度过小或过大(或者体现结构两个主轴方向的刚度是否均衡),以致要引起设计者对其中的结构体系选择、结构的竖向及平面布置合理性的再思考。

(2)剪重比及单位面积重度结构的剪重比(也即水平地震剪力系数)入=VEIGG 是体现结构在地震作用下反应大小的一个指标。其大小主要与结构地震设防烈度有关,其次与结构体型有关,当设防烈度为 7、8、9 度时,扭转效应明显或基本周期

以上两个指标不仅在施工图设计阶段,而且在初步设计阶段都是非常重要的数据,其数值正常与否从另一个侧面反映出结构体系的选择是否合适,结构布置(包括构件截面确定)是否合理,电算数据输入是否正确,以及最后决定电算结果是否可信可用等,因此结构设计者对这两个指标切不可掉以轻心,更不可认为是无关紧要的。

参考文献:

高层建筑结构的设计特点范文3

关键词:高层建筑;结构设计;结构体系

Abstract: The structural design of high-rise building is a long-term, complex or iterative process. This paper discussed the main issues in the design of high-rise buildings.Key words: high-rise buildings; structural design; structural system

中图分类号:TB482.2文献标识码:A 文章编号:2095-2104(2012)

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。

1.结构类型

1.1结构的规则性 新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。 1.2结构的超高在抗震规范与高规中。对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此。必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。 1.3嵌固端的设置

由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

2.高层建筑结构设计的特点

2.1水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中, 尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比; 而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说, 竖向荷载大体上是定值, 而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2侧移成为控制指标

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H 的4 次方成正比。另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大, 在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:

2.2.1因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。

2.2.2使居住人员感到不适或惊慌。

2.2.3使填充墙或建筑装饰开裂或损坏 使机电设备管道损坏,使电梯轨道变型造成不能正常运行。

2.2.4使主体结构构件出现大裂缝,甚至损坏。

2.3减轻高层建筑自重比多层建筑更为重要

高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑, 如果在同样地基或桩基的情况下, 减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数, 这在软弱土层有突出的经济效益。地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

2.4轴向变形不容忽视

采用框架体系和框架――剪力墙体系的高层建筑中, 框架中柱的轴压应力往往大于边柱的轴压应力, 中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时, 此种轴向变形的差异将会达到较大的数值, 其后果相当于连续梁中间支座沉陷, 从而使连续梁中间支座处的负弯矩值减小, 跨中正弯矩值和端支座负弯矩值增大。

3. 结构计算与分析

3.1结构整体计算的软件选择

目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件 。3.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。 该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。 3.3振型数目是否足够。 在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。 3.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。

3.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大。因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。 4. 高层建筑的结构体系

4.1剪力墙体系

当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架―剪力墙体系。

4.2框架―剪力墙体系

当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架―剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架―剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架―剪力墙体系的能建高度要大于框架体系。

4.3简体体系

凡采用简体为抗侧力构件的结构体系统称为简体体系,包括单简体、简体-框架、筒中筒、多束筒等多种型式。简体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。简体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

高层建筑结构的设计特点范文4

关键词 超限复杂高层;建筑结构设计

中图分类号:TU972 文献标识码:A 文章编号:1671-7597(2014)09-0150-01

超限复杂高层建筑结构非常复杂,需要采用科学有效的设计方法,才能够实现设计的效果,确保设计的质量,下面针对于超限复杂高层建筑结构设计进行具体的分析。

1 超限复杂高层建筑结构设计概述

所谓超限复杂高层指的就是超限高层的复杂结构,其中剪力墙的结构设计、梁式转换设计等,在结构上与超限高层有着明显的区别,尤其是内在结构含有错层、跃层、中空等复杂建筑构造。对这类建筑的结构设计中,要比正常的超限高层结构设计复杂的多,尤其是结构的受力平衡点极难确定,而且由于结构的复杂性,在设计中要根据实际需求来对每个结构的剪力墙做好设计工作,因为这涉及到超限复杂高层建筑的抗震能力。美观也是建筑结构设计的重点因素,尤其是超限复杂高层建筑,对于这类建筑的设计外观不会有着传统建筑物的对称外观[1]。因此,在超限复杂高层建筑结构设计中,要将外观设计充分的展现出独有的特性,这样才能表现出超限复杂高层建筑结构设计的特点。

2 超限复杂高层建筑结构设计的特点

2.1 错层结构

错层在我们日常生活中经常见到的一种楼房结构,由于建筑的各个功能区的层高要求不同,针对这一现象设立了错层结构,不仅如此,有很多楼梯结构也存在跃层结构,都是按照功能区的高度不同而划分的,而这也是超限复杂高层建筑结构设计中的一大特点。在超限复杂高层建筑结构设计中,在进行结构模型分析的过程中,按照裙房的设计不同,再结合功能区高度要求的不同,从而实现超限复杂高层建筑物结构设计错层结构的良好设计[2]。

2.2 平面不规则

在对超限复杂高层建筑结构设计的过程中,由于存在的功能区域不同,因此平面结构设计也会存在不规则性,尤其是超限复杂高层建筑的剪力墙、钢筋混凝土等结构的设计中,对侧力构件、承重有着极大的作用,而对每个不同区域测量的抗震平衡点不同,就会导致各个结构出现不同的设计规则,这也是超限复杂高层建筑物结构设计的一大特性。

3 超限复杂高层建筑结构设计

3.1 抗风设计

风荷是建筑结构设计中应考虑的问题,尤其是超限复杂高层的建筑结构设计,因为高度的增加也使得受到风荷的影响越大,特别是在沿海地带的超限复杂高层在结构设计的过程中应将风荷作为重点设计。超限复杂高层建筑结构的抗风设计是将风产生的动力效应结合风振系数,再转变成建筑结构设计中的拟静力进行计算,当然,在抗风设计中需要对拟静力的计算结果通过模型风洞实验、结构动力分析、计算校核等,以保证抗风设计的稳定性和可靠性,否则,未对抗风设计进行校核的建筑物容易在风荷的影响下产生建筑墙体的开裂、玻璃墙体的破坏等,甚至会出现主体结构遭到破坏的现象,因此抗风设计在超限复杂高层建筑结构设计中占有重要的地位。在抗风设计中需要注意设计要点:由于超限复杂高层具有平面不规则性、楼梯高度较高、立面复杂等特征,在进行抗风校核时应采用风洞实验来保证建筑结构的稳定性和安全性;在超限复杂高层建筑之间距离较近时,应对相互之间产生的风力干扰的群体效应作出相应的判断,并将其渗入到抗风设计中[3]。

3.2 抗震设计

抗震设计是建筑物结构设计中的重点设计,尤其是超限复杂高层建筑的结构设计,因为建筑较高的原因,使得承受震力结构本身就处在弱势,因此对超限复杂高层结构中的抗震设计要比一般的建筑结构严格的多,主要在设计中应注意以下几点:对超限复杂高层建筑结构设计的地理位置、地质地貌等周边环节的调查分析,需要结合当地的情况对建筑进行抗震设计;建筑的整体结构设计,如界面大小、应变分布等,要有针对性的进行设计;对建筑结构设计方案进行抗震定量分析,为确保建筑结构抗震性能的优越性,应保证建筑结构的变形弹性需要达到建筑的抗震要求;确定建筑结构的位移和构件变形之间的关系,并在设计的过程中通过测量测试的方式来确定构件的变形值,为建筑结构抗震设计提供依据。

3.3 刚度设计

刚度设计是对建筑整体结构有着固定的作用,尤其是对建筑结构荷载情况有着直接的影响。在超限复杂高层建筑结构设计中,经常会发现结构设计发生扭转的现象,一旦建筑整体结构发生扭转就会使建筑物的水平荷载发生变化,而对建筑物的稳定性和安全性造成极其严重的影响,这种设计的发生主要是三个点不重合而引起的。所谓三个点指的就是建筑整体结构的重心点、建筑结构几何形状的中心点、建筑结构整体刚度的中心点等[4]。对超限高层建筑的刚度设计首先要将各个楼层中分布的水平作用力进行平均分布;将超限复杂高层建筑结构尽量采用规范的平面结构设计,如、矩形、正多边形、方形以及圆形等,这样可以有效的分布作用力,能避免或降低建筑结构发生扭转的问题。当然,超限复杂高层建筑结构也很少存在简单规范的平面设计,因此,对这类特殊的建筑结构刚度设计时,整体平面结构处于不规范的形态,要尽量将其凸现出的结构部分的宽度与厚度的比值确定在可控制的范围内,这样可以充分避免作用力分布不合理而导致建筑结构刚度设计出现问题造成的建筑扭转现象。另外,在对超限复杂高层建筑结构设计时,要从整体结构设计出发,尽量采用对称形态的结构设计,这样可以提高建筑刚度设计的稳定性和可靠性[5]。

4 结束语

在进行超限复杂高层建筑结构设计中,设计人员通过运用有效的设计方法,能够实现设计水平的提高,确保建筑的质量,促进建筑设计工作的顺利进行。

参考文献

[1]生永栓,王永红,陈伟松,博东恒.某超限复杂高层(错层)结构住宅设计[J].建筑结构,2009(S1).

[2]邱俊强.对高层建筑结构设计中存在问题的分析[J].建材与装饰(中旬刊),2008(05).

[3]杨亚红.馨雅如小区高层建筑超限工程设计概述[J].科技信息,2011(16).

高层建筑结构的设计特点范文5

关键词:结构设计高层建筑 安全性

中图分类号:TU208文献标识码: A

随着经济的快速发展,城市用地日趋紧张,这使得高层建筑成为了目前阶段建筑设计的主要形式。高层建筑的广泛出现,既节约了建筑的占地面积,增加了使用空间,又丰富了城市的景观。但高层建筑美化城市的同时,也给建筑设计师们在安全设计性方面提供了诸多挑战。其中,结构安全设计就是一个十分重要的部分。

建筑结构设计是整个建筑的精髓,是整个建筑工程的骨骼,因此对于建筑结构的设计至关重要。其合理的设计是保证建筑质量及安全性的重要方法。高层建筑的结构特点是需同时承受水平和竖向的荷载或间接作用。低层建筑结构通常以抵抗竖向荷载为主,水平荷载和作用的影响较小。如风荷载和地震作用,它们所产生的内力和位移较小,一般可以忽略。因此在低层建筑结构中,竖向荷载往往就是设计的控制因素。但在高层建筑结构中,较大的建筑高度造成了完全不同的受力情况,水平荷载和作用不仅是主要荷载的一种,跟竖向荷载共同起作用,而且往往还成为设计中的控制因素。因此,在水平荷载作用下,若高层建筑结构的抵抗侧向变形能力或侧向刚度不足,将会产生过大的侧向变形,不仅使人产生不舒服的感觉,而且会使结构在竖向荷载作用下产生附加内力,会使填充墙、建筑装修和电梯轨道等服务设施出现裂缝、变形,甚至会导致结构性的损伤或裂缝,从而危及结构的正常使用和耐久性。因此设计高层建筑结构时,不仅要求结构有足够的强度,而且要求结构有合理的刚度,使水平荷载所产生的侧向变形限制在规定的范围内。同时,有抗震设防要求的高层建筑还应具有良好的抗震性能,使结构在可能的强震作用下当构件进入屈服阶段后,仍具有良好的塑性变形能力,即具有良好的延性性能。综合高层建筑的上述受力特点可知,与低层结构不同,高层建筑结构在强度、刚度和延性三方面要满足更多的设计要求。抗侧力结构的设计成为高层建筑结构设计的关键。

高层建筑结构的设计特点范文6

关键词:高层建筑 建筑结构 设计要点

中图分类号:TU97文献标识码: A 文章编号:

随着社会经济的迅速发展和建筑功能的多样化, 城市人口的不断增多及建设用地日趋紧张和城市规划的需要, 促使高层建筑得以快速发展。高层建筑结构设计给工程设计人员提出了更高的要求, 作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要满足高层建筑结构的科学性和合理性。

一、高层建筑结构设计的意义及依据

1.概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

2.概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

二、高层建筑结构设计的原则

1. 选择合理的高层建筑结构计算简图

在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。

2. 选择合理的高层建筑结构基础设计

按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。

3. 选择合理的高层建筑结构方案

合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

4. 对计算结果进行准确的分析

随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

5. 高层建筑的结构设计要采用相应构造措

施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

三、高层建筑结构设计问题分析

1. 高层建筑结构受力性能

对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空间组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

2. 高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点,即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏,应在结构设计时选择合理的结构形式和平面布局,尽可能地使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制,高层建筑不可能全部采用简面形式,当需要采用不规则L形、T形、十字形等比较复杂的平面形式时,应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

3. 高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B 级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4. 高层建筑结构设计短肢剪力墙设置

我国建筑新规范中,短肢剪力墙是指墙肢的截面的高度和厚度比在5~8 的墙,按照实际经验以及数据,高层建筑结构设计中增加了对短肢剪力墙的使用限制。所以,在高层建筑的结构设计中,必须尽可能的减少或者避免使用短肢剪力墙。

5. 高层建筑结构设计嵌固端的设置

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

6. 高层建筑结构的规则性

在关于高层建筑的新规范中,对于高层建筑结构的规则性做出了很多限制,比如规定了结构嵌固端上层和下层的刚度比,平面规则性等等,并且硬性规定了“高层建筑不能采用严重不规则的设计方案。”因此,为了避免后期施工设计阶段的改动,高层建筑结构的设计必须严格遵循规范的限制条件。

结束语:

随着高层建筑进一步的发展,高层结构的设计越发重要起来,结构设计是一项集结构分析,数学优化方法以及计算机技术于一体的综合性技术工作,是一项对国家建设有重大意义的工作,同时,亦是一门实用性很强的工作。为了革新高层建筑,体现其魅力,追求新的结构形式和更加合理的力学模型将是土木工程师们的目标和方向。

参考文献:

[1]何俊旭.高层建筑结构设计及结构选型探讨[J].价值工程,2010.2:214.

[2]田龙.浅谈高层建筑的结构设计[J].价值工程,2011.1:99.