欧姆定律的发现过程范例6篇

前言:中文期刊网精心挑选了欧姆定律的发现过程范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

欧姆定律的发现过程范文1

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

欧姆定律的发现过程范文2

关键词:欧姆定律;适用范围;微观机理;导电材料;能量转化

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

[1]普通高中课程标准实验教科书物理选修3-1[M].北京:人民教育出版社,2010.

欧姆定律的发现过程范文3

一、物理电学相关公式及形象记忆法

初中物理电学相关公式和定理虽然表面看比较抽象难懂,但是因为电流是实际存在的,并且其特点和存在形式可以类比现实中许多形象易懂的实物和现象,因此结合实际对相关定理定律进行理解和记忆会收到很好的效果.

1.欧姆定律

欧姆定律解释的是电学中电压、电流、电阻三者之间的关系,是电学最基本的定律.

电流×电阻=电压,即I×R=U;其他的变形式可以由此公式导出.

可以用水流演示电流,用水压解释电压,以现实中形象的实物来解释电学相关内容.

2.电功公式

电功公式是讲电力做工的计算方法,电流流过导线会产热,有能量产生,能量可以做功,电功公式就是计算电力做工能力的公式.

电流×电流×电阻×时间=电功,即I2Rt=P;

将I=UR代入,就能成为电功公式的另一形式.

3.电功率公式

电功率就是形容电流做功快慢的公式.

电流×电流×电阻=电功率,即P=I2R.

电功和电功率可以用电灯发光发热解释,电流越大,电灯越亮,时间越长,电灯散失的热量越多,就是电流做功的道理.

二、物理电学题目解题技巧

1.欧姆定律方程解题

熟记欧姆定律,只要是给出电路解电学未知量并且题目中没有涉及功率内容的题目,结合整个电路列出欧姆定律的基本方程,肯定可以得到答案,即使最初看题时没有头绪,在列出欧姆定律方程之后也能从方程中看出解题方法.静态电路图列写一个欧姆定律方程,动态电路图根据变化次数列出相应数目的欧姆定律方程即可.

例电路图如图1所示,闭合开关S,当滑动变阻器滑片在R2上某两点之间来回滑动时,电流表的读数变化范围是2 A~5 A,电压表的读数变化范围是5 V~8 V,问电源电压及电阻R1的值分别是多少?

乍一看此题确实无从下手,但是可以看出这是一个动态电路题,随着滑动变阻器阻值的不同电路相关参量产生了变化,因此需要列两个欧姆定律方程,方程列出,题目便迎刃而解.

解根据题意列欧姆定律方程,首先滑动变阻器在题意中阻值最小时,电流最大为5 A,电压表度示数最小为5 V,此时滑动变阻器电阻值为5 V÷5 A=1 Ω.

可以列出一个方程:

U÷(R1+1)=5 A(1)

同理,滑动变阻器阻值最大时为8 V÷2 A=4 Ω.

列另一个欧姆定律方程

U÷(R1+4)=2 A(2)

用简单的解方程法解方程(1)和(2),很容易得出结果U=10 V;R1=1 Ω.

2.等效电路解含功率动态题

解含有功率内容的动态题的一个很好的方法就是将其各种状态独立出来,简化成等效电路,每种状态单独分析,之后综合考虑并求解.

例如图2所示,R2与R3的电阻比为R2∶R3=1∶4,最初所有开关处于断开状态,同时闭合S1与S2,S3保持断开,电流表示数为0.3 A,R2消耗功率P2;之后闭合S1、S3,S2断开,R1消耗功率为0.4 W,R3消耗功率为P3,P2∶P3=9∶4,求电源电压和R1阻值.

虽然此题表面看是动态且较为复杂,但是将动态电路的两个状态拆分成静态简单电路,题目便会简单明了,之后列写欧姆定律和功率方程,解方程即可.

当闭合S2后电路可简化成如图3形式,可列方程如下:

(R1+R2)×0.3=U(1)

R2×0.3×0.3=P2(2)

打开S2闭合S3后电路变成图4,设此时电流为I3,结合等量关系R3=4R2,将R3用R2代替,后列方程

(R1+4R2)×I3=U(3)

R1×I3×I3=0.4(4)

4R2×I3×I3=49P2(5)

5个方程,5个未知数,此题可解.由(2)式和(5)式可解出I3=0.1 A,其他未知数便顺利得出.最终结果:U=36 V,R1=80 Ω.

欧姆定律的发现过程范文4

关键词:欧姆定律;探究案例;教学设计;解读反思

一、教育背景与设计理念

2011年教育部颁布了经修订的《义务教育物理课程标准》(以下简称“新课标”),这是我国义务教育新课程实验取得阶段性成果的标志,更是广大新课程实践者10年经验的总结,定稿后的新课标必将作为指导性文件引领新课改持久深入健康地发展。

为实践新课标所倡导的“提倡教学方式多样化,注重科学探究”的崭新教学理念,我们在总结反思“自主·探究·合作”课堂教学模式的基础上,更加突出“以人为本”的教学思想,以新编苏科版物理教科书为载体,进一步改进《欧姆定律》一节的探究案例设计。在教学设计和实施过程中力图体现以下理念:一是学生发展为本;二是比结论更重要的是过程;三是把思考还给学生。

二、内容分析与学情简析

《欧姆定律》一节编排在学生学习了电流、电压、电阻等概念,电压表、电流表、滑动变阻器使用方法之后,这既符合由易到难、由简到繁的认知规律,又保持了知识的结构性、系统性。欧姆定律作为一个重要的物理规律,反映了电流、电压、电阻三者间的相互关系,是电学中最基本的定律,是分析解决电路问题的金钥匙。欧姆定律是电学的教学重点,也是新课标规定的重点内容之一。

学生通过电阻和串、并联电路的学习已初步掌握了实验探究的基本程序:观察现象—提出问题—猜想假设—方案设计—实验探究—归纳总结—解释现象,初步具备了设计实验方案的能力、动手操作能力和思考与质疑、交流与讨论的学习习惯,对“自主·探究·合作”教学模式已初步适应并产生了兴趣。了解学生的学习现状和发展潜能,便于确定学生的“最近发展区”,从合适的教学起点出发,有针对性地进行教学。

三、探究案例与设计解读

(一)学习目标

1.知识与技能。①掌握欧姆定律及其表达式,并能进行简单的计算;②学习运用“控制变量法”研究问题,培养知识迁移的能力;③进一步学会使用电压表、电流表和滑动变阻器。

2.过程与方法。①进一步实践实验探究的一般程序和方法;②注重实验探究方案设计的思考与改善。

3.情感态度与价值观。①培养学生的科学态度和探索精神;②联系欧姆定律的发现史,渗透锲而不舍科学精神的教育;③体验分工合作、团结互助精神。

解读:依据新课标倡导的三维教学目标设计学习目标,把传统的“教学目标”改为“学习目标”更能突现学生的主体地位。这里的学习目标是指:“学生从学习的起点出发,在教师的引导、支持和促进下,通过自己积极、主动和创造性的学习能够达成和检测的目标。”学习目标的编写和描述要具有针对性和可操作性。

(二)重点与难点

1.教学重点。探究实验的操作,用数学方法正确得出实验结论;理解欧姆定律的内容及其表达式、变换式的意义。

2.学习难点。运用数学方法处理实验数据,建立和理解欧姆定律;运用欧姆定律解决简单的实际问题。

解读:以知识为本的传统教学观注重教师教的重点与难点,而以学生发展为本的新课标教学观,则注重学生学的重点和难点,注重探究电流和电压、电阻关系的过程和方法,体现了“比结论更重要的是过程”这一新课标理念。

(三)教学媒体

1.教师用具。投影设备、多媒体课件等。

2.学生用具。多媒体教学软件,干电池4节、电流表、电压表、滑动变阻器、开关各1个,阻值不同的定值电阻3只、导线若干。

解读:投影设备主要用于展示各组设计的探究性实验方案和实验数据的处理,以利于小组间交流、沟通与提升。多媒体课件包括:演示实验电路图的动画幻灯片;数据处理的表格和图像;调光电灯工作原理。

(四)教学过程

1.复习设疑,激发探究欲望。(1)提出问题:①既然电压是形成电流的原因,那么导线中的电流与两端的电压有何关系呢?②既然电阻对电流起阻碍作用,那么导体中的电流与它本身的电阻有何关系呢?(学生举手或随机点名回答。)(2)猜想设疑:同学们对电流与电压、电阻的关系作了各种猜想,那么这三者究竟有怎样的数量关系呢?点出本课主题“欧姆定律”。

解读:①在学生猜想的过程中,教师耐心倾听而不要急着下结论,可让学生互评,以面向全体学生,体现多元评价,发挥评价的发展。②复习旧知是为了导入新知,引起认知冲突,激发探究欲望,为后续的科学探究活动提供“脚手架”,体现了“教师是学生学习的组织者”。

2.设计实验方案,进行实验探究。(1)知识准备:教师向学生介绍“控制变量法”,说明研究电流与电压、电阻间的关系时,必须保持其中一个变量(例如电阻)不变,再通过改变电压,观察电流是如何变化的。设问:在研究电流与电阻关系时,必须保持 不变,通过改变 ,来观察 的变化。(2)方案设计和交流:在学生了解科学实验的设计过程(明确研究目的,确定研究方法,设计合理的实验方案)后,通过同桌讨论,利用提供的仪器,设计一个实验方案。选派几组学生上台交流设计的实验方案,教师简单评析后,投影实验电路图,介绍有关仪器,特别强调滑动变阻器在实验中的作用。(3)实验探究:学生分组实验,实践和体验“控制变量法”,加深对欧姆定律的感性认识。(4)各组处理实验数据,进行分析、归纳得出初步结论。新教材增加了利用实验数据描绘函数图像的方法,理解成正比、成反比的意思,体会构建数学模型在物理研究中的运用,培养学生的科学思维能力。

解读:①把教材中的教师演示实验改为学生分组实验,一是因为学生已初步具备做此实验的基本技能,二是使全体学生都能动手操作,参与体验“控制变量法”,突出学生的主体地位。②本节探究课把重点放在利用“控制变量法”设计与完善实验方案上,以初步培养学生的实验设计能力和创新能力。③选派小组上台交流实验设计方案,旨在引导学生发散思维,相互取长补短,促进创新思维。④教师在这阶段应不断巡视、引导,倾听学生讨论,及时给予评价和指导,以体现“教师是学生学习的参与者”。

3.总结交流,合作共享。(1)各组汇报实验结果,归纳得到两个结论:在电阻不变的情况下,导体中的电流跟这段导体两端的电压成正比。在电压不变的情况下,导体中的电流跟这段导体的电阻成反比。(2)引导得到欧姆定律及其表达式。(3)强调:欧姆定律中两处用到“这段导体”,这是强调同一导体,即电流、电压、电阻对应同一导体,而且具有同时性。

解读:这一环节以师生互动、生生互动为主。通过总结交流使学生的认识从感性认识向理性认识飞跃,学生的情感在全班共享中得到升华。同时对教师的教和学生的学进行评价反馈。这一阶段将在教师的引导下完成,以体现“教师是学生学习的引导者”。

4.巩固反馈,知识迁移。“模拟调光台灯”的工作原理,作为实验探究的有效补充。学生通过模拟实验,学会选择仪器、设计简单电路、掌握工作原理,加深对常用仪器的认识。

解读:调光台灯的模拟实验,让学生明白物理知识就在身边,物理和生产生活有密切的联系。让学生参与学习的全过程,体现“一切为了学生发展”的理念。

四、感悟与反思

(一)课堂教学设计应是一个动态生成方案

传统的课堂教学设计是以教师的教和书本知识为本位,从教师的主观判断或经验出发,侧重于教学过程的程式化、细节化的准备,这种“静态教案”不能适应动态生成的实际教学过程,不利于促进学生的发展。新课标理念下的课堂教学设计以学生发展为本,从学生的“现有发展区”出发,通过对教材内容的“二次开发”,精心设计动态生成方案,促进学生过渡到“最近发展区”。

(二)探究性学习的真谛是做到“形散而神不散”

虽然全班分成很多小组分散进行探究实验,但各组都围绕“探究电流和电压、电阻的关系”有条不紊地进行,看似无序实是有序。在这中间,教师的组织、引导和参与十分关键。教师一定要遵循“组内异质,组间同质”的原则进行分组,并对组内成员的分工提出责任分工。教师一定要给小组内每位学生分配一个角色,诸如主持人、操作者、记录员、噪音控制者、汇报人等,使每个小组成员在各司其职中自主、合作、探究学习,使每位学生都能在原有基础上有所发展。

参考文献:

[1]中华人民共和国教育部.义务教育物理课程标准[S].北京:北京师范大

学出版社,2011.

欧姆定律的发现过程范文5

在“闭合电路欧姆定律”一节教学的导课中,我凭借上节课学习的电源及其特性等知识,运用演示实验,并在演示实验的前后以及过程中揭示矛盾、提出疑问,以激发学生思维的积极性,诱发学生的创造性思维。

1.如何方便地测定电源的电动势?

演示:用伏特表按图(1)电路直接测电源的电动势,测得伏特表示数为2.9伏。

2.若电路中加接电阻R,闭合开关S,观察此时伏特表的读数。

演示:按图(2)电路,测得伏特表的示数为2.1伏。

此时教师及时把握实验造成的认识冲突进行设问:此时电源电动势变化了吗?为何第二次伏特表示数变小了呢?你能知道此时电源的内电压是多大吗?

通过上述的问题情境,使学生的思维进入专注的学习状态,随之,通过学生的思维,有利于理解E=U外+U内的关系式以及伏特表测量的物理意义,为闭合电路欧姆定律的教学埋下了伏笔。

3.若上述电路中再串联一个安培表(图3),当电阻R发生变化时,伏特表和安培表的示数将如何变化?

先让学生进行猜想,后演示,并运用欧姆定律I=U/R进行分析。猜想与实验结论形成了矛盾,使学生的认知再次发生了冲突。接着,在教师的引导下,让学生在矛盾的思索中,以直观的形象进入理性的顿悟,从而得出某部分电路R的变化对电路的影响,只用某部分电路的欧姆定律来分析已不适用,因而必须对整个电路进行认识把握。教师由此把握契机,导出本堂课的研究课题。

接着,我通过设计以下教学程序,让学生主动参与探索规律的活动,使之身临其境,再现了当年科学家研究的思维方法和发现的过程。

1.鼓励学生进行大胆猜想。

设问:闭合电路中的电流强度可能与哪些因素有关?

教师可启发学生在欧姆定律中决定电流强度I的有关要素,从而通过思维方法的迁移、猜想得到:I与R、与E、与r、等因素有关。

2.引导学生设计实验验证上述猜想。

设问:你能用什么方法验证上述猜想呢?(教师提示:物理学中最有说服力的武器――科学实验。)

设问:那么多变量之间的关系又如何处理?(教师启发学生:探索牛顿第二定律时对那么多变量问题的处理――控制变量的方法。)

3.实验的具体设计及演示验证。

通过逐个控制变量的方法,讨论、设计并演示如下实验:

(1)用手摇直流发电机M作电源(图4)。通过改变转速来改变电动势的大小。(当R、r一定时,I与E关系?)

(2)选用可调电源(图5),改变外电阻R,观察安培表示数变化。(当E、r一定时,I与R的关系?)

(3)选用可调电源(图6),改变电源内阻,观察安培表示数变化。(当E、R一定时,I与r的关系?)

通过上述教学程序,学生的思维实现了从猜想到实验性验证的探索过程。

4.引导学生根据已有知识进行科学推理,使之由定性升华到定量。

设问:由E=U外+U内能得出I与上述各量的定量关系吗?

对于外电路U外=IR,那么内电路U内=Ir亦成立吗?

再次引导学生运用实验手段验证。如图(6)所示,用探针接伏特表,可测得内电压,安培表可测得内电路的电流。通过改变R,测得伏特表和安培表的示数如下:

分析上表所得的数据,观察得到U内/I=定值,得出欧姆定律也同样适用于内电路,即U内=Ir。由此,学生可推导出:E=IR+Ir。讨论I的决定因素,将公式变换得I=E/(R+r),即闭合电路欧姆定律的数学表达式。

对闭合电路欧姆定律进行剖析、运用时,好让学生思考、观察、分析、讨论,增强课堂思维量,加深对规律的进一步理解,我通过设计以下问题的思维阶梯来拓展思维层次:

设问:1.请大家运用此规律解释前面导课中、的示数如何变化?

2.当外电路处于断路状态时,=E,为什么?

3.若电源两端连接一根导线(即电路处于短路状态),I=?短路状态有何危害?(学生思考后,教师演示短路状态时保险丝熔断实验。)

4.请大家根据U=E-I r关系式,画出U-I函数图线,并说明物理意义。

5.先通过实验演示,然后提出问题。

如图(7)电路,已知电阻R1=5Ω,当S闭合时,读出的读数(I1=0.35A),据此数据能否求电源的E和r?

(2)如何想法求得?(提示:若再给一只R2 =10Ω的电阻,行吗?)演示实验并测得的示数(I2 =0.22A),请学生列式求得(E=3V,r=3.5Ω)。

然后小结,此题告诉了我们一种测量E、r的重要方法,即课本中例题解决的问题,并进一步设问(留给学生课外思考):

①若把改成一只,如何设计实验测量E、r?

②若只给一只和一只及一只可变电阻,又如何设计实验测量E、r?

6.先给实物电路,让学生运用规律计算求解,后让学生观察实验,在发生认知冲突中,使学生自悟自解,深化思维层次。

(1)图(8)电路中,若把电阻R换成一只内阻为1.5Ω的电动机,当闭合开关S,的示数多大?(请学生求解。)

(2)演示实验:闭合S,让学生观察电动机转动以及电动机不转动,两种情况下的示数。

欧姆定律的发现过程范文6

在高中物理新课程标准中,把科学探究和科学内容放到同等重要的地位,明确提出让学生“经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题”. 基于这一理念,人教版教材突出了规律的建立过程. 但在教学中发现,由演绎方法建立起的部分物理规律之中,存在着以特殊模型为前提演绎得出一般物理规律的现象;而对于由实验归纳方法建立起的部分物理规律之中,教材往往直接指出如何进行归纳,而没有充分体现过程与方法.

二、 对几个物理规律的重构建议

在人教版教材中,《动能定理》《焦耳定律》《闭合电路欧姆定律》三个物理规律都是以特殊模型为演绎起点、通过理论演绎建立起的一般规律,而演绎方法的规则是由一般到特殊,故教材的呈现方式隐含着逻辑问题;《楞次定律》是通过实验归纳方法建立起来的,但在对实验现象进行归纳时,没有充分运用科学方法引导学生进行探究,而是直接提示学生通过“中介”——“感应电流的磁场”来进行归纳. 有鉴于此,建议对它们的呈现方式进行重构.

1. 对动能定理的重构建议

(1) 教材分析

动能定理是通过理论演绎的途径建立起来的,具体过程如下:

由牛顿第二定律F=ma=m及功的定义dW=F?dx得F?dx=m?dx=mv?dv,

将上式积分有W=mv22-mv21.

教材据图1所示的物理模型,运用牛顿第二定律F=ma与运动学公式v22-v21=2ax进行理论演绎,得出W=mv22-mv21,并直接指出此式即为动能定理,纵观上面的推理过程,其逻辑关系实质如图2所示.

上述演绎推理的大前提是牛顿第二定律,小前提是物体做匀变速直线运动,那么,由此演绎得出的W=mv22-mv21的适用条件自然是与小前提相同的,因此,我们不能将其称之为动能定理. 尽管教材此后也就物体受多个力作用及曲线运动情况作了说明或提示,但仍然不是对动能定理真正意义上的建构,故有必要对其呈现方式进行重构.

(2) 重构方案

由于学生知识结构的限制,在高中阶段不可能运用理论演绎的方法建立起动能定理,为此,建议根据分类方法,分别就直线运动与曲线运动两类情况设计的递进性问题链,变理论演绎为演绎与归纳相结合,引导学生在问题解决中“发现”动能定理.

类型一:直线运动

问题1 在图1所示的水平面上,如果物体与水平面间有摩擦力作用,物体的动能变化量与什么功相对应?

通过对此问题的探究,把W=mv22-mv21的适用范围推广至多力做功情况,此时的W为合外力所做的功,同时能使学生产生问题意识,即:这一结论是否具有普遍性?是否适用变力、曲线运动情况?从而生成新的问题.

问题2 如图3所示,物体在粗糙的水平面运动,在l1、l2段分别受到水平力F1、F2作用,则物体在整个过程中的动能变化量与什么功相对应?

通过对它的探究,引导学生建构起多过程问题中功和动能变化量的关系,并把单过程中的合外力功W扩展至各过程中功的代数和,从而加深了对功W的理解.

问题3 如果物体在粗糙的水平面上运动时,受到的水平作用力F是变化的,则物体的动能变化量又与什么功相对应?

这是由问题2衍生出的直线运动中更为一般的问题,通过问题2的启发,学生能运用微元法进行演绎推理,并得出W=mv22-mv21.

在上面三个问题中,对应的物理模型都是在水平面上的运动物体,对于其他类型的直线运动,学生也容易得出W=mv22-mv21的结论,从而通过问题解决建构起直线运动中功与动能变化量间的关系,那么此结论对于曲线运动是否成立?如果成立,我们就发现了一条新的物理规律,由此生成类型二的问题.

类型二:曲线运动

问题4 从高为H处将一物体以一速度v0沿水平方向抛出,重力对物体所做的功与物体的动能变化量之间存在什么关系?

以此问题为支架,让学生进一步体会物理科学方法在探究过程中的作用,实践表明,学生对此问题能从两个角度进行探究,一是运用“猜想—检验”模式,先提出假说“重力对物体做的功等于物体动能的变化量”,然后运用平抛运动知识进行检验;二是运用微元方法,化曲为直,进行演绎推理. 同时,也使学生意识到要建立一个新的物理规律,还需要对一般的曲线运动进行分析,从而衍生出问题5.

问题5 如果物体做曲线运动,且受到变力作用,则物体的动能变化量又与什么功相对应?

对此,学生运用类比方法得出W=mv22-mv21.

在对以上两类问题探究的基础上,引导学生进行理论归纳,进而在问题解决中建构起具有普遍意义的动能定理.

2. 对焦耳定律的重构建议

(1) 教材分析

在物理学史上,焦耳定律是由焦耳通过实验归纳方法得出的. 而在新教材中,没有重现物理学史,而是以电流通过纯电阻元件为前提,通过理论演绎方法对其进行重构,具体的逻辑关系如图4.

显然,上面推理过程的大前提是普遍适用的电功公式W=IUt,小前提是电流通过纯电阻元件,因而得到的结论Q=I2Rt也只适用于纯电阻元件,而由实验归纳方法建立起来的焦耳定律是适用于任何电路元件的,故需要对其呈现方式进行重构.

(2) 重构方案

尽管运用理论演绎方法在建立焦耳定律时面临逻辑问题,但在课堂教学中,完全重现焦耳的实验归纳方法也是不可取的,因为在运用实验归纳方法时,要面临诸如实验类型、精度等一系列问题. 为此,建议运用理想实验与真实实验相结合方法来建构焦耳定律,具体内容如下.

①通过定性分析,得出影响焦耳热的物理量有R、I、t

②理想实验的设计及其思维操作

设阻值为R0的用电器通以电流I0,在时间t0内产生的焦耳热为Q0,依据等效思想,运用控制变量法来探究其他情况下产生的焦耳热与Q0的关系,进而建构起Q与R、I、t的大致关系.

问题1 在电流、电阻不变的情况下,探究焦耳热Q与时间t的关系.

理想实验:如图5,在电流I0、电阻R0不变情况下,在两个时间t0内产生的热量Q之和即为2t0时间内产生的热量Q1,故有Q1=2Q0,由此可见,Q∝t.

在上面设计的理想实验中,为探究焦耳热Q与时间t的关系,运用了倍增方法和控制变量法,把待探究的时间设计为t0的整数倍,便于学生发现焦耳热Q与时间t的关系,下面两个理想实验的设计思想与此相同.

问题2 在电流I0及时间t0一定的情况下,探究产生的焦耳热Q与电阻R的关系.

理想实验:如图6所示,在电流I0及时间t0一定的情况下,电阻为2R0产生的焦耳热与两个阻值为R0的电阻串联后在时间t0产生的焦耳热等效,也即Q2=2Q0,故有Q∝R.

问题3 在电阻R0及时间t0一定的情况下,探究产生的焦耳热Q与电流I的关系.

在运用理想实验得出Q与R、t的关系后,要探究Q与I的关系,可用倍增方法构造出电流为I0的情况,以便借助上面的结论进行思维操作.

理想实验:在电阻R0及时间t0一定情况下,通以2I0的电流时产生的热量为Q3,根据等效思想,其产生的热量等效为阻值为2R0的两电阻并联后产生的焦耳热之和,见图7. 由问题2知Q′3=2Q0,而Q3与Q′3的关系为Q3=2Q′3,也即有Q3=2Q′3=4Q0,故有Q∝I2.

③焦耳定律的建构

在对上面的理想实验的思维操作基础上,再运用综合方法,可建构起焦耳热Q与I、R及时间t的关系为Q=kI2Rt,其中常数k可由实验确定,从而运用理想实验等科学方法建立起焦耳定律.

3. 对闭合电路欧姆定律的重构建议

(1) 教材分析

教材的编写思想是通过理论演绎把能量守恒定律与闭合电路欧姆定律联系起来,充分体现功和能的概念在物理学中的重要性,同时又能帮助学生形成完整的认知结构. 基于这一思想,教材以纯电阻电路为前提,运用能量守恒定律建立起闭合电路欧姆定律,其逻辑关系如图8所示.

从上面逻辑关系可以看出,理论演绎的小前提是纯电阻电路,大前提是能量守恒定律,因而导出的E=IR+Ir及I=也只适用于纯电阻电路,但是教材紧接着又由只适用纯电阻电路的E=IR+Ir推出适用于一般电路的E=U外+U内,这就产生了逻辑问题. 因此有必要对其呈现方式进行重构.

(2) 重构方案

在运用能量守恒定律进行理论演绎时,应该遵循理论演绎的规则,即从一般情况出发,导出相应的规律,然后再运用理论演绎得出纯电阻电路中的闭合电路欧姆定律,具体方式如下.

对于图9所示的电路,电源电动势为E,内阻为r,方框内元件性质未知,电路中的电流为I,路端电压为U. ①在时间t内,外电路中消耗的电能E外为多少?②在时间t内,内电路中电能转化成内能E内多少?③在时间t内,电源中非静电力做的功W为多少?④根据能量守恒定律,W与E外、E内的关系是什么?

对于上面四个问题,学生依据有关功和能的概念及能量守恒定律得到IEt=IUt+I2rt,对其整理后得到E=U+Ir,其中,Ir是电源的内电压,故此式也可写成E=U外+U内,这两个关系式即为一般意义上的欧姆定律,它适用于一切电路.

对于纯电阻电路有U=IR,则有I=. 这是纯电阻电路中的闭合电路欧姆定律.

4. 对楞次定律的重构建议

(1) 教材分析

本节教材的编写是以问题与问题解决为纽带,引导学生从发现问题分析问题解决问题等步骤去掌握知识,意在突出科学探究,着眼于学生探究能力的提高,其教学流程如下:

其中重温的实验如图10所示,而且运用草图记录相关信息,以便归纳出楞次定律.

在运用图10所示的实验进行归纳时,面临一个关键问题,就是如何从众多的物理现象及实验因素中寻找归纳的方向,对此,教材直接提出:“是否可以通过一个‘中介’——‘感应电流的磁场’来表述这一关系”,以此引导学生归纳出楞次定律. 但问题的关键是,我们是怎么想到从原磁场方向与感应电流的磁场方向的关系进行归纳的?

(2) 重构方案

根据分类方法,影响感应电流方向的因素有如下三类:一类是外部因素(磁场强弱、磁场方向、磁铁运动方向、磁通量变化等);第二类是自身因素(线圈粗细、线圈的绕制方式等);最后是自身与外部相互联系的方式. 在探究感应电流方向与哪些因素有关时,需要围绕这三类因素设计一些针对性的问题,让学生在问题解决中,提出猜想,设计实验,修正猜想,最终“发现” 楞次定律,具体方案如下.

①探究感应电流方向与外界因素之间的关系

问题1 感应电流方向与磁场变化快慢有无关系?设计实验验证你的猜想.

问题2 感应电流方向与磁感应强度大小有无关系?设计实验验证你的猜想.

问题3 分析图10甲和图11所示的实验现象,说明影响感应电流方向的外界因素有哪些.

设置问题3的目的是引导学生对两类电磁感应问题的共同的外部特性进行归纳,总结出影响感应电流方向的外部因素是磁场方向和磁通量的变化,从而为进一步探究奠定基础.

②探究感应电流方向与自身因素之间的关系

为了探究感应电流方向与自身因素的关系,可设置以下两个问题.

问题4 试猜测感应电流方向与线圈的粗细、匝数是否有关,设计实验验证你的猜想.

问题5 感应电流方向与线圈的绕行方向是否有关?设计实验验证你的猜想,并把实验信息记录在草图上.

通过问题5,引导学生提出猜想,并通过控制变量法,在保证磁场方向和磁通量变化方式相同的情况下,设计出图12所示的实验对猜想进行检验,进而研究感应电流方向与绕行方向的关系.

根据实验所记录的信息发现,在线圈的绕行方式变化时,回路中的感应电流方向也随之变化,但是线圈中的电流绕行方向是不变的,此时引导学生探究在线圈的绕行方式变化时,什么因素是不变的?

实践表明,按此方法重构后,学生能寻找到以“感应电流的磁场方向”为中介进行归纳,于是衍生出问题6.

③探究感应电流方向与内外关联方式之间的关系