建筑抗震分析范例6篇

前言:中文期刊网精心挑选了建筑抗震分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

建筑抗震分析

建筑抗震分析范文1

关键词 :高层建筑抗震设计结构设计方法

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。

一、建筑抗震的理论分析

1、建筑结构抗震规范建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论拟静力理论。拟静力理论是20 世纪10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在20世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20 世纪70-80 年广为应用的地震动力理论。它的发展除了基于60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑抗震设计结构设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

1、减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

2、运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。

进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。

3、注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。

4、重视建筑材料的选择

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。

5、增多抗震防线的建设

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。

总之,在建筑结构抗震设计方法的研究与进展,尤其是各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是建筑结构抗震设计的重要技术政策。

参考文献:

[1]杨磊. 论高层建筑结构抗震的优化设计[J]. 建筑设计管理, 2010,(03) .

建筑抗震分析范文2

关键词:砌体结构;抗震;设计;分析

Abstract: This paper analyzes the reasons of the masonry body housings easily collapse, points out the problems of the masonry structure buildings in the seismic design, and puts forward the matters needing attention in the masonry structure building design and construction.

Key words: masonry structure; seismic; design; analysis

中图分类号:TU3文献标识码:A 文章编号:2095-2104(2012)

地震的教训是深刻的,建筑物质量的好坏直接关系到人类的生命及财产的安全。因此在设计中我们要切实贯彻抗震设防的要求,在施工中要严把质量关。把“小震不坏,中震可修,大震不倒”这三句箴言落到实处。近年来,地震活动日益频繁,某些砌体房屋在地震中经受着极大的挑战。本文从各方面报道及震区倒塌房屋的实际情况简单分析了一下砌体结构房屋在抗震设计及施工中存在的几点问题。

1 砌体结构房屋容易倒塌原因分析

1.1 很多房屋采用了预制空心板,预制板不能形成良好的空间刚度,抗震能力很差,如果设计上采用加强措施,建筑应该是发生严重开裂而不至于倒塌,但是因为施工质量的问题,也导致大量预制板房屋的倒塌。

1.2 部分倒塌房屋上下层的隔墙位置不对齐,下层倒塌的隔墙整齐的被切掉说明:该承重横墙在施工时不符合施工缝的留设规定,不符合施工规范,应该有施工责任,由于是纵横向混合承重的结构,估计部分墙体倒塌是罪魁祸首。

1.3 倒塌的房屋有 370 墙变成了两个 120 墙的。在建筑设计中,120 墙是不允许作为承重墙使用的,在抗震验算时,120 墙的抗震性能是忽略不计的,也就是当作“零”来计算,那么用这样的墙来承重和抗震,该建筑物的抗震能力几乎为零,那么在地震中坍塌也就是必然的了。

1.4 部分房屋采用扶壁柱加强,某种程度上保证了结构不倒塌。

2 从大量砌体结构房屋倒塌看目前砌体结构房屋在抗震设计中存在的主要问题

2.1 城市住宅砖房建设中,房屋超高或超层时有发生,尤其是底层为“家带店”的砖房,高度超过限值 1m 以上。

2.2 在“综合楼”砖房中,底层或顶层有采用“混杂”结构体系的,即为满足部分大空间需要,在底层或顶层局部采用钢筋砼内框架结构。有的仅将构造柱和圈梁局部加大,当作框架结构。

2.3 住宅砖房中为追求大客厅,布置大开间和大门洞,有的大门洞间墙宽仅有 240mm,并将阳台作成大悬挑(悬挑长度大于2m)延扩客厅面积;部分“局部尺寸”不满足要求时,有的不采取加强措施,有的采用增大截面及配筋的构造柱替代砖墙肢;住宅砖房中限于场地或“造型”,布置成复杂平面,或纵、横墙沿平面布置多数不能对齐,或墙体沿竖向布置上下不连续等等。

2.4 多层砖房抗震设计中,未作抗震承载力计算的占多数,加之缺乏工程经验,使相近的多层砖房采用的砌体强度等级相距甚远。

2.5 多层砖房抗震设计中,所采取的抗震措施区别较大。构造柱和圈梁的设置:多数设计富余较大,部分设计设置不足(含大洞口两侧未设构造柱);抗震连接措施:多数设计不完整或未交待清楚,有的设计还采用“一本图集打天下”的做法,不管具体作法和适用与否,全包在“图集”身上。

3 砌体结构在抗震设计及施工中几点注意事项

3.1 科学布局建筑平面和立面。对于结构平面布置不规则的房屋质心与刚度中心往往不容易重合,在地震作用下会产生扭转效应,大大加剧地震的破坏力度;对体型不规则的房屋应注意偏离结构刚心远端墙段的抗震验算。

3.2 砌体房屋的总层数及总高度不应该超限值。我国现行建筑抗震设计规范(GB50011-2010)对多层砌体房屋的总高度和总层数有了强制性规定。在抗震设计中砌体房屋的总层数及总高度不应该超限值。

3.3 增强砌体房屋的刚度及整体性。房屋是纵、横向承重构件和楼盖组成的一个具有空间刚度的结构体系,其抗震能力的强弱取决于结构的空间整体刚度和整体稳定性。刚性楼盖是各抗侧力构件按各自侧移刚度分配地震作用的保证。现浇钢筋混凝土楼板及屋盖具有整体性好、水平刚度大的优点。另外在适当的部位增设构造柱,并配置些构造钢筋,也能达到增强结构整体性的作用。

3.4 合理布置纵墙和横墙。砌体结构的主要承重构件是纵、横墙体,在地震中主要由于承重纵、横墙在地震力作用下产生裂缝,严重者会出现倾斜、错动、倒塌等现象,进而使房屋遭到破坏;所以合理布置纵、横墙对提高房屋抗震性能起到很大的作用。墙体布置时,应尽量采用纵墙贯通的平面布置,当纵墙不能贯通布置时,可在纵横墙交接处采取加强措施,也可在纵、横墙交接处增设钢筋混凝土构造柱,并适当加强构造配筋;必要时还可以每隔一定高度放置水平拉结构筋,以加强房屋整体性,防止纵、横墙交接处被拉开。

3.5 适当增加墙体面积与合理提高砂浆强度。砌体结构的抗震能力与墙体面积大小及砂浆强度等级高低成正比,提高墙体面积、砂浆强度等级能有效地提高房屋的抗震能力,是减轻震害的有效途径之一。

3.6 有效设置房屋圈梁和构造柱。多次震害调查表明,圈梁和构造柱可提砌体结构的抗震能力,减轻震害。在砌体结构房屋中设置沿楼板标高的水平圈梁,可加强内外墙的连接,增强房屋的整体性。圈梁作为边缘构件,对装配式楼、屋盖在水平面内进行约束,可提高楼盖,屋盖的水平刚度,同时能保证楼盖起一整体横隔板的作用。在砖墙增设构造柱后能提高砖混房屋的延性,发挥防止砖砌体侧向挤出塌落的约束作用;设置钢筋混凝土构造柱能使砌体的抗剪承载力提高 10~30%,提高砌体的变形能力,是有效的抗倒塌措施。另外,在多层砖混房屋中合理地设置构造柱,能起到增强房屋整体性的作用,还可以利用其塑性变形和滑移摩擦来消耗地震能量,从而大大提高抗震能力。我国现行建筑抗震设计规范(GB50011-2010)对圈梁和构造柱的设计要求做了详细规定。

3.7 在合理位置的墙段内设置水平钢筋。在抗震验算中,砌体结构房屋底层往往不容易满足抗震要求,即使有时在适当部位加设构造柱也不能完全满足抗震承力验算。为了提高墙体的抗震能力,可在抗震力不够的承重墙段内配置水平钢筋,使地震力由砌体及水平钢筋共同承担。

4 结束语

砌体结构由于材料来源广泛,施工设备和施工工艺比较简单,可以不用大型机械就能连续施工,再加上造价低廉,因而在房屋建筑工程中被广泛采用。但是由于砌体的抗拉、抗弯、抗剪性能较差,加上施工管理人员对进料把关不严,还有设计、施工等方面的原因造成工程质量问题严重。我国大陆地震活动目前正处于本世纪以来的第五个活跃期。在 5.12 四川汶川 8.0 级地震中,很多倒塌的房屋基本都成了一片废墟,严重违背了我国抗震规范关于“小震不坏、中震可修、大震不倒”的设计原则。本文结合各方面报道及倒塌房屋实例简单分析了一下砌体结构房屋在抗震设计及施工中存在的几点问题。

参考文献:

[1] 建筑抗震设计规范[S(]GB50011-2010).

[2] 砌体结构设计规范(GB50003—2001)

[3] 周炳章.砌体房屋抗震设计[M].北京:地震出版社,1991.

[4] 胡聿贤.地震工程学[M].北京:地震出版社,1992.

[5] 张廷荣、张强:《砌体工程施工技术问答》,河南科学技术出版社,2005年9月版。

建筑抗震分析范文3

【关键词】抗震;结构;设计方法

1、前言

如何能够让建筑在地震中保持安全,不受严重的损害,是当前建筑施工设计必须要考量的一个大问题,特别是近年来地震频繁,人们的生命财产受到严重威胁,建筑安全则成了社会安全的一个重要影响因素,为保证建筑的抗震能力,设计人员必须要根据相关标准,设计出具有相当抗震能力的房屋。

2、抗震设防的目标

我们所说的抗震设防,指的是对建筑物进行抗震设计,同时有针对性的采取一定的抗震构造的措施,最终实现结构抗震的效果和目的。一般来说,抗震设防主要依据的是抗震设防烈度。而抗震设防烈度的依据,是以国家规定权限审批或颁发的文件执行的,其是一个地区作为抗震设防标准。通常情况下,是采用国家地震局颁发的地震烈度区划图中规定的基本烈度的。从当前内外抗震设防目标的发展总趋势来看,其基本要求建筑物在使用期间,可以应对对不同频率和强度的地震,即“小震不坏,中震可修,大震不倒”。这是我国抗震设计规范所采用的抗震设防目标。

建筑工程在施工中的设防的目标如下:

⑴如果所遭受的是低于本地区设防烈度多遇的常规地震,建筑物不受损坏,不需修理仍可继续使用;

⑵如果遭受到本地区规定的设防烈度的地震,建筑物,包括结构和非结构部分,可能损坏,但不会对人民生命和生产设备的安全造成威胁,经修理仍可使用;

⑶如果遭受高于本地区设防烈度的罕遇地震,尽量保证建筑物不倒塌。

也就是说,在建筑结构的防震设计上,设计方可以按照多遇烈度、基本烈度和罕遇烈度这三个层次进行考虑。从概率上看,多遇地震烈度是发生机会较大的地震级别。按照现行规范设计的建筑,在设计上要达到这样的防震效果:当遭遇多遇烈度作用时,建筑物处于弹性阶段,通常不会损坏;当遭遇相应基本烈度的地震时,建筑物将进入弹塑性状态,但一般不会发生严重破坏;当遭遇罕遇烈度作用时,建筑物可能会有严重破坏,但不至于倒塌。

3、建筑结构抗震设计方法要点

抗震设计包括三个层次的内容:概念设计、抗震计算与结构布置。概念设计在总体上把握抗震设计的基本原则,抗震计算为建筑抗震设计提供定量手段; 结构布置可以在保证结构整体性、加强局部薄弱环节等方面上保证抗震计算结果的有效性。

3.1抗震概念设计

建筑抗震概念设计是根据地震灾害和工程经验等形成的基本设计原则和设计思路进行建筑总体布置并确定细部构造的过程。建筑抗震概念设计之所以重要主要体现在以下几个方面。

(1)地震及地面运动的不确定性。

(2)地震时地面运动的复杂性及对结构的复杂影响尚未被掌握。

(3)结构地震计算理论目前尚未能充分反映地震时结构反应及破坏的复杂过程。

概念设计强调,在工程设计一开始,就应把握好能量输入、房屋体形、结构体系、刚度分布、构件延性等几个主要方面,从根本上消除建筑中的抗震薄弱环节,再辅以必要的计算和构造措施,就有可能使设计出的房屋建筑具有良好的抗震性能和足够的抗震可靠度。

抗震概念设计在总体上要求把握的基本原则可以概括为以下几个方面。

(1)建筑场地选择的基本原则:选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,对抗震有利、不利和危险地段做出综合评价。对不利地段,应提出避开要求;当无法避开时应采取有效措施。 危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。

(2)建筑体型的确定:①建筑及抗侧力结构的平面布置宜规则对称,并应具有良好的整体性;②建筑物的立面布局宜采用矩形、梯形和三角形等变化均匀的几何形状,尽量不要采用带突然变化的阶梯形立面、大底盘建筑,甚至倒梯形立面;③建筑物应尽量减小高度,尤其是限制高宽比。

(3)结构抗震体系的选取:①结构体系应具有明确计算简图和合理地震作用传递途径;②结构布置应具备多道抗震防线,尽量避免部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力;③结构应具备必要的抗震承载力,良好的变形能力和耗能能力;④对结构薄弱部位应采取有效的措施予以加强,防止出现过大的应力集中和变形集中;⑤结构平面两个主轴方向的动力特性宜相近,并尽可能与场地的卓越周期错开。

3.2抗震计算

地震的危害巨大,建筑物的抗震性能显得尤为重要。在抗震研究中对结构抗震性能进行分析是一项重要内容,非线性时程分析法和非线性静力分析法是目前常用抗震分析方法。

针对结构非线性反应的非线性时程分析法(非线性动力反应分析),经历了从建立在层模型或单列梁柱模型上的方法到建立在截面多弹簧模型上的方法,再到建立在截面纤维滞回本构规律的纤维模型法,这使得模拟的准确程度不断提高。其基本思路是通过一系列数值方法来建立和求解动力方程,从而得到结构各个时刻的反应量。但对地震特点和结构特性的假设,使其结果存在不确定性,其主要价值是用来考察地震作用下普遍的而非特定的反应规律,以及对抗震设计后的结构进行校核分析,评估其抗震性能:非线性静力分析法(push-over)是近年来得到广泛应用的一种结构抗震能力评估的新方法。这种方法从本质上说是一种静力非线性计算方法,但它将反应谱引入了计算过程。其根本特征是用静力荷载描述地震作用,在地震作用下考虑结构的弹塑性性质。它的基本思路是先以某种方法得到结构在地震作用下所对应的目标位移,然后对结构施加竖向荷载,并将表征地震作用的一组水平静力荷载以单调递增的形式作用到结构上,在达到目标位移时停止荷载递增,最后在荷载中止状态对结构进行抗震性能评估,判断是否可以保证结构在该地震作用下满足功能需求。

3.3结构布置

结构布置的一般原则:

⑴平面布置力求对称

通常情况下,对称结构在地面平动作用下只会发生平移振动,各构件的侧移量相等,这样就使得水平地震作用按构件刚度分配,所以各构件受力比较均匀,不会导致力的分布失衡。如果是非对称结构,刚心会偏在一边,质心与刚心不重合,即便只是发生地面平动也可能出现扭转振动。最终会导致远离刚心的构件,侧移量大,承担过度的水平地震剪力。这就很容易发生严重破坏,甚至可能会导致整个结构因一侧构件失效而倒塌。

⑵ 竖向布置力求均匀

结构竖向布置均匀,可以最大限度的使其竖向刚度、强度变化均匀,这样可以有效的避免出现薄弱层。从建筑结构的特点看,临街的建筑物,往往会因为商业的需要,底部几层有大空间的设置。非临街的建筑物,底部也可能门厅、餐厅或停车场,而出现大空间。在这种结构中,上部的钢筋混凝土抗震墙或竖向支撑或砌体墙体到此被中止,而下部须采取框架体系。也就是说,上部各层为全墙体系或框架一抗震墙体系,而底层或底部两三层则为框架体系,整个结构属“框托墙”体系。地震经验指出,这种体系很不利于抗震。因此,在实际的抗震结构设计中,应该要保持结构竖向布置的均匀。

4、结束语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

建筑抗震分析范文4

关键词:高层建筑;抗震;结构设计

Abstract: with the high building to higher the direction of development, the seismic performance also becomes more and more important. The author discusses the design practice, then high-rise building design of anti-seismic structure need to be paid attention to relevant issues are discussed.

Keywords: high building; Seismic; Structure design

中图分类号:[TU208.3]文献标识码:A 文章编号:

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。高层建筑结构的抗震仍然是建筑物安全考虑的重要问题。

1 结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明,平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映,易于采取相应的抗震构造措施并且进行细部处理。建筑结构的规则性是指建筑物在平立面外形尺寸、抗侧力构件布置、承载力分布等多方面因素要求。要求建筑物平面对称均匀,体型简单,结构刚度,质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2 层间位移限制

高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移,甚至会超过结构的位移限值。而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在1/400-1/700范围内)则比钢结构(1/200-1/500范围内)要求严格,风荷载作用下的限值比地震作用下的要求严格。因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

3 控制地震扭转效应

大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不能满足要求时则必须对其进行调整。当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。

4 减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比,然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

5 减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加,因此,为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

6 提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

7 选择合理结构类型

高层建筑的竖向荷载主要使结构产生轴向力,水平荷载主要产生弯矩。其竖向荷载方向不变,但随着建筑高度增加而增加,水平荷载则来自任何方向,因此竖向荷载引起建筑物的侧移量非常小,而水平荷载产生的侧移则与高度成四次方变化,即在高层结构中水平荷载的影响远远大于竖向荷载的影响,因此水平荷载应为设计的主要控制因素,在设计过程中应需在满足建筑功能及抗震性能的前提下选择切实可行的结构类型,使其具有良好的结构性能。目前大多高层结构都采用钢混结构和钢结构,钢混结构具有刚度大、空间整体性好、材料资源丰富、可组成多种结构体系等优点而被广泛应用,但其同时具备自重大、抵抗塑性变形能力差、易发生共振等缺点;钢结构则具有自重轻、强度高、抗震性能好、施工工期短、具有较好延性等优点,但其造价相对较高,当场地土特征周期较长时易发生共振等缺点。

8 尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

9 结束语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

建筑抗震分析范文5

中民用住宅建筑中约占90% 以上。砖混结构多采用粘土砖和混合砂浆砌筑,通过内外砖墙的咬砌达到具有一定整体连接性的目的。根据现行建筑抗震设计规范、砌体结构设计规范,结合自身设计的实践经验,对当前多层砖房抗震设计中存在的主要问题、设计要点作了简要的分析。

关键词:建筑砖混结构、抗震设计要点、存在的问题

一、前言

多层砖混砌体房屋在历次地震中的震害相当严重,根据震害资料统计,砖房是100%破坏,其中85%以上倒塌。砖房之所以地震破坏比例如此之大,主要是在强烈地震作用下,砖结构易于发生脆性剪切破坏,从而导致房屋的破坏和倒塌。因此,加强抗震设防地区建设工程的抗震设计,改善砌体结构延性,提高房屋的抗震性能具有极其重要的意义,是减轻未来地震灾害损失最积极、最有效和最根本的措施。

二、目前多层砖房抗震设计中存在的主要问题

1)在城市住宅砖房建设中,房屋超高或超层时有发生,尤其是底层为“家带店”的砖房高度超过限值1.0m以上。

2)在“综合楼”砖房中,底层或顶层有采用“混杂”结构体系,即为满足部分大空间需要,在底层或顶层局部采用钢筋混凝土内框架结构,有的仅将构造柱和圈梁局部加大,当作框架结构。

3)在住宅砖房中为追求大客厅,布置大开间和大门洞,有的大门洞间墙宽仅有240mm,并将阳台做成大悬挑(悬挑长度大于2.0m)以延扩客厅面积;部分“局部尺寸”不满足要求时也不采取加强措施。住宅砖房中限于场地或“造型”,布置成复杂平面,或纵、横墙沿平面布置多数不能对齐,或墙体沿竖向布置上下不连续等。

4)在多层砖房抗震设计中,未作抗震承载力计算,仅作工程类比,加之缺乏工程经验,使相近的多层砖房采用的砌体强度等级相距甚远。

5)多层砖房抗震设计中,所采取的抗震措施区别较大。

三、多层砖房抗震设计的要点

3.1 科学布局建筑平面和立面

建筑平面和立面的规整性是整个结构设计中一个十分重要的内容。抗震设计中,建筑平面、立面宜尽可能简洁、规则,结构质量中心与刚度中心相一致。对于结构平面布置不规则的房屋重心与刚度中心往往不容易重合,在地震作用下会产生扭转效应,大大加剧地震的破坏力度。建筑立面应避免头重脚轻,房屋重心尽可能降低,避免采用错落的立面,凸出屋面建筑部分的高度不应过高,以免地震时发生鞭梢效应,同时应控制好结构竖向强度和刚度的均匀性。在实际工程设计中,应尽可能兼顾建筑造型,又满足使用功能要求的前提下,将平面布置、立面外观造型设计得较为规整、简洁、美观大方,同时又能有效地提高工程的抗震性能。

3.2 砌体房屋的总层数及总高度不应该超限值

经历次震害证明,房屋的层数越多,高度越高,它的地震破坏程度越大,所以控制砖砌体房屋的总高度及总层数对减少地震时带来的震害有很大的作用。根据GB50011-2010现行建筑抗震设计规范对多层砌体房屋的总高度和总层数有了强制性规定。楼盖重量占房屋总重的一半左右,房屋总高度相同时,多一层楼盖就意味着增加半层楼的侧向地震作用,同时加大对底部的倾覆力矩。在中、强地震作用下,因倾覆力矩过大,使得底部墙体产生过大的压力或剪力而被破坏。故减轻自重、减少层数、降低层高是削弱地震影响的有效途径之一。

3.3 增强砌体房屋的刚度及整体性

房屋是由纵、横向承重构件和楼盖组成的一个具有空间刚度的结构体系,其抗震能力的强弱取决于结构的空间整体刚度和整体稳定性。刚性楼盖是各抗侧力构件按各自侧移刚度分配地震作用的保证。现浇钢筋混凝土楼板及屋盖具有整体性好、水平刚度大的优点,是较理想的抗震构件,不但可消除滑移、散落问题,增加房屋的整体性,增大楼板的刚度,而且对平面上墙体对齐的要求也可予以适当放宽,因作为以剪切变形为主的砌体结构,层间变形是可控制的。较强的楼板及屋盖水平刚度使荷载传递具有良好的条件,在平面上,当上下墙体不对齐时,现浇楼板及屋盖能起到一定的传递水平力的作用,同时楼、屋盖现浇增加了楼板对墙体的约束。

3.4 增加墙承载体面积和提高砂浆强度

多层砖混房屋的抗震能力与墙体面积大小及砂浆强度等级高低成正比,增加墙体承载面积、提高砂浆强度等级能有效地提高房屋的抗震能力,是减轻震害的有效途径之一。特别是楼房底部第一层的地震作用力较大,是最薄弱层,应注意增加墙体的承载面积或提高砂浆的强度等级,如将部分240mm宽的承重墙改为360mm宽的墙,或将砂浆强度等级由M5提高到M10,则能明显提高房屋的整体抗震能力。有资料表明,多层砖结构房屋在8度,9度地区,底层最低应采用M10砂浆,在6度,7度地区,底层最低应采用M7.5砂浆。

3.5 有效设置房屋圈梁和构造柱

圈梁是多层砖混结构楼房提高抗震能力的又一有效技术措施。在多层砖混房屋中设置沿楼板标高的水平圈梁,可加强内外墙的连接,增强房屋的整体性。由于圈梁的约束作用使楼盖与纵、横墙构成整体的箱形结构,能有效地约束预制板的散落,使砖墙处平面倒塌的可能性大大降低,以充分发挥各片墙体的抗震能力。圈梁作为边缘构件,对装配式楼、屋盖在水平面内进行约束,可提高楼盖、屋盖的水平刚度,同时能保证楼盖一整体横隔板的作用。圈梁与构造柱一起对墙体在竖向平面内进行约束,限制墙体裂缝的开展,且不延伸超出两道圈梁之间的墙体,并减小裂缝与水平面的夹角,保证墙体的整体性和变形能力,提高墙体的抗剪能力。设置圈梁还可以减轻地震时地基不均匀沉陷与地表裂缝对房屋的影响,特别是屋盖和基础顶面处的圈梁具有提高房屋的竖向刚度和抗御不均匀沉陷的能力。砖墙增设构造柱能提高砖混房屋的延性,发挥防止砖砌体侧向挤出塌落的约束作用,使砌体的抗剪承载力提高10%~30%,提高砌体的变形能力,是有效的抗倒塌措施。另外,在多层砖混房屋中合理地设置构造柱,能起到增强房屋整体性的作用,还可以利用其塑性变形和滑移摩擦来消耗地震能量,从而大大提高抗震能力。

四、 加强抗震构造连接

1)构造柱与楼、屋盖连接。当为装配式楼、屋盖时,构造柱应与每层圈梁连接(多层砖房宜每层设圈梁);当为现浇楼、屋盖时,在楼、屋盖处设240mm×120mm拉梁与构造柱连接。2)构造柱与砖墙连接。构造柱与砖墙连接处应砌成马牙槎,并沿墙高每隔500mm设拉结钢筋,每边伸入墙内不小于1.0m。3)墙与墙的连接。层高超过3.6m或长度大于7.2m的大房间,外墙转角及内外墙交接处未设构造柱时,应沿墙高每隔500mm设拉结钢筋,每边伸入墙内不小于1.0m。4)屋顶间的连接。突出屋面的楼梯间等,构造柱应从下一层伸到屋顶间顶部,并与顶部圈梁连接。屋顶间的构造柱与砖墙以及砖墙与砖墙的连接,可按上述抗震措施采取。5)后砌体的连接。后砌的非承重砌体隔墙,应沿墙高每隔500mm设拉结钢筋与承重墙连接,每边伸入墙内不小于0.5m。

6)栏板的连接。砖砌栏板应配水平钢筋,且压顶卧梁应与混凝土立柱相连,压顶卧梁宜锚入房屋的主体构造柱。7)构造柱底端连接。构造柱可不单独设基础(承重构造柱除外),但应伸入室外地面下500mm,或锚入室外地面下不小于300mm的地圈梁。

建筑抗震分析范文6

【关键词】高层建筑;框架结构;剪力墙结构;抗震设计

前言

随着我国高层建筑的高速发展,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时函待解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构抗震设计提供计算方法及理论依据。

一、高层结构的特点分析

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化。从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化。由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高随着高度增加所引起的侧向变形限制在结构允许范围内。

二、高层的结构体系选择问题分析

高层建筑结构应根据建筑使用功能、房屋高度和高宽比、抗震设防类别、抗震设防烈度、场地类别、地基情况、结构材料和施工技术等因素,综合分析比较,选择适宜的结构体系。高层建筑钢筋混凝土结构可采用框架、剪力墙、框架-剪力墙、筒体和板柱-剪力墙结构体系。框架结构可为建筑提供灵活布置的室内空间。当建筑物层数较少时,水平荷载对结构的影响较小,采用框架结构体系比较合理;框架结构属于以剪切变形为主的柔性结构,使用高度受到限制,主要用于非抗震设计和层数相对较少的建筑中。剪力墙结构中,剪力墙沿横向、纵向正交布置或多轴线斜交布置,由钢筋砼墙体承受全部的水平荷载和竖向荷载,属于以弯曲变形为主的刚性结构。该种结构的抗侧力刚度大,在水平力作用下侧向变形小,空间整体性好。但剪力墙结构自重大,建筑平面布置局限性大,难以满足建筑内部大空间的要求。因此更多地用于墙体布置较多,房间面积要求不太大的建筑物中,既减少了非承重隔墙的数量,也可使室内无外露梁柱,达到整体美观。框架——剪力墙结构是指在框架结构中的适当部位增设一些剪力墙,是刚柔相结合的结构体系,能提供建筑大开间的使用空间,是由若干道单片剪力墙与框架组成。在这种结构体系中,框架和剪力墙共同承担水平力,但由于两者刚度相差很大,变形形状也不相同,必须通过各层楼板使其变形一致,达到框架和剪力墙的协同工作。从受力特点看,剪力墙是以弯曲变形为主,框架是以剪切变形为主,由于变位协调,在顶部框架协助剪力墙抗震,在底部剪力墙协助框架抗震,其抗震性能由于较好地发挥了各自的优点而大为提高。因此可以适用于各种不同高度建筑物的要求而被广泛采用。板柱- 剪力墙结构,由于在板柱框架体系中加入了剪力墙或井筒,主要由剪力墙构件承受侧向力,侧向刚度也有很大的提高。这种结构目前在7、8度抗震设计的高层建筑中有较多的应用,但其适用高度宜低于一般框架—剪力墙结构。

三、高层结构的布置问题分析

在高层一个独立的结构单元内,宜使结构平面形状简单、规则、刚度和承载力分布均匀。竖向体型宜规则均匀,避免有过大的外挑和内收。结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用竖向布置严重不规则的结构。并应符合下列要求:1)应具有必要的承载能力、刚度和变形能力;2)应避免因部分结构或构件的破坏而导致整个结构体系丧失承受重力、风荷载和地震作用的能力;3)对可能出现的薄弱部位,应采取有效措施;4)结构的竖向和水平布置宜具有合理的刚度和承载力分布,避免因局部突变和扭转效益具有多道抗震设防。5)宜有多道抗震防线。

四、高层结构的计算分析

高层的结构计算目前在国、内外都已广泛用于电脑软件,特别是较复杂的结构形式,必须借助于电算的结果。结构电算软件的正确运用,要求结构工程师具有清晰的结构概念,能建立反映工程实际的计算模型,对计算结果的合理性、准确性能进行分析判断。要求计算软件的技术条件还应符合规范及有关标准的规定,并应阐明其特殊处理的内容和依据。对于复杂结构,在多遇地震作用下的内力和变形分析时,应采用不少于两个合适的不同力学模型,并对其计算结果进行分析比较。对所有计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。结构工程师在熟练运用电算方法的同时,应掌握必要的结构简化计算方法,以便在方案和初步设计阶段从整体上控制结构设计的合理性、对电算结果进行分析校核,对设计中或施工过程中出现的问题及时处理解决。

五、提高结构的抗震性能问题分析

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁!柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。对于框架——剪力墙结构和剪力墙结构中各段剪力墙高宽比不宜小于2,使其在地震作用下呈弯剪破坏,且塑性屈服尽量产生在墙的底部。连梁宜在梁端塑性屈服,且有足够的变形能力,在墙段充分发挥抗震作用前不失效,按照“强墙弱梁”的原则加强墙肢的承载力,避免墙肢的剪切破坏,提高其抗震能力。

六、结语

结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,本文通过了高层建筑的受力特性、结构体系、结构布置、结构的计算、抗震性能等多方面的概念设计,从而更加有效地构造出新的措施与计划,完善建筑结构设计。

参考文献

[1] 朱镜清.结构抗震分析原理[M].地震出版社,2002,11.

[2] 徐宜,丁勇春.高层建筑结构抗震分析和设计的探讨(J].江苏建筑,2009.