前言:中文期刊网精心挑选了光伏投资成本分析范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
光伏投资成本分析范文1
关键词 分布式;光伏发电;经济性
中图分类号:TM615 文献标识码:A 文章编号:1671-7597(2014)21-0211-02
在“节能减排”概念日益盛行的今天,在追求“高能”、“高效”、“清洁”能源的进程中,以太阳能为代表的绿色能源正越来越受到人们的重视。由于分布式光伏发电行业开发的技术门槛相对不高,投入困难不大,使其成为了当前充满活力和朝气的新兴产业,并在国家的支持下得到迅速的发展[1]。近期,国家电网公司出台政策鼓励个人投资分布式光伏发电并网,各市电力部门执行国家相关规定的优惠政策,免收系统容量备用费,并网申请受理、接入系统方案制定、合同协议签署、并网验收、并网调试全过程不收费[2],发电量可全部上网,也可全部自用,或者自发自用,余电上网。用户不足的电量由电网企业提供,上下网电量分开计算。这些政策将大大鼓励了居民投资分布式光伏发电的热情,越来越多的居民到供电公司咨询光伏发电相关事宜,其中最关切的问题就是其经济性如何?多久才能收回成本?
1 居民分布式光伏发电并网系统
图l所示的是居民分布式光伏发电结构示意图。屋顶分布式光伏发电并网系统由屋顶太阳能电池阵列、并网逆变器、主配电箱、接线箱、电能计量表和电网组成[3]。逆变器是用来将发电设备发出的直流电转换为符合并网要求的交流电,其输入接到太阳能电池组,输出通过主配电箱分成两路,,一路经电能表接入电网,另一路接居民用电负荷。目前计量方式一般采取两块电能表计量,分别计量上网电量和下网电量。如图2所示。
图1 居民屋顶太阳能光伏并网系统结构示意图
2 居民分布式光伏发电项目成本分析
光伏发电项目成本的高低,是影响其能否大规模迅速发展起来的重要因素,也决定着其未来在能源供应中是否认仍占有重要地位,而居民分布式光伏发电项目的投入成本直接影响用户的投资积极性。居民光伏发电成本主要受寿命期内光伏发电总成本和总发电量的影响。居民光伏发电总成本的主体在于初始投资的大小,而运行维护费等其它因素对系统发电成本影响不大[4]。本文将主要分析居民光伏发电的初始投资。初始投资的含义:光伏电站的初始投资主要包括光伏组件、并网逆变器、配电设备及电缆、电站建设安装等成本,其中光伏组件投资成本比重最大,占初始总投资的50%-60%[5]。在2009年的国际金融危机爆发后,光伏电池价格大幅下跌,特别是2011年欧洲大幅削减了光伏发电补贴,造成国际太阳能电池及组件的产能过剩,截至目前,国内光伏组件在5元/W左右。目前并网逆变器价格为25元/W,电线投资成本为5元/米,加上其它投资系统投资达到9元/W。
图2 两块电能表计量的接线方式
3 居民分布式光伏发电成本回收时间分析
以本市首家光伏电站分析:本市一位村民,在村里经营了一家小超市,平均每天用电量在60多度。去年2月,他看到关于个人分布式光伏发电的有关信息,于是专门咨询有关部门并进行了学习,共投入近18万元购进了一套光伏发电设备,这个光伏发电站设备包括80块黑色太阳能光伏板和一台逆变器等,装机容量为20千瓦,去年11月初,他家的光伏发电站建好的同时,也顺利地并入国家电网。“现在屋顶的这个光伏太阳能发电站发的电量除了供自家使用外,多余的电量还能卖给国家电网。”该村民高兴地说道,他家屋顶上的家庭光伏发电站一个多月时间,向国家电网输送电量2000多度。
假设1):该光伏电站每天发电量能达到80-90度,每月发电量在2400多度,每年发电量为28800度,用电性质为商业用电,电度电价为0.882/度。
假设全部自用,年收益Y=28800*(0.882+0.42)=28800*1.302=37497.6元;成本回收时间为4.8年;
假设全部上网,年收益=28800*(0.43+0.42)=24480元,成本回收时间为7.35年;
假设自用电量为24000度,上网电量为4800度,年收益=24000*(0.882+0.42)+4800*(0.43+0.42)=35328元,成本回收时间为5.1年;
由此可见回收时间与用户用电量有直接关系,即用户用电量越多,其回收周期越短。
假设2):该光伏电站每天发电量能达到80-90度,每月发电量在2400多度,每年发电量为28800度,用电性质为居民生活用电,电度电价为0.5283/度。
假设全部自用,年收益Y=28800*(0.5283+0.42)=28800*0.9483=27311.04元;成本回收时间为6.6年;
假设全部上网,年收益=28800*(0.43+0.42)=24480元,成本回收时间为7.35年;
假设自用电量为24000度,上网电量为4800度,年收益=24000*(0.5283+0.42)+4800*(0.43+0.42)=26839.2元,成本回收时间为6.7年;
由此可见回收时间与用户用电性质有直接关系,即用户电价越高,其回收周期越短。
综上,可得出居民分布式光伏发电成本回收时间与用户用电性质和用电量有直接关系,即用户电价越高、用电量越多,其回收周期越短。当然其回收时间还与当地的气候,运行中设备的维修成本等有关,这些本文不做研究。
4 结束语
居民分布式光伏发电成本回收周期随着光伏组件及逆变器成本的下降正日益缩短,相信居民投资热情也会日益高涨,光伏发电在减少污染、节能减排等方面的积极作用将日益突出。
参考文献
[1]张垠.居民太阳能光伏发电并网引起的问题研究[J].供用电,2009,26(4).
[2]本刊编辑部.真诚履责全心服务 支持光伏产业发展.
光伏投资成本分析范文2
关键词:太阳能;热水系统;并网
中图分类号:TK51 文献标识码:A 文章编号:1673-8500(2013)01-0064-01
一、项目简介
近些年来,随着常规化石能源的紧缺,价格不断上涨,风能、水能、太阳能等可再生能源逐步受到人们的关注与青睐,在2006年1月1日《中华人民共和国可再生能源法》正式实施后,越来越多的人开始关注环保、关注可再生能源建设、关注太阳能等可再生能源的利用。作为高等校园,一个热水消耗巨大的单位,也应该加大力度探究如何节约能源、如何节约运行成本、如何找到一种合理、可靠、安全、高效、经济的新型能源,得以为众多师生创造良好的生活环境。
华北电力大学作为国家的一所知名大学,有责任和义务承担起节能环保的重任,为国家的节能减排事业贡献自己的力量。我们的项目旨在探讨如何更好地利用太阳能,如何实现大学校园内太阳能热水系统与燃气锅炉系统的并网运行,并试图通过此举,探索出普遍适用于各大高校的节能减排模式,开启高校浴室节能减排的新进程。
1.华北电力大学共有师生15000余人,学校锅炉房统计数据显示,每日洗浴的人数约为4000~5000人,占总人数的26.7~33.3%。
2.水消耗量:根据学校统计,华北电力大学浴室实行插卡计时计费用水模式,计算出每人每日用水量大约为45kg/人,热水温度38~40℃,因此每日热水消耗量约为225t。
3.备用能源:备用燃气锅炉,与浴室系统原有的水换热器联合使用;
4.供水时间:冬季,每日12:00~21:00。夏季,每日14:00~21:30
5.取水模式:插卡计费取水。
二、规划与设计方案
本项目本着充分利用太阳能这一可再生能源,节省运行成本,全智能化运行的理念进行探讨与设计。
1.结合北京光照条件以及日用热水量225t等现有数据,我们推算得到该系统太阳能集热面积为1237.5。并且选用Φ47×1500×50型太阳集热模块,单组模块6.25,横插管结构,共需145组,模块采用对插式结构,既可以节省安装空间,又可以节约投资成本,安全可靠、热效率较高、性价比较高。
2.规划设计1个40t方形不锈钢保温水箱,并采用恒温处理,利用原有的60t玻璃钢水箱,保证玻璃钢水箱内水的温度不高于42℃,镀锌板外壳,80mm聚氨酯保温。
3.太阳能集热循环系统分为2个子循环系统,根据安装场地情况,每个子循环系统设置2台循环水泵(一用一备),以控制温差。
4.保整箱内水温恒定。
5.设置安装一套全智能控制装置,具有自动上水、防冻循环、水温水位显示、温差循环、手动增压等功能。
6.设置安装一套远程控制装置,便于值班人员的远程可操作性,实现对系统的实时监控。
7.设置安装视频监控系统,值班人员可在设备故障发生时在远端及时发现问题。
8.太阳能供热水管与现有水换热器联合使用,当太阳能水温超过38℃时,换热器暂停使用,当在阴雨天或在光照不足的天气,换热器启用,对太阳能热水实行二次加热至预先设定的温度。
9.浴室整体采用插卡计时方式取水,单管方式供水最大限度节约用水。
太阳能热水系统与燃气锅炉系统流程图:
三、系统特点
1.整体规庞大
太阳能安装共计使用真空管6700支,太阳能集热器145组,占地3552,有效集热面积837.5,实现日均产水量225t。
2.高度智能化
该系统采用全智能化控制,操作简单,无繁杂操作步骤,易于管理,且具有水位水温显示、自动供水、温差集热循环、防风防雷防冻等功能,并设置远程控制系统,视频监控系统,实现了高度智能化。
3.普遍适用性强
该系统具有非常高的可普及性,除可使用于华北电力大学,可普及到其他各高校,以及部队、企事业单位、宾馆、酒店等地点。
四、技术创新
此系统独创采用远程智能控制系统、视频监控系统、全智能化控制,无须人工操作,随时跟踪运行情况,且安装故障报警装置。
本系统首次在太阳能热水系统上安装视频监控系统,并采用太阳能光伏发电系统监控电源,操作人员在远程即可监管设备的实时运行情况。
本系统特别针对公共浴室供水特殊性,设置了恒温供水装置,保证水温保持在37~39℃。
五、成本分析与环境效益
经计算,本系统可节约煤2000kg/天,煤价按照500元/t计算,平均可节约运行费用1000元/天,每年按照300天有效时间统计,共计可节约运行成本30万元/年,本系统按照15年的使用寿命估算,期间共可节约运行费用450万元,对于高能耗的学校而言,节约出的如此巨大的费用可充分用于其他项目的开发和建设中去,具有极高的实用意义。
太阳能属于清洁、无污染、可重复利用的能源,对比安装该系统前,安装后本系统可减少煤炭用量300t/年,减少二氧化硫排放量7t/年,减少氮氧化物排放量4t/年,减少烟尘排放量6t/年,按照15年的使用寿命预计,共可减少二氧化硫排放量105t,减少氮氧化物排放量60t,减少烟尘排放量90t,具有十分可观的社会价值。
参考文献: