热能工程及其自动化范例6篇

前言:中文期刊网精心挑选了热能工程及其自动化范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

热能工程及其自动化

热能工程及其自动化范文1

关键词:电气工程及其自动化;电能变换与控制方向;培养方案;课程设置;实践环节

作者简介:巫付专(1965-),男,河南安阳人,中原工学院电子信息学院,教授;王耕(1967-),男,河南郑州人,中原工学院电子信息学院,副教授。(河南 郑州 450007)

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)17-0018-02

近年来我国经济持续高速增长,传统能源消耗量大幅增长,引发的能源短缺和环境污染等问题成为制约我国经济又好又快发展的瓶颈。为此,发展新能源产业势在必行。《可再生能源发展“十二五”规划》提出,至2015年底并网风电累计装机容量要达到1亿千瓦,年发电量要达到1900亿千瓦时。光伏发电装机要达到1400万千瓦,光热发电装机100万千瓦,太阳能热水器推广面积要达到4亿平方米。政策上还首次提出地热能、潮汐能和海洋能的发展目标。《中国新能源产业发展与安全报告(2011—2012)》指出,我国新能源产业总体而言对外依存度较高,风能产业、光伏产业、生物质能产业与地热产业的关键设备及核心技术尚需从欧美输入。

电能变换与控制技术作为新能源产业关键设备的核心技术之一,随着我国新能源产业的迅速发展、国家科研投入的不断加大,高校和科研院所近年来也研究出了大批科研成果。例如仅2012年11月19~20日在福州大学召开国家自然科学基金电工学科2008/2010 年度批准项目交流会就有研究成果120余项,其理论水平和实验室级的成果已接近或达到欧美水平。然而这些成果工业化的过程中却严重滞后于世界先进水平。造成这种局面固然有很多原因,但是人才培养“频谱”的欠缺也是其中的原因之一。这些科研成果主要由教师、博士和硕士来完成,本科生很少涉足,国内高校开设相应本科专业方向的学校也很少,这就造成了将科研成果转化为工业产品人才的匮乏。2012年11月16日《江南时报》报道:“能源动力类(就业率94.71%)、材料科学类(就业率93.71%)、电气信息类(就业率92.70%)等与新能源、新材料、服务外包等新兴产业相关专业的毕业生就业优势明显。”“良好的产业发展不仅给相关专业毕业生带来了就业底气,也给薪资待遇提升留下了想象空间。”据统计,近两年内电气信息类毕业生的平均工资为3778元,仍有很大的上升空间。省内电气信息类企业将传统的电工技术与计算机、电子、自动控制、系统工程及信息处理等新技术相结合,具有广阔的应用前景,规模正不断壮大,就职毕业生对该类企业的发展趋势充满信心。”其他地区的招聘也有同样信息出现。对于快速发展的新能源产业而言,应用型人才供应面临严重不足。因此,亟待加大该产业人才的培养力度,以满足新能源产业发展对应用型人才的迫切需求。

一、目前相关专业开设的现状

近几年国内仅有十几所高校增设了核能相关专业,大多数高校是在原有热能与动力工程等专业基础上增设了部分与新能源有关的选修课程作为对新能源领域知识的一种补充,或进行了专业名称的更改。所有这些无论是课程内容设置的科学性还是人才培养的专业性,尚不能适应完全国家对新能源领域专业人才的需求。对于新能源产业关键设备及核心技术之一的电能变换与控制更是涉及很少。

电气工程及其自动化专业在1998年国家教育目录合并前包括电力系统自动化、电机、绝缘技术等强电专业。由于其涉及的专业领域非常宽泛,所以各高校培养方案的设置通常分方向设置,即在专业课学习阶段按专业目录合并前的专业进行设置。与能源产业关键设备及核心技术之一电能变换与控制相对应的电力电子与电力传动二级学科由于相对传统电机电器、电力系统自动化等学科发展较晚等原因,开设电能变换与控制专业方向的高校很少。

由于新能源产业迅速发展,与之相适应的电力电子技术也得到了迅速发展与完善,为在电气工程及其自动化专业本科阶段开设电能变换与控制提供了理论基础。

二、专业培养目标及规格

电气工程及其自动化专业电能变换与控制方向面向新能源产业,根据能源领域的发展趋势和国民经济发展需要,需培养在新能源科学中电能变换与控制研究及其利用的技术开发与实施等方面既有扎实的理论基础又有较强实践和创新能力的专门人才,以满足国家战略性新兴产业发展对该领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。本专业培养掌握电路电子与电工技术、控制理论与系统、计算机与微处理器应用技术,强调强弱电点结合、元件系统结合、软硬件结合和基础知识,体现了强电与电力电子、自动控制、计算机等技术相结合的专业特点。

毕业生应获得以下几方面的知识与能力:具备较扎实的本专业领域必需的自然科学基础理论知识和较好的外语综合能力;系统掌握本专业技术基础理论知识和必要的专业知识;掌握电能转换与控制、信号分析与处理、电机学、新能源发电、电气工程方面等方面的知识;了解本专业学科的前沿与发展趋势;获得电能变化与控制系统的分析、开发与研究方面的工程实践训练;能从事新绿色能源的研发工作(例如光伏发电、风力发电、混合动力汽车);能从事电力系统的分析预测试;能从事电能质量分析与调节系统的研发与设计工作等;具有一定的人文社会科学、经济管理知识及相关工程技术知识,掌握文献检索、资料查询的一般方法;具有较强的工作适应能力;能从事新能源领域里的科学研究与管理工作。

三、专业课程体系

1.培养方案课程安排

针对本专业的特点,所以教学计划安排应该使得在专业教学阶段的理论与实践并重。专业课阶段课程安排的建议如下:

公共基础课:“高等数学”、“大学物理”、“大学英语”等。

人文通识课:“原理”、“法律基础”、“艺术鉴赏”等。

专业基础课:“电路”、“模拟电子”、“数字电子”。

专业平台课:“自动控制控原理”、“电机拖动基础”、“单片机原理”、“自控原理”、“C语言”、“可编程控制器PLC及系统集成”、“信号分析与处理”等。

专业必修课:“电力工程”、“新能源发电”、“电能变换与控制(上、下)”、“DSP技术”等。

专业任选课:“微型电网工程”、“柔性输配电技术”、“人工智能与智能控制”、“智能电网”、“电力系统网络通讯”、“变配电运行自动化”、“电气CAD”、“检测技术与仪表”、“电动汽车概论”、“电能质量与谐波治理”等。

工具课:“MATLAB”、“AotoCAD”、“protelXP”、“Proteus”、“multsim”等。

本培养方案将课程分为上述6个部分,其中公共基础课、人文通识课、专业基础课和专业平台课的设置与目前的电气工程及其自动化保持不变。专业必修课和专业任选课是电能变换与控制方向的主要专业课程。“新能源发电”主要讲述太阳能光伏发电技术、太阳能热发电技术、风力发电技术、生物质能发电技术的原理;“电能转化与控制”(上)主要讲述电能变换的基本原理,包括DC/DC、AD/DC和DC/AC变换,可采用传统电力电子的教学内容与教材。“电能转化与控制”(下)主要讲述PWM的控制方法(包括SPWM、SVPWM、滞环控制和三角波比较控制以及瞬时无功理论等)以及在新能源(光伏发电、风力发电等)中的应用实例分析。DSP技术主要讲述目前应用最为广泛的TI公司TMS320LF2812的原理与应用。工具课“MATLAB”可在第二学期开设,“AotoCAD”、“protelXP”、“Proteus”、“multsim”放在期末实践环节结合课程设计进行。专业课设置如表1所示。

2.实践环节设置

实验教学环节改革将注重培养学生的工程系统能力、实践中运用知识的能力、解决较复杂工程问题的能力、管理决策能力,还有创新研发能力等。通过合理统筹优化实践教学部分激发学生的工程实践兴趣和勇于创新的精神,使学生的专业素质满足电能变换与控制工程师培养标准。

(1)实践教学环节改革将关注以下几点:

1)加强综合性、设计性实验的开发,在统筹优化、合理安排所有实验课的基础上提高实验课质量,增加综合性、设计性实验,增强学生动手能力、分析问题、解决问题的能力。

2)增设企业中常用仿真软件的教学实践课程,提高学生多种仿真软件的应用能力。

3)增设工程能力综合训练内容。

(2)本计划实践环节主要分两个阶段实施。

1)第一阶段:工程能力基本训练阶段。内容:金工、电工实习、各门主要课程课内实验、电子技术的课程设计、单片机课程设计、PLC的课程设计、工程制图、制板及仿真软件的应用等。目标:达到初步分析问题、解决问题的能力,具备实际工程所需的基本技能。

2)第二阶段:工程能力综合训练阶段。内容:取消单门专业课的课程设计,增设综合课程设计,在第7学期期末进行,时间为3周,题目结合新能源发电所需的技术选定,要求学生按全国大学生电子设计大赛的型式提交作品及实验报告。目标:使学生具备对所学知识和技能的综合运用能力,具备初步电能变换与控制系统设计与调试能力。

3.校企联合毕业设计

毕业设计是学生能力培养最后一个环节,主要锻炼学生综合运用所学科学理论方法和技术手段分析并解决工程实际问题的能力,培养学生的创新意识和进行设计、技术改造与创新的初步能力。[2]毕业设计安排在第8学期进行,此环节时间为15周。采用校内指导教师和企业指导教师共同指导的方式。毕业设计题目的选取可以紧扣新能源发电中电能变换与控制关键技术,突出电能变换与控制常用控制策略、信号检测方法等的应用,强调硬件电路的设计与调试、软件的编程。目的是使学生在毕业设计的过程中初步掌握新能源发电中电能变换与控制的关键技术。

四、结论

我国新能源产业正在迅速发展,该方面专业技术人才的缺失已成为其进一步发展的瓶颈。高等学校应认真研究,及时培养出社会急需的人才,服务社会。本文就在电气工程及其自动化专业基础上开设电能变换与控制方向进行了分析;针对新能源发电所需的知识结构提出了主要课程的设置,并对实践环节和毕业设计进行了详细分析;给出了电气工程及其自动化专业开设电能变换与控制方向的培养方案。要想将培养方案落实到实处还有很多工作要做,比如师资的建设、实验室的建设、教材的建设等等。

参考文献:

热能工程及其自动化范文2

2011考研国家线:上海电力学院考研调剂信息

上海电力学院考研国家线已经公布,上海电力学院考研调剂正在进行,报考上海电力学院考研的考生请关注上海电力学院考研调剂专业:

电力系统及其自动化(080802)、热能工程(080702)、应用化学(081704)

上海电力学院座落于上海市区东外滩,与浦东隔江相望,具有良好的育人环境和条件,是一所功能齐备、设施齐全、环境幽雅的现代化大学。学校为我国电力行业培养了大量高级专业人才,在全国享有一定的声誉,今年我校研究生就业情况较好,绝大多数学生进入电力系统工作。

热能工程及其自动化范文3

关键词:热能;动力机械;能源;环境

中图分类号:F407文献标识码: A

一、热能动力机械专业的高技术性

大型的热能动力设备,系统非常复杂,集机械、电力、电气、电子、液压、计算机等多学科于一体,自动化程度很高。从生产上来看,热力设备的运行基本上实现了自动、远动控制和计算机监视。全计算机控制已基本实现,并是今后的发展方向。火电厂的锅炉、汽轮机及其辅机的运行,早已是自动控制或远动操作,新建的大型火力发电机组应用了计算机控制,如30MW汽轮发电机组,正常运行时锅炉产蒸汽量在100t/h以上,锅炉本体的高度超过som,燃煤达10t/11以上,若用人力来烧这样的锅炉是根本无法实现的,但是采用集散控制系统,实现全计算机控制,一台锅炉有两名操作人员就够了。对于工业锅炉,亦采用机械进煤的方式,运用自动或远动控制其运行。冶金、化工等行业的热力设备,也具有相当高的自动化水平。可见,热力设备的运行,采用了大量的高尖技术。热力设备一般在高温高压的条件下工作,要搞好热力设备的安全运行,必须经常地进行维护和定期的大小修,为了提高热能利用效率,必须利用新技术对设备进行技术改造,利用先进管理手段进行管理,因此,需要既有理论知识又有丰富实践经验的工程技术人员。

二、常用的热能动力机械

动力机械是把能量转化为机械能而做功的机械装置。其中,由热能转化为机械能的机械称为热能动力机械。常用的热能动力机械有三种。一是燃气轮机。燃气轮机的工质是燃气和空气。这种机械的主要特点是运行平稳,机动性好,噪音污染小。所以应用广泛。未来燃气轮机会向提高效率、利用核能发展燃煤技术的方向发展。二是蒸汽机。说到动力机械就不得不说蒸汽机。蒸汽机的工质是蒸汽,它是将内能转化为功的装置。蒸汽机的产生曾引起了世界上重要的“工业革命”。跨入21世纪之后,才渐渐被内燃机和汽轮机取代了领先地位。蒸汽机的使用之所以持续了两个多世纪归功于它对所有燃料都可以由热能转化成机械能。但是蒸汽机的运作依赖于笨重庞大的锅炉,因此最终被轻巧灵活的内燃机所取代。三是内燃机。内燃机是将化学能转化为机械能的装置。因为燃料在机械内部直接燃烧,所以称为内燃机。内燃机是目前运用最广泛的热机,它以汽油或轻柴油作燃料,虽然热效率高,但热料消耗率高,而且内燃机噪声是动力设备噪声的主要来源。因此,未来内燃机的发展将注重于提高机械效率,减少噪声,降低排放量来严格要求燃料的清洁度,实现节能减排的目标。

三、我国的热能动力工程发展现状

我国能源动力类热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细。在热能与动力工程专业中就先后包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业,形成了以工业产品生产引导高等学校人才培养目标的基本格局,一定程度上与我国当时的发展相互适应。随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代力工程的基础。

四、动力机械带来的环境污染及解决办法

动力设备引起的环境问题主要有热污染、噪声污染和空气污染。热污染是指工业生产和生活中排放的能量以热能形式传给环境,造成大气和水被污染的现象。尤其是火力发电厂、核电站、造纸厂排放出来的含有大量废热的气体和液体对水生植物和鱼类生存繁衍造成了极大的威胁,各种有害成分还会随着水资源的流动被陆地上的树木,蔬菜吸收,进而被人类食用,引起重大的流行疾病等。要减少工业废物的余热对环境的影响,就要减少排放,并且充分利用余热,或者寻找和开发新能源。使用清洁的水能,风能不仅降低了污染物的排放,还保护了环境。

1、空气污染也叫大气污染

从近年来的全国雾霾天气可以看出,空气质量与人们生活息息相关。空气污染直接影响了人们的出行。大气污染源来自于工业废气、汽车尾气、居民生活供暖设备等。在大城市中,汽车、火车是不可或缺的交通工具,但它们消耗煤或石油产生的直接排放进空气的废气,是雾霾天气的主要“凶手”。而且近几年的许多极端天气也是因大气污染引起的。空气污染的防治要靠全国人民的共同努力,调整能源结构,植树造林等都是目前比较流行的办法。

2、噪声污染

动力机械等设备运行时由于机械振动而形成噪声。噪声污染短期内或许没有太大伤害,但处于这样的环境一段时期后就会使生物的听力受损,严重的还会诱发多种疾病。因此,防治噪声也是刻不容缓的事情。对污染源来说需要降低声源噪音,控制噪音传播。而对于人们来说,可以采用吸音设备来阻挡噪声的传播。

六、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

2、热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

结束语

热能动力工程是社会生产力发展的一个重要组成部分,它推动了人类从人力劳动向机械生产的“进化”。作为国民生产的动力,能源已经成为了每家每户的必需品。其中,热能是能量传递和动力机械领域中使用得最多的一种能源形式之一。而现在随着热能转化装置以及动力机械的广泛应用,已经出现了许多全球化的问题。本文针对热能动力工程的相关设备和环境保护做一些基本介绍,仅供参考。

参考文献

[1]黄益军.浅谈热能动力设计研究[J].城市建设理论研究(电子版),2013(28).

热能工程及其自动化范文4

【关键词】电气自动化;控制设备;可靠性措施

一、电气自动化控制设备的概述及其系统的控制功能

电气自动化就是指能够在人少或者无人参与的情况下,产品能够按照提前设定好的程序,自主的完成产品的生产操作、质量控制、监视等工作。电气设备的发展趋势是智能化、系统化和模块化,开发电气设备的新产品的速度正在加快,随之而来的是其使用环境也变得异常恶劣,其所服务的系统也越来越昂贵和重要。国际上,通用的可靠性适用于一个单元或者一个系统。因为故障出现具有与随机性质,所以常用数学方式来描述其可靠性,即用“概率”来表示。电气工程及自动化专业是电气信息领域中的新兴学科,但是由于和工业生产以及人们的日常生活紧密相关,发展相当迅速,现在也日趋成熟,并且已经成为高新技术产业的非常重要的组成部分,广泛应用于农业、工业以及国防等领域,在国民经济中发挥着不可替代的作用。电气工程及其自动化的触角也开始伸向各行各业,小到一个开关的设计,大到宇航飞机的研究。从事本专业的人员能够接触与电气工程有关的信息处理、自动控制、电力电子技术、试验技术、系统运行、研制开发、电子与计算机技术应用以及经济管理等领域。

二、影响控制设备的可靠性的因素及研究的必要性

1、影响控制设备的可靠性的因素是多种多样的,有外部环境的影响,例如:气候条件、电磁干扰,有人为操作不合理的影响,也有元器件的质量低下的影响等等。详细内容如下:

(1)气候条件。温度、气压、盐度、湿度、大气污染等气候条件,能够导致控制设备的积温过高、结构损害、电气性能降低等,进而影响控制设备的可靠性。

(2)电磁干扰。电磁干扰会导致控制设备的输出噪音变大,从而造成设备不能够正常稳定的运行,可靠性不能保证。

(3)机械力作用力影响。机械作用力是指电气设备在不同的运载方式中受到的震动、冲击、离心加速度等机械损害,从而导致设备结构断裂、原件变形或者元件疲劳,进而影响设备的可靠性。

(4)人为操作失误。操作人员没有严格按照控制设备安全使用规范进行操作,并且对设备的维修和保养不够及时,这些因素都会影响设备的可靠性。

(5)元器件的质量不齐或者是质量不达标,导致生产出来的产品的可靠性不能保证。

2、控制设备的可靠性研究对国家来说,可以提升国家的电子发展水平;对一个企业来说,可以提升产品质量,增加市场竞争力、抢占市场份额获得最大利润回报。

(1)对国家来说,可以促进国家经济的快速发展和国家电子行业的发展,能够在世界经济大舞台上占据主动地位,提升世界地位和影响力。

(2)对企业来说,控制设备的可靠性可以提升产品的质量,产品的可靠性是产品质量的核心,只有提升可靠性才能减少故障的频率、减少维修费用、降低工时耽搁以及提升产品的安全性能。

(3)控制设备的可靠性可以提升市场竞争力,增加市场份额,随着用户对产品要求的提高,只有具有良好可靠性的产品才是首选。因此只有具有高性能可靠性的产品,才能在日益激烈的市场竞争中胜出。

三、控制设备的可靠性测试的方法

可靠性测试是保证控制设备可靠性的重要步骤,同时要根据不同的情形选择合适的电气自动化控制设备的可靠性测试方法。常见的几种控制设备的可靠性测试的方法如下:

1、实验室测试方法。在实验室内模拟现实场景,设定可以调节的工作条件和环境条件,然后通过调节不同的试验参数,来检测被检测的设备,详细的记录每一个可靠性指标和数据。实验室测试由于条件可控简单,实验结果可以再现和分析,而且实验成本较高,与真实的情况还是有区别的。

2、保证性试验方法。这项实验需要花费较长时间,因为控制设备一般是由许多的元器件构成,每一个元器件出现故障的概率是随机的,但是可以通过一定的技术方法改进产品,保证产品出厂之前失效率在规定的指标以内。

3、现场测试方法。真实的测试,得到真实的可靠性测试数据,并且不需要太多的控制设备进行测试,并且花费费用较低,同时实验结束以后设备仍然能够继续使用。但是缺点也是很明显的:受外界不确定因素影响较多,不可人为控制,同时实验的再现性较差。在线测试、停机测试和脱机测试是现场测试的三种情形。控制设备的可靠性测试的最好方法就是现在实验室进行一些模拟测试,然后将实验室得到的数据与现场测试的数据进行对比,仔细分析以后再去确定控制设备的可靠性。

四、提升控制设备的可靠性的措施

明确各种影响控制设备的可靠性的因素以后,采用优化的可靠性设计方法,根据每一个控制设备的特点、环境、原理,选择正确的元器件和散热防护装置,使用熟练的操作者,从而提升控制设备的可靠性。

1、控制设备的设计阶段。研究产品的生产技术,详细的分析产品设计参数,制度出详细正确的设计方案,保证产品的可靠性。同时产品的类型和结构能够在保证可靠性的基础上,选用经济合理的原材料,设计出比较经济的生产模式。设计同时应该考虑到操作的简易性和维修的方便性。

2、控制设备的生产阶段。使用专业生产厂家的产品,同时尽可能的减少设备中的元器件、零部件的规格和品种。要严格控制零部件的质量和可靠性能,尽量选择物美价廉的国产材料,在保证产品性能的前提下,尽可能的降低精度等级,同时选配和修配的工作尽量减少或者杜绝,从而促进自动流水生产。

3、电子元器件的选用原则。严格控制元器件的选用,优先选择那些专业技术过硬、信誉高、技术服务好、供货及时、价格公道的生产厂家,同时优先选择已经经过实践证明过的性能稳定、可靠性好的元器件。充分考虑工作的环境以及电路的性能,然后选择不仅能够满足设备正常工作,而且还留有足够的缓冲余量的元器件。最后应该详细的记录使用过程中每一种元器件展现出来的可靠性数据,为以后元器件的使用选择提供依据。

4、控制设备的散热防护。温度是影响控制设备可靠性的重要因素,无论温度过高还是过低都会对设备的可靠性产生影响。例如:电子设备的能量损失绝大部分是以热能形式散发,如果散热防护装置不合理,热能不能及时散发,设备的温度将会过高,导致设备的运行速度减慢、故障频发、可靠性下降。通常在散热器上面多安装几个肋片,同时增加散热器表面的粗糙度,提升辐射散热的性能。

结束语

总而言之,电气自动化控制技术逐渐成为促进国家经济增长的重要因素,随着电气自动化控制技术的普及,在很大程度上提高了产品的可靠性和工作效率,标志着一个国家电子行业发展水平,并且也是当前经济高速发展的必要条件。

参考文献

热能工程及其自动化范文5

上海交通大学

力学学科形成了各具特色、实力雄厚的四个二级学科:流体力学、固体力学、一般力学与力学基础和工程力学。此外,生物力学是力学与生物、医学相结合的交叉学科,其中研究与人类心血管疾病成因及诊治相关的血流动力学是发展较快的领域之一,该方向属于当前国际前沿。

材料科学与工程是上海交大的传统优势学科,前身是冶金系,下设3个二级学科,其中材料学、材料加工工程被评为国家重点学科。

机械工程学科培养了数以万计的专业技术人才,拥有机械制造及其自动化和机械设计及理论2个国家重点学科,整个学科的实力都非常强大。

控制科学与工程学科以其科研覆盖面宽、综合实力强、人才梯队结构合理、培养高层次人才数量多、质量高而列居国内同类学科前茅。控制理论与控制工程、模式识别与智能系统2个学科从1987年开始就一直是国家重点学科。

创立于1943年的船舶与海洋工程学科,已形成了一批在全国乃至世界领先的优势学科,造就了一批以院士为核心的著名学科带头人,成为了我国学科门类齐全、综合研究实力雄厚、独具特色的船舶与海洋工程科研和教学基地,享有很高的学术声誉。

西安交通大学

机械工程学院是西安交通大学历史最悠久、实力最雄厚的学院之一,优势专业主要有机械制造及其自动化、机械设计及理论、机械电子工程等学科。

电气工程学院是我国高校同类学科中创建最早、学科设置最全的学院之一,历届毕业生中有近30人成为院士,应届毕业生一次性就业率非常高,学生知识能力强,颇受企业青睐。

能源与动力工程学院是西安交通大学的“品牌”学院,其能源动力学科实力强大,在全国都是数一数二的,拥有热能工程、流体机械及工程、动力机械及工程、制冷及低温工程4个优势专业,基本覆盖了所有能源类专业方向。该学院的学生毕业后一般都进入电力、能源等企事业单位工作,收入高。

管理学院在全国同领域非常知名,工业工程专业具备了工科的扎实基础和管理学的思维方式,颇受企业好评,出国率是同类高校中最高的。

电子与信息工程学院是涵盖电子信息领域几乎所有新兴工程学科在内的一个学院,通信工程、自动化、计算机科学等专业每年都备受Google等知名跨国企业的青睐。

北京交通大学

北京交通大学原本属于铁道部,现划归教育部,运输在全国排第一,源于和铁路的渊源,交大可以说是目前全国仅有的和铁路联系密切的学校,全校各专业几乎都和铁路相关,所以一些原铁道部企业最认可交大,交大每年有相当数量的毕业生会去这些企业。

交大的特色还在于和铁路的相关专业,比如电信学院的通信、信号,土建学院的桥梁、隧道,机电学院的车辆工程,运输学院的运输、交规、物流,经管学院的企管、会计等。

电信、经管很知名,每年报名人数很多。理学院也有很不错的学科。

西南交通大学

交通运输学院拥有交通运输工程国家重点学科,在地铁、物流配送、人机和环境工程、智能交通技术等方面拥有不可代替的地位。上海磁悬浮列车、长江三角洲之间的子弹头列车,这些先进的交通工具代表着未来铁路交通发展的方向,而西南交大正是在这方面有着优势。

电气工程学院主要从事电气工程学科和电子信息学科的科学研究和人才培养工作,电力系统及其自动化是国家级重点学科,地铁主要是依靠电力能源运行,因此许多电气学院的学生被聘请到各地铁运营大市。电气学院的磁悬浮列车与悬浮技术研究所等重点研究所和实验室可是几块金字招牌,磁悬浮列车的研究国内第一,世界领先。

西南交通大学的前身是我国高校最早成立土木工程系的,现在的西南交大土木工程学院有国家重点学科桥梁与隧道工程学,国家级特色学科土木工程等优势专业,结合西南地形复杂的特点正在发挥着不可替代的作用。

北京航空航天大学

航空科学与工程学院是北航最有名的学院,下设飞机系、人机与环境系、流体力学研究所、固体力学研究所4个系所,支撑起了北航的学术高峰。

材料科学与工程学院的学生主要是和飞机、航天材料打交道,拥有大量省部委材料学重点实验室,如民航安全技术重点实验室等。材料科学与工程专业还是国家一级重点学科。材料不仅应用在航空航天领域,还可以广泛应用于建筑等民用行业,就业范围非常广阔。

能源与动力工程学院原名动力系,拥有一批获得国内同行业公认的高级学术带头人作为学院的师资主体。

宇航学院堪称航天人才的摇篮,有飞行器设计与工程、飞行器动力工程和探测制导与控制技术三个本科专业,课程设置的特点都是以“平台课方向课”的模式构建,大大拓宽了学生的知识面,提高了学生的适应能力和专业能力。

计算机学院是一个特别鼓励学生发挥自己的创新能力,展现自己才华的地方,其计算机科学与技术专业也是国家一级重点学科。

南京航空航天大学

飞行器设计是南京航天大学最著名的专业,也是历年学校招聘会上最受瞩目的热门专业,建有我国直升机技术研究方向唯一的国家级(国防)重点实验室,建有国内唯一专门从事航空智能材料与结构研究的航空重点实验室以及CAD中心、结构振动两个部门开放实验室。

飞行员专业是这个学校最牛的专业,学校与多家航空公司联合,对学生实行订单式培养方式,共有“31”和“22”两种招生模式,采取国内国外两部教学,如“31”就是学员前三年在国内校本部进行飞行专业基础理论知识学习和基本技能训练,第四学年派送到国外飞行学校进行为期一年的飞行训练,并取得中国民航总局认可的符合多发仪表等级要求的国外商业飞行员驾驶执照。

电气工程及其自动化专业虽然起步较晚,但发展十分迅速,且前景很好,拥有航空电源航空科技重点实验室,建立了中航一集团和中航二集团技术工程中心,相关研究领域在国内也具有重要影响力。

中国海洋大学

海洋环境学院是中国海洋大学最具海洋特色的学院,包括国家级重点学科海洋科学和环境科学,其中海洋学本科专业是“国家理科基础科学研究和教学人才培养基地”首批15个基地之一。

生物科学专业属国家级特色专业。生物系是山东省重点学科和国家生物学一级学科的重要组成部分。联合国教科文组织中国海洋生物工程中心也设在本系。

军事海洋学是海洋学与军事学相结合的新兴学科。它以军事作战需求为牵引,以海洋学的基本知识和研究方法为基础,研究如何利用海洋要素的变化规律为军事作战服务。

此外,中国海洋大学的水产、水产品加工及贮藏工程专业也是非常具有优势的专业,是国家级重点学科;水产养殖学、海洋技术、港口航道与海岸工程、会计学等专业属国家级特色专业。

大连海事大学

大连海事大学的航海技术专业可谓久负盛名,实力非凡,1983年联合国开发计划署和国际海事组织在学校设立了亚太地区国际海事培训中心,1985年设立世界海事大学大连分校。

如果说航海学的是开船,那么轮机学习的就是如何修船了。轮机管理(轮机工程)专业现设有轮机管理和船机修造两个专业方向,属于国家级重点学科。由于这个专业自身的特点――工程部件精确度要求较高,所以对所招收学生的要求也是格外高。

法学院是辽宁省人大常委会立法顾问单位,其中海商法专业在国内同类法律高校中是首屈一指的,也是大连海事大学进校要求分数最高的专业。它培养的学生不仅要求具有扎实的英语和法学基础,而且还要求熟悉海运及相关业务,精通海商、海事法律,能够将所学的知识运用于实践中。

海事管理学科主要培养的是负责水上安全运输监督管理的专业人才,学生毕业后一般进入海事局、海上监察、港口监察等单位工作,是海上运输的第一道防线。

海上物流专业是解决港口运输、海洋运输的各种问题的学科,备受欢迎。

长安大学

公路学院是长安大学最好的学院,是我国公路交通建设行业学科最齐全、专业配套规模最大的公路交通学院。公路学院公路建设学科与技术学科均列入国家“211工程”重点建设行列,学院还是全国交通系统监理工程师、造价工程师、检测工程师和公路交通高新技术培训基地。

汽车学院也是长安大学很牛的学院,载运工具运用工程是国内为数不多的几个权威学科点之一,只有西南交通大学、北京交通大学可与之一争高下。学院有自己唯一的汽车高速实验环道和综合测试场,给学生们提供了很多实验机会,让学生在赏车、鉴车、试车的乐趣中发现和学习。

资源学院、建筑学院、工程机械学院等都是在公路交通这一大学科的基础上不断细化而建立起来的,从地质勘探到建筑开发,与公路交通相关的各个方面都可以在这里找到强势专业学科作支持。

热能工程及其自动化范文6

【关键词】风能利用 本科教育 风电教育

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)01-0010-01

一、前言

风能是目前世界上关注度最高的可再生能源之一。因为现今除水电之外,风电是开发技术最成熟、开发成本最小,也是未来最具有大规模开放价值的可再生能源。随着化石能源的国际价格不断上涨,风电成本已经与核电相当,远低于太阳能、生物质能及其他可再生能源的发电成本。近年来,随着设备制造水平的提高,风电设备的建设成本大幅度的降低,所以全世界主要经济体不约而同地将风电发展列入国家能源优先发展战略之一。目前,各国都投入精力致力于风能利用的产业。

一项产业能够顺利地发展,需要有相应的技术理论以及专业的人才队伍支持。各国政府为了发展风能产业,在政策上给予倾向,资金上给予支持,相关科学技术研究和人才培养也非常重视。我国是全世界风电发展速度最快国家之一,截止2009年底中国风电装机总容量已经是全世界第二的国家。风电建设的规模不断扩大,风力发电市场管理逐步规范;风电设备的自主制造能力不断加强;风电相关法律政策环境不断改善,越来越多的科研单位也把目光投入到风能利用特别是风力发电相关技术的科研攻关上。2006年实施《中华人民共和国可再生能源法》第三章第十二条明确规定:国务院教育行政部门应当将可再生能源知识和技术纳入普通教育、职业教育课程。在高校内设置独立的新能源(特别是风能)利用的相关专业,为新能源事业培养高素质的储备人才亦是迫在眉睫。

那么,如何建立针对风能利用产业的需要的专业呢?该专业的学生又应该如何培养?下面,笔者将对这些问题提出一些看法。

二、现有风能利用专业的教学现状

笔者作为高校教师,在高校教授风力发电机组电气与控制这门课程,该课程教授的学生是本校机电学院的热能与动力专业风能方向的大四学生。热能与动力专业的学生作为机电学院的学生,机械设计制造方面的专业知识准备充足,但是电气工程方面的知识欠缺,尤其是当涉及到电机学、电力电子技术以及电力系统运行的课程内容的时候这种欠缺非常明显。另外,电气工程及其自动化专业的学生在本科阶段学习风力发电相关课程,或是继续深造进行风力发电相关研究时,对机械设计制造方面知识的欠缺也成为学习研究时的掣肘。

风能的利用,特别是风力发电是个复杂的、综合性十分强的产业。从风力发电设备发出电能,到将电能传输上电网,整个过程涉及到多个领域、多门专业的知识和理论。

三、培养计划的制定

首先,应确定好专业的培养目标。风能利用相关专业应该培养基础扎实,知识面宽,具有较强的实践能力和良好的发展潜力的高级专门人才。学生毕业后能够从事风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风电机组的并网运行,风电机组调用,风力发电新技术开发等相关的技术与管理工作,对并能从事其它相关领域的专门技术工作。

四、基础专业课程的设置

作为修读风能利用专业的学生,要对风力发电设备、及其相关辅助设备、电力系统自动化、继电保护、电器学、电机学等方面的知识有一定掌握,所以在课程设置上应兼具机械设计制造专业和电气工程及其自动化专业的特点,不仅做到涉及面广,针对不同的研究方向又能够有极好的专业偏重性。所以,学生应主要学习流体、机械、电气等学科的基础理论,学习风资源测量与评估、空气动力学、机械设计与制造、自动控制的理论和技术,电工电子、信息控制及计算机技术,电力系统(暂态、稳态)分析与电力系统继电保护、发电厂电气主系统,高电压技术,使学生具有进行风电机组及风电场的设计、制造、运行、试验研究、项目投资与管理的基本能力,一定的创新能力,较强的实践能力和良好的发展潜力。所以,基础专业课的设置方面,要全面地涵盖到机械设计制造以及电气工程相关的基础内容,应包括以下课程:理论力学,材料力学,风力机空气动力学,金属工艺学,机械设计基础,机械制造技术基础,电路原理,模拟/数字电子技术,电机学,电力电子技术基础,自动控制理论,电力系统分析,电力系统继电保护原理,等等。

五、专业方向的设置

作为风能利用专业的学生,除了要全面地掌握了解机械设计制造和电气工程的专业知识,在进入高年级之后还要有侧重点地研究方向的选择。笔者认为,研究方向大致可分为以下三个方面:

1.围绕风力发电设备制造

主要研究方向是相关风力发电机组及其控制系统的,包括主体的风力机、发电机、偏航系统、制动系统、液压系统等部分的设计和制造。目前风力发电市场上应用最广泛的风电机组是双馈异步风力发电机组,而应用前景最好的应是直驱永磁同步风力发电机组。选择这个研究方向的学生在基础的机械设计制造和电气理论的基础知识上,应对特种电机及其控制技术,直流/交流速控制系统,风电机组的控制优化等方面有所掌握。

2.风电机组功率预测与并网技术

风力发电和传统发电方式相比,因为风速的不确定是风电场的出力预测也具有不确定性。随着风电场的建设容量越来越大,风电场功率输出的不确定对于电力系统的影响日益明显,不能够忽视。这一方向主要在于学习研究建立风电机组功率预测系统以及革新风电机组的并网技术,应对风电机组的控制技术、电力系统自动化运行、电力系统调度以及EMS等相关课程进行学习并掌握。

3.风电场运行管理

针对风电的并网技术以及网上运行时安全调度的问题都是目前风电产业领域需要研究的重点。目前来说,风电行业发展的“瓶颈”在于风电的市场消纳问题。这一方向主要解决风电工程与电网工程建设进度不一致的实际的现状以及风电相较传统发电模式市场竞争力较弱的现状,就应对电力市场调度、风电与火电联合运行、风电与水电联合运行等课题进行学习研究。

六、总结

相较于高职类风力专业的培养,风能利用本科专业应该着眼于培养高起点、高层次的风 力发电相关人才,不是培养一般的技术员。经过四年的教育,毕业生要具有进行风力发电机组和风电场的设计、制造、运行、试验研究以及项目投资与管理的基本能力,成为有一定创新能力、较强实践能力和良好发展潜力的高级专门人才。

参考文献:

[1]肖创英.欧美风电发展的经验与启示[M].北京:中国林业出版社,2010.4.

[2]吴广龙. 浅谈风力发电的技术现状与发展趋势[J].装备制造, 2010,(1):115.

[3]祁和生,沈德昌.我国大型风力发电产业发展现状[J].电气时代,2010,(2):29-31.