基因工程载体的种类范例6篇

前言:中文期刊网精心挑选了基因工程载体的种类范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

基因工程载体的种类

基因工程载体的种类范文1

笔者根据课标要求,结合考纲和近年高考考点将近年基因工程考点总结如下。

一、 基因工程的基础知识

基因工程的理论铺垫――分子生物学发展:

① 艾弗里证明了DNA是遗传物质。

② 沃森和克里克证明了DNA双螺旋结构。

③ 尼仑贝格破译了遗传密码。

二、 酶切

基因工程选择限制性内切酶作为工具,主要是因为它具有比一般酶更高的专一性。由于其具有较高的专一性,因此在基因工程的具体操作中如何选择限制性内切酶是高考的重点考察内容。

1. 限制酶的特异性

例1 判断用限制性核酸内切酶切割烟草花叶病毒的核酸是否可行?_____。

答案 不可行

解析 限制酶的专一性非常强,其特异性表现在三个方面:识别DNA、识别特定序列(回文)、切割特定位点磷酸二酯键。由于烟草花叶病毒是RNA病毒,所以限制酶不能识别RNA。

另外要特别注意限制酶切割以后的结果,磷酸二酯键断裂,暴露出新的磷酸基团。

2. 限制酶的选择

正确选择限制酶是基因工程中一件非常重要的任务。限制酶的选择应当遵循以下一些原则:不破坏目的基因;不破坏标记基因;目的基因和运载体上都有限制酶的切割位点。当然也要注意用一种限制酶和两种限制酶切割的区别。

例2 与只使用EcoR I相比较,使用BamH Ⅰ和Hind Ⅲ两种限制酶同时处理质粒、外源DNA的优点在于可以防止_________

______________________。

答案 质粒和含目的基因的外源DN段自身环化

解析 基因工程中目的基因和质粒可以用同一种酶切,也可以用两种酶切,若用一种酶切,质粒只要切一个切口,目的基因需要切两个切口;若用两种酶切,质粒要切两个切口,目的基因也需要切两个切口。一种酶切出的4个切口都相同,所以有多种连法,两种酶切出的质粒和目的基因上的4个切口两两相同,因此可以防止自身环化。

3. 同尾酶

限制酶种类多样,一些酶之间关系特殊,如例3中的酶I和酶Ⅱ识别不同的序列,但能切出相同的黏性末端,它们切出的末端可以连接,被称为同尾酶。

例3 已知限制酶I的识别序列和切点是―GGATCC―,限制酶Ⅱ的识别序列和切点是―GATC―。根据下图示判断下列操作正确的是( )

A. 质粒用限制酶Ⅰ切割,目的基因用限制酶Ⅱ切割

B. 质粒用限制酶Ⅱ切割,目的基因用限制酶Ⅰ切割

C. 目的基因和质粒均用限制酶Ⅰ切割

D. 目的基因和质粒均用限制酶Ⅱ切割

答案 A

三、 连接

1. 连接物类型

经过限制酶切割过以后,暴露出的相同的黏性末端可以自动连接,考生同时需要考虑:酶切以后暴露的所有的黏性末端;目的基因两端的两个黏性末端;目的基因所在DNA上其他片段所含的黏性末端;质粒上的两个黏性末端。综合以上结论,连接产物的类型可能就比较多,如目的基因-目的基因连接物、目的基因-运载体连接物、运载体-运载体连接物、其他DN段-运载体连接物、目的基因自连、运载体自连,若用同一种酶切时后两种连接物不存在。

2. 连接酶

下表简要总结了基因工程中常见酶的特性差异。

例 PCR反应体系中含有热稳定DNA聚合酶,下面的表达式不能正确反映DNA聚合酶的功能,这是因为_____________

___________________。

答案 DNA聚合酶只能将单核苷酸连接到双链DN段的引物链上

解析 如上表所示,DNA聚合酶的合成需要引物,那么连接酶能否催化以上反应呢?也不能,因为连接酶必须将两段DNA相连。RNA聚合酶能否催化以上反应呢?也不能,因为RNA聚合酶虽然不要引物,但其不能催化T参与反应,只能利用U。虽然这些酶都是催化磷酸二酯键,但它们作用的底物差异较大,所以一定要注意辨析。

以上主要介绍了基因工程的三种操作工具,这些内容当然是高考的重点和热点。除此之外有些内容也应当给予一定关注,如:目的基因的获取;目的基因的扩增(PCR);土壤农杆菌介导的目的基因的导入;重组质粒的筛选;目的基因的检测;转基因生物的安全性;转基因生物的利用等问题。

巩固训练

1. 目前人类利用基因工程的方法成功培育出转基因抗虫棉,以下说法正确的是

( )

A. 标记基因的作用是鉴别受体细胞中是否含有目的基因

B. 抗虫基因导入棉花叶肉细胞后,可通过传粉、受精的方法,使抗虫性状遗传下去

C. 苏云金芽孢杆菌的毒蛋白基因与质粒结合后直接进入棉花的叶肉细胞表达

D. 转基因抗虫棉经过种植,棉铃虫不会产生抗性,这样可以有效消灭棉铃虫

2. 下图四种质粒含有E1和E2两种限制酶的识别,Apr表示抗青霉素的抗性基因,Tcr表示抗四环素的抗性基因。

(1) 将两端用E1切开的Tcr基因与用E1切开的质粒X-1混合连接,连接后获得的质粒类型有______。(可多选)

A. X-1 B. X-2

C. X-3 D. X-4

(2) 若将上图所示X-1、X-2、X-3、X-4四种质粒导入大肠杆菌,然后分别涂布在含有青霉素或四环素的两种培养基上。在这两种培养上均不能生长的大肠杆菌细胞类型有____________、____________。

(3) 如果X-1用E1酶切,产生850对碱基和3 550对碱基两种片段:那么质粒X-2(Tcr基因的长度为1 200对碱基)用E2酶切后的片段长度为______对碱基。

(4) 若将外源的Tcr基因两端用E2切开,再与用E2切开的X-1混合连接,并导入大肠杆菌细胞,结果显示,含X-4的细胞数与含X-1的细胞数之比为13,增大DNA连接酶用量能否提高上述比值?______。原因是________

________________________。

3. 下表中列出了几种限制酶识别序列及其切割位点,图1、图2中箭头表示相关限制酶的酶切位点,图l中Cmlr表示氯霉素抗性基因,Ner表示新霉素抗性基因。请回答下列问题:

(1) 将提取的质粒与外源DNA分别加入缓冲液中,选用相应的限制酶处理时,影响处理效果的外界因素主要是______等(写出两点)。

(2) 用图中的质粒和外源DNA构建重组质粒时,能否使用MspⅠ与BamHⅠ同时切割质粒与外源DNA?答:______,原因是______

___________________________。

(3) 可选用______(两种)限制酶同时酶切质粒与外源DNA,酶切并连接后可获得______种含目的基因的重组质粒,筛选含有该重组质粒的大肠杆菌时,需要在含______的培养基上培养。

(4) 为了从基因文库中分离获取T2噬菌体抗性基因,将重组质粒导入对T2噬菌体敏感的大肠杆菌,然后将含有该大肠杆菌的菌液分别接种在预先涂有______的培养基上培养,从而初步检测目的基因的表达。

答案

1. A 2. (1) ABC

(2) 无质粒细胞 含X-3的细胞

(3) 4 750

(4) 不能 DNA连接酶对DN段没有选择性或者DNA末端相同

3. (1) 温度、pH

(2) 不能 MspⅠ会切割质粒上的两个标记基因,而BamHⅠ会切割破坏目的基因

基因工程载体的种类范文2

关键词植物叶绿体;基因工程;发展;应用;存在问题;展望

叶绿体作为植物中与光合作用直接相连的重要细胞器,其基因组的功能也因此扮演着十分重要的角色。1882年straburger观察到藻类叶绿体能分裂并进入子代细胞;1909年baur和correns通过在3种枝条颜色不同的紫茉莉间杂交得出,质体是母本遗传的。人们便开始对叶绿体遗传方面产生了浓厚的兴趣[1]。1988年boynton等首次用野生型叶绿体dna转化了单细胞生物衣藻突变体(atpb基因突变体),使其完全恢复光合作用能力,标志着叶绿体基因工程的诞生[2]。叶绿体基因工程作为一种很具有发展前景的植物转基因技术,在植物新陈代谢、抗虫性、抗病性、抗旱性、遗传育种等方面都将有着越来越重要的意义。

1叶绿体基因工程概述

1.1叶绿体简介

叶绿体是植物进行光合作用的重要器官,是一种半自主型的细胞器,能够进行自我复制,含有双链环状dna。叶绿体dna分子一般长120~160kb。叶绿体dna有ira和irb 2个反向重复序列(分别位于a链和b链),两者基因大小完全相同,只是方向相反,它们之间有1个大的单拷贝区(大小约80kb)和1个小的单拷贝区(大小约20kb)。

1.2叶绿体基因组转化优点

叶绿体基因具有分子量小、结构简单、便于遗传的特点,故相对于传统的细胞核遗传更能高效表达目的基因,这是因为叶绿体基因本身拥有巨大的拷贝数[3]。叶绿体基因可实现外源基因的定点整合,避免位置效应和基因沉默;遗传表达具有原核性;安全性好,叶绿体属于母系遗传,后代材料稳定;目的基因产物对植物的影响小。利用叶绿体基因转化的这些优点,可以加快育种速度和效率,节约育种时间。

1.3叶绿体转化的主要过程

叶绿体转化过程通常分4步:一是转化载体携带外源目的基因通过基因枪法或其他转化体系导入叶绿体;二是将外源表达框架整合到叶绿体的基因组里;三是筛选具有转化的叶绿体细胞;四是继代繁殖得到稳定的叶绿体转化植物[4]。

1.4叶绿体转化的主要方法

依据叶绿体转化的主要过程,生物学家相应地研究若干种叶绿体基因转化的方法,其中常用的叶绿体转化方法:一是微弹轰击法。将钨粉包裹构建完整的质粒载体,用基因枪轰击植物的各种组织、器官,然后对重组叶绿体进行连续筛选,不断提高同质化水平,最后获得所需的转基因植株[5]。二是农杆菌t-dna介导的遗传转化法。将外源目的基因、选择标记基因等构建到农杆菌的ti质粒上,然后通过与植物组织或器官共培养,最后把所需外源基因转化到叶绿体并获得表达。三是peg处理法。只需将构建好的质粒(含外源基因、标记基因、同源片断、启动子、终止子等)在一定的peg浓度下与植物原生质体共培养。

2叶绿体基因工程的应用

2.1提高植物光合效率

植物的光合效率非常有限,太阳能的很小一部分可以转化为植物所需要的能量,从而转变为人类需要的产品。植物光合效率取决于rubisco酶的丰富度。rubisco酶一方面可以制造可溶性蛋白,另一方面也可以限制co2合成。人们可以通过2种直接的方法提高光合速率:一是加速酶催化的循环过程;二是提高酶的特性,减少光呼吸浪费的能量[6]。很多科学家正试图通过提高rubisco酶来提高植物的光合效率,而其中拟南芥和水稻的定点整合试验取得了重大突破,证明叶绿体基因工程是生产高光合效率作物植物的最有价值的方法。

2.2合成有机物质

由于叶绿体型转基因植物具有环境安全性好、底物丰富、产物区域化等优点,已被越来越多的人关注,并成为工业化生产特定有机物质的可靠场所。例如,有科学家已发明了用叶绿体基因工程表达聚3-羟基丁酸酯合成相关基因的方法。聚3-羟基丁酸酯及其他类型的聚3-羟基链烷酸酯同属于聚酯类物质,是自然界中多种细菌的碳源及能源储备物。具有生物可降解性,如取代化学合成塑料将能从源头解决塑料废弃物引起的“白色污染”。其通过构建了含phbb、phm、phbc和aada基因表达盒的叶绿体整合及表达载体,通过基因枪轰击法转化烟草。northem点杂交、rt-pcr分析结果表明,叶绿体型转基因植株中目的基因在转录水平的表达明显高于核转化植株中相应基因。

2.3生产疫苗

人类治疗用蛋白质可以在叶绿体中实现表达,表达效率取决于外源基因的整合位点,增强转录和翻译的调控元件以及外源蛋白的稳定性等。人类已经在用叶绿体基因生产疫苗方面开展了卓有成效的工作。例如,范国昌等将甲型肝炎病毒vp3p1区和丙型肝炎病毒c区融合,并导入到衣藻叶绿体基因组中,融合蛋白得到高效表达,且具有双抗原活性。而霍乱病毒蛋白b(ctb)抗原ctb已经在叶绿体中转化成功,预示着转基因植物疫苗的可商业化前景。tregoning等将tetc基因在烟草叶绿体基因组进行表达,为了增加mrna的稳定性及在烟草叶片内表达的可行性,他们将基因进行了密码子优化,分别表达了未经改造的富含at(72.3%at)和人工合成的富含gc(52.5%at)的基因,tetc-at和tetc-gc的表达量分别为总可溶蛋白的25%和10%。

2.4在植物抗性方面的研究

在抗虫性方面,kota和cosa分别于1999年、2001年将btcryzaaz基因转入烟草叶绿体,前者可100%杀死4 000多倍抗性的抗性虫,后者报道bt表达量达46.1%。在抗逆性方面,人们通过编码sod、apx等酶的基因已经转入到烟草、苜蓿、马铃薯、棉花的叶绿体中,提高了植物的耐氧化能力,从而提高了植物对环境胁迫的耐受能力。

2.5叶绿体基因组在系统发育学上的应用

叶绿体在系统发育学上的优点:一是叶绿体基因组是仅次于核基因组的第二大基因组,为比较研究提供了一个较大的数据基础;二是叶绿体dna的核酸置换率适中,在应用上很有价值。然而,用叶绿体dna研究系统发育也存在着明显的不足:一是叶绿体基因组是母性遗传的,因此并不能单靠叶绿体基因组来解释居群间的杂交现象;二是虽然有越来越多的叶绿体dna被用作分子标记来研究类群间的系统发育关系,但只有将这些分子片段提供的信息与其他的分子片段信息、传统的形态及生理特征结合起来获得更多的信息,才能更接近系统发育的本来面目。

2.6叶绿体基因在消除环境忧虑问题上的前景

当今最为普遍的问题就是外源基因从转基因作物到杂草的逃逸,这一逃逸主要是通过花粉的扩散,产生超级杂草或产生和其他作物之间的基因污染,对环境极为不利。叶绿体基因工程产生的基因逃逸现象的风险远远低于核转化作物,因为大多数作物中的质体dna都是母系遗传,这样就可以避免作物和作物、作物和杂草之间的杂交,消除人们对基因污染的忧虑。

3叶绿体基因工程存在的问题

3.1叶绿体基因转化在杂合体上的稳定性问题

由于高等植物的每个细胞中有10~100个叶绿体,每个叶绿体内有10~100个叶绿体基因组拷贝,因此转化的叶绿体和未转化的野生型叶绿体同时存在于转基因植株中,造成这种杂合体在遗传上是不稳定的。在转化外源基因之前,目前可采用降低叶绿体拷贝数、高压筛选和选用致死突变体作为外源基因的受体等方法使转基因植株易于同质化。

3.2植物的种类有待扩展

可能是由于大多数植物的叶绿体基因组序列不清楚,因此无法确定用于载体构建的同源重组片段和外源基因的插入位点。目前,已成功转化的植物种类很少,只有番茄和烟草通过有性生殖使外源基因获得稳定遗传,而番茄却是唯一能有高的外源蛋白积累的可食用果实的植物。

4展望

虽然在叶绿体基因工程领域人们已经取得了一定的进展,但对于改变叶绿体基因工程中所存在的缺点,科学界仍然要有大量的工作需要进行。为此,寻找更多更加合适的方法来改进叶绿体基因工程,使其优点更加明显,必将在未来生物技术领域带来又一场革命,为人类造福。

5参考文献

[1] 刘良式.植物分子遗传学[m].北京:科学出版社,1997.

[2] boynton j e,gillham n w,harris e h,et al.chloroplast transfo-rmation in chlamydo monas with high veloeity mieroprojeetiles[j].science,1988,240(4858):1534-1538.

[3] 李宏韬,赵淑青,赵彦修,等.叶绿体基因工程简介[j].遗传,2003,25(4):495-498.

[4] svab z,hajdukiewicz p,maliga p.stable transformation of plastids in higher plants[j].proc natlacad sci usa,1990(87):8526-8530.

基因工程载体的种类范文3

一、种类

根据抗原性质可分为灭活疫苗、弱毒活疫苗、亚单位疫苗、工程疫苗、核酸疫苗和转基因植物可饲疫苗;根据疫苗功效则可分为预防性疫苗和治疗性疫苗。

1. 灭活疫苗。将分类离培养的病原微生物(多数为强毒株)用适当的化学试剂将其灭活但保留其免疫原性,与不同的佐剂混合后乳化制成灭活疫苗。目前,用于制备灭活疫苗的佐剂有矿物油佐剂和氢氧化铝佐剂。前者多用于病毒性疫苗,如当前使用的猪圆环病毒灭活疫苗、伪狂犬病毒灭活疫苗;用氢氧化铝作为佐剂制备疫苗静置后,会出现分层,疫苗在使用前摇匀即可,该佐剂多用于细菌疫苗。蜂胶佐剂多用于细菌苗和亚单位疫苗。

灭活疫苗的用途:①新分离的病原,短期内难以致弱。如高致病性猪蓝耳病灭活疫苗、猪圆环病毒灭活疫苗和兔瘟灭活疫苗。②血清型较多的病原,疫苗的保护力呈现血清型特异性,如猪胸膜肺炎放线杆菌(15 个血清型)、副猪嗜血杆菌(15 个血清型)、猪链球菌(35 个血清型)等。③变异频率高的病原,如新分离的口蹄疫Mya-98 株。

猪用灭活疫苗中,有猪伪狂犬病灭活疫苗、猪口蹄疫0 型(单价/ 二价/ 三价)灭活疫苗、猪繁殖与呼吸综合征灭活疫苗、猪圆环病毒灭活疫苗、猪细小病毒灭活疫苗、猪乙脑灭活疫苗、猪链球菌病单价( 二价/ 三价) 灭活疫苗、副猪嗜血杆菌三价灭活疫苗和猪传染性胸膜肺炎三价灭活疫苗等。

灭活疫苗的优点是安全性强,疫苗毒株无毒力返强的危险;多数疫苗的免疫接种效果不受仔猪母源抗体水平高低的干扰;贮存条件方面,一般需冷藏保存,不能冷冻。其缺点是需要免疫次数多,接种后局部反应略大,甚至出现接种部位污染,可引起局部炎症脓肿,影响接种效果,也降低局部的肉品质量。

2.弱毒活疫苗。

疫苗种类指将毒力下降或毒力完全丧失的病原微生物,与牛奶、明胶等佐剂混合后经过低温冻干后形成的疏松状制剂。严格意义上,此类疫苗不包含采用基因工程方法对基因组改变后引起致病性改变的微生物制备的弱毒疫苗。根据所含的疫苗毒株分类不同,可以分为以下几种:(1)细菌活疫苗:如仔猪副伤寒疫苗,猪丹毒- 肺疫活疫苗。(2)病毒活疫苗:猪瘟活疫苗、伪狂犬病活疫苗和猪繁殖与呼吸综合征活疫苗。(3)猪支原体肺炎活疫苗。预防猪寄生虫的活疫苗尚未问世。

我国常用的弱毒活疫苗较多,如猪瘟活疫苗、猪伪狂犬病活疫苗、猪繁殖与呼吸综合征活疫苗、猪乙肝疫苗、猪丹毒活疫苗、猪肺疫活疫苗、仔猪副伤寒疫苗、猪马腺疫链球菌活疫苗等。

活疫苗的优点与缺点:优点是:(1)免疫途径多样:可通过肌肉注射、滴鼻、口服等途径免疫。(2)刺激产生黏膜免疫:除肌肉注射外,滴鼻和口服途径免疫后可刺激机体产生局部分泌型IgA, 形成黏膜免疫,在预防呼吸道感染和消化道感染中具有独特的作用,这是灭活疫苗无法比拟的,如沙门氏菌口服可以刺激机体肠道局部黏膜免疫。(3)免疫后可剌激产生体液免疫和细胞免疫,免疫效果较为确实。(4)免疫次数少于灭活疫苗。(5)接种后局部反应低。缺点:受母源抗体的影响如猪瘟活疫苗、伪狂犬病活疫苗等;受抗菌药物的影响如仔猪副伤寒弱毒疫苗、猪丹毒- 肺疫二联弱毒疫苗和猪支原体弱毒疫苗等;活疫苗运输保存条件严格,需冷冻条件。

3. 基因工程疫苗。

利用分子生物学手段改造病原微生物的基因,获得毒力下降、丧失的突变株或构建以弱毒株为载体、表达外源基因的重组毒(菌)株,并利用它们作为疫苗毒株制备疫苗,包括基因缺失活疫苗和基因工程活载体疫苗。该疫苗与常规弱毒疫苗相比,主要区别在于后者采用常规技术,而非分子生物学技术,来致弱病原微生物,不确定其毒力致弱的分子机制。

作为基因工程疫苗载体的病毒或细菌,其主要特性是:致病力下降或缺失、对靶动物和非靶动物是安全的,基因组庞大、可容纳外源基因,并高效表达。常用的活载体有:伪狂犬病毒弱毒株、腺病毒、沙门氏菌弱毒菌株、乳酸杆菌、胸膜肺炎放线杆菌弱毒株。我国在“十一五”期间,在“863”课题资助下,开展了以伪狂犬病毒为载体,表达猪细小病毒、乙脑病毒、口蹄疫病毒和猪繁殖与呼吸综合征病毒主要免疫原性基因的研究。鉴于对其安全性的忧虑,我国规定转基因生物(包含基因工程 疫苗)必须经历实验室和野外安全性观察测试,获得安全证书后,方能进行疫苗学研宄,以申报兽用生物制品新兽药证书。目前,我国己经批准上市的基因工程疫苗有:猪伪狂犬病基因缺失疫苗、口蹄疫基因工程疫苗、猪大肠杆菌K88-K99 基因工程疫苗。重组载体疫苗尚未正式上市。

4.核酸疫苗。

核酸疫苗产生于20 世纪80 年代。将病原微生物或寄生虫基因组中编码免疫原性蛋白的基因克隆到真核表达载体中制备重组质粒,这种质粒直接导入动物体内,利用宿主体内的转录翻译系统,合成该蛋白,剌激机体产生针对相应的细胞免疫和体液抗体,因而称之为DNA 疫苗。DNA 疫苗可以用大肠杆菌大量制备,成本较低。针对细菌病、病毒病和寄生虫病的DNA 疫苗报道较多。但基于是否整合到宿主染色体等安全性考虑,核酸疫苗多处于实验研宄阶段,尚未大量应用。RNA 疫苗是近几年才出现的一种核酸疫苗,主要在人类医学中,作为RNA 类药物,用于抗肿瘤研宄。在动物疫苗领域尚未见RNA 疫苗的应用报道。

5. 亚单位疫苗与合成肽疫苗。

利用物理化学方法提纯病原微生物中具免疫原性的组份,或者利用基因工程表达该组分,纯化后加入佐剂而制成。猪传染性胸膜肺炎的亚单位疫苗中含有毒素I, 毒素II,毒素III 和外膜蛋白等, 能提供对所有15 个血清型的交叉保护力。我国使用的口蹄疫合成肽疫苗,是利用人工方法合成口蹄疫病毒VP1 蛋白中具有较强免疫原性的抗原片段,加入佐剂制成。该疫苗的优点是抗原组分单一,纯度高,免疫反应强,副作用低;能迅速针对新出现变异毒株研制其合成肽疫苗。但是,其成本较高。

6.转基因植物可饲疫苗。

将病原微生物中编码免疫蛋白的基因插入植物基因组中,获得表达病原微生物免疫原性的植物,再从植物中提纯蛋白用于注射动物或将植物直接饲喂动物,产生免疫力。用于表达免疫原性基因的植物主要是马铃薯、玉米、蔬菜、番茄、烟草和香蕉等,称为转基因可饲疫苗(ediable vaccine)。此类疫苗在口蹄疫(拟南芥、苜蓿和马铃薯为受体)、猪传染性胃肠炎(马铃薯、花椰菜和土豆为受体)、腹泻(烟草为受体)和轮状病毒感染(番茄和马铃薯为受体)等疾病防控中有研究的报道,但未见临床应用。目前的技术难题是:选择直接生食和贮藏方便的植物作为表达植株(烟草不适用于动物基因的筛选和优化其密码子和使用合适启动子,使其表达量满足疫苗免疫剂量的要求;免疫剂量免疫程序的确定;并设法提高口服后黏膜免疫效果。转基因植物可饲疫苗主要应用在胃肠道疾病中。

二、疫苗使用的注意事项

1. 建立在正确的流行病学调查基础上,有针对性选择所需疫苗,不可盲从。对于多血清型菌株感染,应选择与当地流行菌株血清型一致的疫苗,免疫效果要确实。

2.确保疫苗运输和使用过程中的冷链保障。如疫苗的物理性状己经改变,如分层现象,不可用手工混匀后再使用,应丢弃。

3.细菌活疫苗使用前后不可同时使用抗生素或有抗菌活性的中草药。

4.建议使用于健康猪群;正在发病猪群使用紧急接种,可能会加快处于疾病晚期猪只死亡,但是会缩短猪群的病程,因此要有心理准备。

5.制定合理的免疫程序,避免母源抗体干扰。不同疫苗接种之间至少间隔1 周。不同疫苗的同时混合使用,要先做小范围的观察,如无副反应,再大群使用。

基因工程载体的种类范文4

1. 转基因植物

转基因作物的研究规模已达到了空前的水平。自1983年世界上第一例转基因抗病毒植物诞生以来,转基因作物的研制、中间试验、田间释放和商业化种植得到了迅速的发展,到1997年底,转基因植物已达几百种;转基因作物于1986年在美国和法国首次进入大田试验,到1997年底全世界转基因作物的田间试验已达25000多例;1994年,美国批准了转基因延熟番茄的商业化生产,到1997年底,全世界共有51种转基因植物产品被正式投入商品化生产。

转基因作物的种植面积正在迅速扩大。全世界转基因作物的种植面积在1995年仅为1.2×106hm2,1996年为2.84×106hm2,1997年为1.25×107hm2,1998年为2.78×107hm2,1999年增至3.99×107hm2.2000年进一步增至4.42×107hm2,2001年已达5.26×107hm2.2001年全球转基因作物按作物种类统计为:大豆占46%,棉花占20%,油菜占11%,玉米占7%;按国家统计:美国占70%(面积,下同)、阿根廷占22%、加拿大占6%、中国占1%~3%,上述4国占全球转基因作物种植面积的99%;按目标性状分类:抗除草剂转基因作物占77%,抗虫转基因作物占15%.据统计,1999年美国转基因大豆、棉花和玉米的种植面积,分别占该国相应作物种植面积的55%、50%和30%。

转基因作物具有巨大的经济效益,1997年美国转基因抗虫棉种植面积为1×106hm2,平均增产70%,每公顷抗虫棉可增加净收益83美元,直接经济效益近1亿美元;1998年美国种植转基因抗虫玉米达5×106hm2,平均增产9%,其净收益为68.1美元/hm2,可产生直接经济效益3.4亿美元。1995年全球转基因作物的销售额仅为0.75亿美元,1998年达到12亿美元~15亿美元,2000年已达30亿美元,5年间增加了40倍。预计2005年将达60亿美元,2010年将达到200亿美元。

2.植物用转基因微生物

自上世纪80年代以来,重组农业微生物工程研究取得了突破性进展,其中新型重组固氮微生物研究已进入田间试验,一些杀虫、防病遗传工程微生物进入田间试验或商业化生产。防冻害基因工程菌株已于1987年进入田间试验,防治果树根癌病工程菌株也于1991年和1992年先后在澳大利亚和美国获准登记,目前已在澳大利亚、美国、加拿大和西欧一些国家销售,这是世界上首例商品化生产的植病生防基因工程细菌制剂。具有杀虫活性的转B.t基因工程细菌,自1991年起已有多个产品进入市场。在高铵条件下仍保持良好固氮能力的耐铵工程菌株,也进入田间试验。

3.转基因动物

转基因动物主要应用于以下几个方面:改良动物品种和生产性能;生产人药用蛋白和营养保健蛋白;生产人用器官移植的异种供体;建立疾病和药物筛选模型;生产新型生物材料等。1998年全球动物生物技术产品总销售额约为6.2亿美元,预计2010年总销售额将达到110亿美元,其中75亿美元是转基因动物产品。

4. 兽用基因工程生物制品

兽用基因工程生物制品是指利用重组DNA技术生产的兽用免疫制剂。主要包括:单克隆抗体等诊断试剂,目前国内外正在研究、开发或已应用的单克隆抗体诊断试剂已达1000多种;基因工程疫苗,已有44例获准进行商品化生产,其中重组亚单位疫苗30例,基因缺失活疫苗12例,基因重组活疫苗2例。此外,还有DNA疫苗和兽用基因植物源生物制品等。

5. 转基因水生生物

迄今为止,全世界研究的转基因水生生物达20余种,已有8种进入中间试验,其中我国有一种两例,仅有大西洋鲑1种可能已开始小规模商品化生产。

6. 我国农业转基因生物研发现状与产业化概况

我国转基因植物的研究开发始于20世纪80年代,1986年启动的863高新技术计划起到了关键性的导向、带动和辐射作用。据1996年统计,国内正在研究和开发的转基因植物约47种,涉及各类基因103种。1997年~1999年,有26例转基因植物获准进行商业化生产。按转基因性状分:抗虫16例,抗病毒9例,改良品质1例。按作物划分:棉16例,番茄5例,甜椒4例,矮牵牛1例。

转基因抗虫棉是国内植物基因工程应用于农业生产的第一个成功范例,使我国成为继美国之后独立研制成抗虫棉,并具有自主知识产权的第二个国家。1998年~2001年4年累计种植逾1.3×106hm2,减少农药使用量70%以上,产生了巨大的社会、经济和生态效益。由于其伞形辐射的带动作用,抗虫转基因水稻、玉米、杨树等一批后继转基因产品正在进行田间试验,蓄势待发。转基因技术将使农业产业发生深刻的结构变化,向农业与医药、农业与食品、农业与加工结合的方向发展。

我国植物用转基因微生物研究已取得长足进展,正在研发的防病杀虫微生物13种,涉及基因16种;固氮微生物8种,涉及基因12种,大多已进入中间试验和环境释放试验。我国兽用基因工程生物制品研究与产业化进展迅速,已有近70种单克隆抗体等诊断试剂投放市场,2例基因工程疫苗获准进行商品化生产,其中重组亚单位疫苗1例,基因重组活疫苗1例。

我国转基因水生生物研究取得了举世瞩目的成就,1985年,我国培育出世界首批转基因鱼。此后,培育出比正常生长速度快3倍~4.6倍的转基因泥鳅。目前,转生长激素基因鲤、转大马哈鱼生长激素基因鲤均进入中试阶段。此外,我国还开展了藻类、贝类等其他水生生物的转基因研究。我国转基因动物研究成绩斐然,生长速度快、瘦肉率高、对某些病毒有一定抗性的转基因猪培育成功,乳腺组织能够表达人药用蛋白凝血因子IX、人生长激素、人红细胞生成素的转基因羊已进入中试和安全性评价阶段,此外,还成功地培育了转基因牛。

基因工程载体的种类范文5

16.稳态维持的三种调节机制:稳态的实现,是机体在神经――体液――免疫调节下,各器官、系统协调活动的结果。

17.人体免疫的三道防线:皮肤、黏膜是保卫人体的第一道防线;体液中的杀菌物质(如溶菌酶)和吞噬细胞是保卫人体的第二道防线;第三道防线主要是由免疫器官和免疫细胞借助血液循环和淋巴循环而组成的特异性免疫系统。

18.特异性免疫的三个阶段:感应、反应和效应阶段。

19.抗原的三个特点:大分子性、特异性、异物性。

20.免疫异常的三种疾病:类风湿性关节炎、系统性红斑狼疮属于自身免疫疾病;AIDS属于免疫缺陷病;荨麻疹属于过敏反应。

21.可遗传变异的三个来源:基因突变、基因重组和染色体变异,共同为生物进化提供了原材料。

22.基因工程的三种工具:限制酶、DNA连接酶和载体。

23.三种RNA:信使RNA、转移RNA和核糖体RNA。

24.人类遗传病的三种主要类型:单基因遗传病、多基因遗传病和染色体异常遗传病。

25.基因工程中载体的三个条件:①能在宿主细胞内稳定保存并大量复制;②有一个或多个限制酶的切点,以便与外源基因连接;③具有某些标记基因,以便进行筛选。

26.物种形成的三个环节:突变和基因重组产生生物进化的原材料;自然选择决定生物进化的方向;隔离导致物种的形成。

27.常用的诱导动物细胞融合的三种因素:聚乙二醇(PEG)、灭活的病毒和电刺激。

28.细胞融合的三种可能:A型与B型细胞可能发生同种或异种细胞的融合,形成AA型、BB型、AB型的融合细胞。

29.年龄组成的三种类型:增长型、稳定型和衰退型。

30.生态系统的三个基本功能:物质循环、能量流动和信息流动。

31.受精作用时,穿越的三重结构:依次为卵细胞的放射冠、透明带和卵黄膜。

基因工程载体的种类范文6

1.1细菌素

乳酸菌的细菌素本质为蛋白质,可以当作防腐剂容易被胃酶讲解,拥有相对较好的理化与抑菌特点。当前,nisin与microgard已经运用在乳食产品防腐剂中。nisin作为乳酸乳球菌亚种的一项分泌肽,大量的革兰氏阳性菌与少量的革兰氏阴性菌具备一定的抑制作用。在上世纪中期nisin主要用在对芽孢生长菌成长的控制与有效延长乳制品等的货架期。目前,FDA已经通过有关部门批准可以运用在融化干酪相关抗菌剂。除去当作食品的防腐剂之外,nisin可以当作医疗制剂运用在牛炎的治疗中。另外,microgard还是一种具备抑制性的革兰氏阴性菌与真菌细菌素,可是其不能抑制革兰氏的阳性菌。例如美国的1%microgard溶液普遍运用在保存乡村干酪。同时microgard能够有效控制瑞士干酪皮的出现的腐败问题。运用定点突变的作用,例如蛋白质相关生物工程技术能够有效拓宽细菌素相关狭窄的抑菌普。现阶段,已能够克隆与测序nisin形成的相关基因,可以实现定位在质拉或是染色体DNA中编码等的克隆与测序。大量细菌素基因可以定位于接合质粒或是转座子上,比较便于基因转移至其他相关微生物。

1.2促进干酪成熟

干酪的成熟期相对较长,冷藏与库存的费用也比较高。对此,促进干酪的成熟已经成为干酪研究的主要内容。促进干酪成熟以往的手段主要是在其添加蛋白酶和肽酶以及脂肪酶等。目前,通常是在干酪中添加酶类和经过基因工程技术修饰之后的如霉菌促进干酪的成熟。许多学者都重点研究基因工程技术的乳酸菌修饰,能够加速干酪的成熟,拥有相对良好的抗噬菌体能力。充分运用蛋白质的分解阴性等促进干酪的成熟。另外,乳糖代谢之后的阴性乳酸菌能够以高密度进入干酪的凝乳当中,促进干酪的成熟。相对较强的蛋白质分解能够有效加速苦味肽进一步生成。对此,蛋白质所分解的阴性菌体和一般菌株混合运用可以有效促进干酪的成熟。

2生物工程技术的育种手段

2.1原生质体融合

原生质体的融合技术作为创建杂合微生物的主要工具,其能够把相对较好的菌株形状有效结合在相同的菌株中,在乳酸菌的育种方面有着深远意义。在原生质体的融合过程中,可以先运用酶除去两个亲体的细胞壁,从而是使菌体细胞可以在高渗的环境当中释放原生质体,同时在高渗环境下实现混合,然后通过聚乙二醇的促进,可以实现两种原生质体的凝集从而有效融合,获取异核体或是重组子。充分运用杂合菌能够有效提升发酵制品特性或是发展新型产品。另外,原生质体的融合技术可以建立高蛋白质的表达水平相关突变体的主要方式。

2.2电穿孔法

在重组DNA技术快速发展形势下,当代微生物研究人员可以相对精确的变化乳酸菌的生理特性,从而为乳品的发酵项目提供较好的菌株。对此,一定要具备合理、安全、科学的细菌转换手段。近些年来,具备良好发展前景的转换手段就是电穿孔法。在上世纪,Harlander第一次报道了乳酸乳球菌的乳酸亚种的有关电转化,该转化率能够和原生质体融合的转化率相比。另外Chassy与Flickinger也报道了干酪的乳杆菌有关干酪亚种电转化。当前成功完成电转化的乳酸菌有多种,例如嗜酸乳杆菌和乳酸乳球菌的乳油亚种等。通过研究表明各种菌株之间也能够完成电转化。其和原生质体的融合技术相比较而言具有一定优势。

2.3基因的送递系统

在乳酸菌的转化系统快速发展影响下,建立基因的传递系统成为了必然趋势。载体主要可以分成试验用载体与食品级载体两大种类。充分考虑到食品的安全性与稳定性,食品级的载体不能利用抗生素的抗性基因当作选择性的标记。因此,食品在集体的选取一定要在食品级GRAS的菌中分离出选取性标记。在进行记载时所运用的乳酸菌标记主要有nisin的抗性基因合和胸苷酸合成的酶基因。另外,乳酸菌中所编码的细菌素产生和糖类运用或是免疫性基因可以满足食品级基因相关传递系统的选择性标记要求。

3结语